flash: nor: ath79: remove base calculation
[openocd.git] / src / flash / nor / at91samd.c
1 /***************************************************************************
2 * Copyright (C) 2013 by Andrey Yurovsky *
3 * Andrey Yurovsky <yurovsky@gmail.com> *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
17 ***************************************************************************/
18
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif
22
23 #include "imp.h"
24 #include "helper/binarybuffer.h"
25
26 #include <target/cortex_m.h>
27
28 #define SAMD_NUM_PROT_BLOCKS 16
29 #define SAMD_PAGE_SIZE_MAX 1024
30
31 #define SAMD_FLASH ((uint32_t)0x00000000) /* physical Flash memory */
32 #define SAMD_USER_ROW ((uint32_t)0x00804000) /* User Row of Flash */
33 #define SAMD_PAC1 0x41000000 /* Peripheral Access Control 1 */
34 #define SAMD_DSU 0x41002000 /* Device Service Unit */
35 #define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
36
37 #define SAMD_DSU_STATUSA 1 /* DSU status register */
38 #define SAMD_DSU_DID 0x18 /* Device ID register */
39 #define SAMD_DSU_CTRL_EXT 0x100 /* CTRL register, external access */
40
41 #define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
42 #define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
43 #define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
44 #define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interupt Flag Status & Clear */
45 #define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
46 #define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
47 #define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
48
49 #define SAMD_CMDEX_KEY 0xA5UL
50 #define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
51
52 /* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
53 #define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
54 #define SAMD_NVM_CMD_WP 0x04 /* Write Page */
55 #define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxilary Row */
56 #define SAMD_NVM_CMD_WAP 0x06 /* Write Auxilary Page */
57 #define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
58 #define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
59 #define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
60 #define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
61 #define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
62 #define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
63 #define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
64
65 /* NVMCTRL bits */
66 #define SAMD_NVM_CTRLB_MANW 0x80
67
68 /* Known identifiers */
69 #define SAMD_PROCESSOR_M0 0x01
70 #define SAMD_FAMILY_D 0x00
71 #define SAMD_FAMILY_L 0x01
72 #define SAMD_FAMILY_C 0x02
73 #define SAMD_SERIES_20 0x00
74 #define SAMD_SERIES_21 0x01
75 #define SAMD_SERIES_22 0x02
76 #define SAMD_SERIES_10 0x02
77 #define SAMD_SERIES_11 0x03
78 #define SAMD_SERIES_09 0x04
79
80 /* Device ID macros */
81 #define SAMD_GET_PROCESSOR(id) (id >> 28)
82 #define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
83 #define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
84 #define SAMD_GET_DEVSEL(id) (id & 0xFF)
85
86 /* Bits to mask out lockbits in user row */
87 #define NVMUSERROW_LOCKBIT_MASK ((uint64_t)0x0000FFFFFFFFFFFF)
88
89 struct samd_part {
90 uint8_t id;
91 const char *name;
92 uint32_t flash_kb;
93 uint32_t ram_kb;
94 };
95
96 /* Known SAMD09 parts. DID reset values missing in RM, see
97 * https://github.com/avrxml/asf/blob/master/sam0/utils/cmsis/samd09/include/ */
98 static const struct samd_part samd09_parts[] = {
99 { 0x0, "SAMD09D14A", 16, 4 },
100 { 0x7, "SAMD09C13A", 8, 4 },
101 };
102
103 /* Known SAMD10 parts */
104 static const struct samd_part samd10_parts[] = {
105 { 0x0, "SAMD10D14AMU", 16, 4 },
106 { 0x1, "SAMD10D13AMU", 8, 4 },
107 { 0x2, "SAMD10D12AMU", 4, 4 },
108 { 0x3, "SAMD10D14ASU", 16, 4 },
109 { 0x4, "SAMD10D13ASU", 8, 4 },
110 { 0x5, "SAMD10D12ASU", 4, 4 },
111 { 0x6, "SAMD10C14A", 16, 4 },
112 { 0x7, "SAMD10C13A", 8, 4 },
113 { 0x8, "SAMD10C12A", 4, 4 },
114 };
115
116 /* Known SAMD11 parts */
117 static const struct samd_part samd11_parts[] = {
118 { 0x0, "SAMD11D14AM", 16, 4 },
119 { 0x1, "SAMD11D13AMU", 8, 4 },
120 { 0x2, "SAMD11D12AMU", 4, 4 },
121 { 0x3, "SAMD11D14ASS", 16, 4 },
122 { 0x4, "SAMD11D13ASU", 8, 4 },
123 { 0x5, "SAMD11D12ASU", 4, 4 },
124 { 0x6, "SAMD11C14A", 16, 4 },
125 { 0x7, "SAMD11C13A", 8, 4 },
126 { 0x8, "SAMD11C12A", 4, 4 },
127 { 0x9, "SAMD11D14AU", 16, 4 },
128 };
129
130 /* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
131 static const struct samd_part samd20_parts[] = {
132 { 0x0, "SAMD20J18A", 256, 32 },
133 { 0x1, "SAMD20J17A", 128, 16 },
134 { 0x2, "SAMD20J16A", 64, 8 },
135 { 0x3, "SAMD20J15A", 32, 4 },
136 { 0x4, "SAMD20J14A", 16, 2 },
137 { 0x5, "SAMD20G18A", 256, 32 },
138 { 0x6, "SAMD20G17A", 128, 16 },
139 { 0x7, "SAMD20G16A", 64, 8 },
140 { 0x8, "SAMD20G15A", 32, 4 },
141 { 0x9, "SAMD20G14A", 16, 2 },
142 { 0xA, "SAMD20E18A", 256, 32 },
143 { 0xB, "SAMD20E17A", 128, 16 },
144 { 0xC, "SAMD20E16A", 64, 8 },
145 { 0xD, "SAMD20E15A", 32, 4 },
146 { 0xE, "SAMD20E14A", 16, 2 },
147 };
148
149 /* Known SAMD21 parts. */
150 static const struct samd_part samd21_parts[] = {
151 { 0x0, "SAMD21J18A", 256, 32 },
152 { 0x1, "SAMD21J17A", 128, 16 },
153 { 0x2, "SAMD21J16A", 64, 8 },
154 { 0x3, "SAMD21J15A", 32, 4 },
155 { 0x4, "SAMD21J14A", 16, 2 },
156 { 0x5, "SAMD21G18A", 256, 32 },
157 { 0x6, "SAMD21G17A", 128, 16 },
158 { 0x7, "SAMD21G16A", 64, 8 },
159 { 0x8, "SAMD21G15A", 32, 4 },
160 { 0x9, "SAMD21G14A", 16, 2 },
161 { 0xA, "SAMD21E18A", 256, 32 },
162 { 0xB, "SAMD21E17A", 128, 16 },
163 { 0xC, "SAMD21E16A", 64, 8 },
164 { 0xD, "SAMD21E15A", 32, 4 },
165 { 0xE, "SAMD21E14A", 16, 2 },
166
167 /* SAMR21 parts have integrated SAMD21 with a radio */
168 { 0x18, "SAMR21G19A", 256, 32 }, /* with 512k of serial flash */
169 { 0x19, "SAMR21G18A", 256, 32 },
170 { 0x1A, "SAMR21G17A", 128, 32 },
171 { 0x1B, "SAMR21G16A", 64, 16 },
172 { 0x1C, "SAMR21E18A", 256, 32 },
173 { 0x1D, "SAMR21E17A", 128, 32 },
174 { 0x1E, "SAMR21E16A", 64, 16 },
175
176 /* SAMD21 B Variants (Table 3-7 from rev I of datasheet) */
177 { 0x20, "SAMD21J16B", 64, 8 },
178 { 0x21, "SAMD21J15B", 32, 4 },
179 { 0x23, "SAMD21G16B", 64, 8 },
180 { 0x24, "SAMD21G15B", 32, 4 },
181 { 0x26, "SAMD21E16B", 64, 8 },
182 { 0x27, "SAMD21E15B", 32, 4 },
183 };
184
185 /* Known SAML21 parts. */
186 static const struct samd_part saml21_parts[] = {
187 { 0x00, "SAML21J18A", 256, 32 },
188 { 0x01, "SAML21J17A", 128, 16 },
189 { 0x02, "SAML21J16A", 64, 8 },
190 { 0x05, "SAML21G18A", 256, 32 },
191 { 0x06, "SAML21G17A", 128, 16 },
192 { 0x07, "SAML21G16A", 64, 8 },
193 { 0x0A, "SAML21E18A", 256, 32 },
194 { 0x0B, "SAML21E17A", 128, 16 },
195 { 0x0C, "SAML21E16A", 64, 8 },
196 { 0x0D, "SAML21E15A", 32, 4 },
197 { 0x0F, "SAML21J18B", 256, 32 },
198 { 0x10, "SAML21J17B", 128, 16 },
199 { 0x11, "SAML21J16B", 64, 8 },
200 { 0x14, "SAML21G18B", 256, 32 },
201 { 0x15, "SAML21G17B", 128, 16 },
202 { 0x16, "SAML21G16B", 64, 8 },
203 { 0x19, "SAML21E18B", 256, 32 },
204 { 0x1A, "SAML21E17B", 128, 16 },
205 { 0x1B, "SAML21E16B", 64, 8 },
206 { 0x1C, "SAML21E15B", 32, 4 },
207
208 /* SAMR30 parts have integrated SAML21 with a radio */
209 { 0x1E, "SAMR30G18A", 256, 32 },
210 { 0x1F, "SAMR30E18A", 256, 32 },
211 };
212
213 /* Known SAML22 parts. */
214 static const struct samd_part saml22_parts[] = {
215 { 0x00, "SAML22N18A", 256, 32 },
216 { 0x01, "SAML22N17A", 128, 16 },
217 { 0x02, "SAML22N16A", 64, 8 },
218 { 0x05, "SAML22J18A", 256, 32 },
219 { 0x06, "SAML22J17A", 128, 16 },
220 { 0x07, "SAML22J16A", 64, 8 },
221 { 0x0A, "SAML22G18A", 256, 32 },
222 { 0x0B, "SAML22G17A", 128, 16 },
223 { 0x0C, "SAML22G16A", 64, 8 },
224 };
225
226 /* Known SAMC20 parts. */
227 static const struct samd_part samc20_parts[] = {
228 { 0x00, "SAMC20J18A", 256, 32 },
229 { 0x01, "SAMC20J17A", 128, 16 },
230 { 0x02, "SAMC20J16A", 64, 8 },
231 { 0x03, "SAMC20J15A", 32, 4 },
232 { 0x05, "SAMC20G18A", 256, 32 },
233 { 0x06, "SAMC20G17A", 128, 16 },
234 { 0x07, "SAMC20G16A", 64, 8 },
235 { 0x08, "SAMC20G15A", 32, 4 },
236 { 0x0A, "SAMC20E18A", 256, 32 },
237 { 0x0B, "SAMC20E17A", 128, 16 },
238 { 0x0C, "SAMC20E16A", 64, 8 },
239 { 0x0D, "SAMC20E15A", 32, 4 },
240 };
241
242 /* Known SAMC21 parts. */
243 static const struct samd_part samc21_parts[] = {
244 { 0x00, "SAMC21J18A", 256, 32 },
245 { 0x01, "SAMC21J17A", 128, 16 },
246 { 0x02, "SAMC21J16A", 64, 8 },
247 { 0x03, "SAMC21J15A", 32, 4 },
248 { 0x05, "SAMC21G18A", 256, 32 },
249 { 0x06, "SAMC21G17A", 128, 16 },
250 { 0x07, "SAMC21G16A", 64, 8 },
251 { 0x08, "SAMC21G15A", 32, 4 },
252 { 0x0A, "SAMC21E18A", 256, 32 },
253 { 0x0B, "SAMC21E17A", 128, 16 },
254 { 0x0C, "SAMC21E16A", 64, 8 },
255 { 0x0D, "SAMC21E15A", 32, 4 },
256 };
257
258 /* Each family of parts contains a parts table in the DEVSEL field of DID. The
259 * processor ID, family ID, and series ID are used to determine which exact
260 * family this is and then we can use the corresponding table. */
261 struct samd_family {
262 uint8_t processor;
263 uint8_t family;
264 uint8_t series;
265 const struct samd_part *parts;
266 size_t num_parts;
267 uint64_t nvm_userrow_res_mask; /* protect bits which are reserved, 0 -> protect */
268 };
269
270 /* Known SAMD families */
271 static const struct samd_family samd_families[] = {
272 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
273 samd20_parts, ARRAY_SIZE(samd20_parts),
274 (uint64_t)0xFFFF01FFFE01FF77 },
275 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
276 samd21_parts, ARRAY_SIZE(samd21_parts),
277 (uint64_t)0xFFFF01FFFE01FF77 },
278 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_09,
279 samd09_parts, ARRAY_SIZE(samd09_parts),
280 (uint64_t)0xFFFF01FFFE01FF77 },
281 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
282 samd10_parts, ARRAY_SIZE(samd10_parts),
283 (uint64_t)0xFFFF01FFFE01FF77 },
284 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
285 samd11_parts, ARRAY_SIZE(samd11_parts),
286 (uint64_t)0xFFFF01FFFE01FF77 },
287 { SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_21,
288 saml21_parts, ARRAY_SIZE(saml21_parts),
289 (uint64_t)0xFFFF03FFFC01FF77 },
290 { SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_22,
291 saml22_parts, ARRAY_SIZE(saml22_parts),
292 (uint64_t)0xFFFF03FFFC01FF77 },
293 { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_20,
294 samc20_parts, ARRAY_SIZE(samc20_parts),
295 (uint64_t)0xFFFF03FFFC01FF77 },
296 { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_21,
297 samc21_parts, ARRAY_SIZE(samc21_parts),
298 (uint64_t)0xFFFF03FFFC01FF77 },
299 };
300
301 struct samd_info {
302 uint32_t page_size;
303 int num_pages;
304 int sector_size;
305 int prot_block_size;
306
307 bool probed;
308 struct target *target;
309 };
310
311
312 /**
313 * Gives the family structure to specific device id.
314 * @param id The id of the device.
315 * @return On failure NULL, otherwise a pointer to the structure.
316 */
317 static const struct samd_family *samd_find_family(uint32_t id)
318 {
319 uint8_t processor = SAMD_GET_PROCESSOR(id);
320 uint8_t family = SAMD_GET_FAMILY(id);
321 uint8_t series = SAMD_GET_SERIES(id);
322
323 for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
324 if (samd_families[i].processor == processor &&
325 samd_families[i].series == series &&
326 samd_families[i].family == family)
327 return &samd_families[i];
328 }
329
330 return NULL;
331 }
332
333 /**
334 * Gives the part structure to specific device id.
335 * @param id The id of the device.
336 * @return On failure NULL, otherwise a pointer to the structure.
337 */
338 static const struct samd_part *samd_find_part(uint32_t id)
339 {
340 uint8_t devsel = SAMD_GET_DEVSEL(id);
341 const struct samd_family *family = samd_find_family(id);
342 if (family == NULL)
343 return NULL;
344
345 for (unsigned i = 0; i < family->num_parts; i++) {
346 if (family->parts[i].id == devsel)
347 return &family->parts[i];
348 }
349
350 return NULL;
351 }
352
353 static int samd_protect_check(struct flash_bank *bank)
354 {
355 int res, prot_block;
356 uint16_t lock;
357
358 res = target_read_u16(bank->target,
359 SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
360 if (res != ERROR_OK)
361 return res;
362
363 /* Lock bits are active-low */
364 for (prot_block = 0; prot_block < bank->num_prot_blocks; prot_block++)
365 bank->prot_blocks[prot_block].is_protected = !(lock & (1u<<prot_block));
366
367 return ERROR_OK;
368 }
369
370 static int samd_get_flash_page_info(struct target *target,
371 uint32_t *sizep, int *nump)
372 {
373 int res;
374 uint32_t param;
375
376 res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
377 if (res == ERROR_OK) {
378 /* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
379 * so 0 is 8KB and 7 is 1024KB. */
380 if (sizep)
381 *sizep = (8 << ((param >> 16) & 0x7));
382 /* The NVMP field (bits 15:0) indicates the total number of pages */
383 if (nump)
384 *nump = param & 0xFFFF;
385 } else {
386 LOG_ERROR("Couldn't read NVM Parameters register");
387 }
388
389 return res;
390 }
391
392 static int samd_probe(struct flash_bank *bank)
393 {
394 uint32_t id;
395 int res;
396 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
397 const struct samd_part *part;
398
399 if (chip->probed)
400 return ERROR_OK;
401
402 res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
403 if (res != ERROR_OK) {
404 LOG_ERROR("Couldn't read Device ID register");
405 return res;
406 }
407
408 part = samd_find_part(id);
409 if (part == NULL) {
410 LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32, id);
411 return ERROR_FAIL;
412 }
413
414 bank->size = part->flash_kb * 1024;
415
416 res = samd_get_flash_page_info(bank->target, &chip->page_size,
417 &chip->num_pages);
418 if (res != ERROR_OK) {
419 LOG_ERROR("Couldn't determine Flash page size");
420 return res;
421 }
422
423 /* Sanity check: the total flash size in the DSU should match the page size
424 * multiplied by the number of pages. */
425 if (bank->size != chip->num_pages * chip->page_size) {
426 LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
427 "Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
428 part->flash_kb, chip->num_pages, chip->page_size);
429 }
430
431 /* Erase granularity = 1 row = 4 pages */
432 chip->sector_size = chip->page_size * 4;
433
434 /* Allocate the sector table */
435 bank->num_sectors = chip->num_pages / 4;
436 bank->sectors = alloc_block_array(0, chip->sector_size, bank->num_sectors);
437 if (!bank->sectors)
438 return ERROR_FAIL;
439
440 /* 16 protection blocks per device */
441 chip->prot_block_size = bank->size / SAMD_NUM_PROT_BLOCKS;
442
443 /* Allocate the table of protection blocks */
444 bank->num_prot_blocks = SAMD_NUM_PROT_BLOCKS;
445 bank->prot_blocks = alloc_block_array(0, chip->prot_block_size, bank->num_prot_blocks);
446 if (!bank->prot_blocks)
447 return ERROR_FAIL;
448
449 samd_protect_check(bank);
450
451 /* Done */
452 chip->probed = true;
453
454 LOG_INFO("SAMD MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
455 part->flash_kb, part->ram_kb);
456
457 return ERROR_OK;
458 }
459
460 static int samd_check_error(struct target *target)
461 {
462 int ret, ret2;
463 uint16_t status;
464
465 ret = target_read_u16(target,
466 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
467 if (ret != ERROR_OK) {
468 LOG_ERROR("Can't read NVM status");
469 return ret;
470 }
471
472 if ((status & 0x001C) == 0)
473 return ERROR_OK;
474
475 if (status & (1 << 4)) { /* NVME */
476 LOG_ERROR("SAMD: NVM Error");
477 ret = ERROR_FLASH_OPERATION_FAILED;
478 }
479
480 if (status & (1 << 3)) { /* LOCKE */
481 LOG_ERROR("SAMD: NVM lock error");
482 ret = ERROR_FLASH_PROTECTED;
483 }
484
485 if (status & (1 << 2)) { /* PROGE */
486 LOG_ERROR("SAMD: NVM programming error");
487 ret = ERROR_FLASH_OPER_UNSUPPORTED;
488 }
489
490 /* Clear the error conditions by writing a one to them */
491 ret2 = target_write_u16(target,
492 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
493 if (ret2 != ERROR_OK)
494 LOG_ERROR("Can't clear NVM error conditions");
495
496 return ret;
497 }
498
499 static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
500 {
501 int res;
502
503 if (target->state != TARGET_HALTED) {
504 LOG_ERROR("Target not halted");
505 return ERROR_TARGET_NOT_HALTED;
506 }
507
508 /* Issue the NVM command */
509 res = target_write_u16(target,
510 SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
511 if (res != ERROR_OK)
512 return res;
513
514 /* Check to see if the NVM command resulted in an error condition. */
515 return samd_check_error(target);
516 }
517
518 /**
519 * Erases a flash-row at the given address.
520 * @param target Pointer to the target structure.
521 * @param address The address of the row.
522 * @return On success ERROR_OK, on failure an errorcode.
523 */
524 static int samd_erase_row(struct target *target, uint32_t address)
525 {
526 int res;
527
528 /* Set an address contained in the row to be erased */
529 res = target_write_u32(target,
530 SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
531
532 /* Issue the Erase Row command to erase that row. */
533 if (res == ERROR_OK)
534 res = samd_issue_nvmctrl_command(target,
535 address == SAMD_USER_ROW ? SAMD_NVM_CMD_EAR : SAMD_NVM_CMD_ER);
536
537 if (res != ERROR_OK) {
538 LOG_ERROR("Failed to erase row containing %08" PRIx32, address);
539 return ERROR_FAIL;
540 }
541
542 return ERROR_OK;
543 }
544
545 /**
546 * Returns the bitmask of reserved bits in register.
547 * @param target Pointer to the target structure.
548 * @param mask Bitmask, 0 -> value stays untouched.
549 * @return On success ERROR_OK, on failure an errorcode.
550 */
551 static int samd_get_reservedmask(struct target *target, uint64_t *mask)
552 {
553 int res;
554 /* Get the devicetype */
555 uint32_t id;
556 res = target_read_u32(target, SAMD_DSU + SAMD_DSU_DID, &id);
557 if (res != ERROR_OK) {
558 LOG_ERROR("Couldn't read Device ID register");
559 return res;
560 }
561 const struct samd_family *family;
562 family = samd_find_family(id);
563 if (family == NULL) {
564 LOG_ERROR("Couldn't determine device family");
565 return ERROR_FAIL;
566 }
567 *mask = family->nvm_userrow_res_mask;
568 return ERROR_OK;
569 }
570
571 static int read_userrow(struct target *target, uint64_t *userrow)
572 {
573 int res;
574 uint8_t buffer[8];
575
576 res = target_read_memory(target, SAMD_USER_ROW, 4, 2, buffer);
577 if (res != ERROR_OK)
578 return res;
579
580 *userrow = target_buffer_get_u64(target, buffer);
581 return ERROR_OK;
582 }
583
584 /**
585 * Modify the contents of the User Row in Flash. The User Row itself
586 * has a size of one page and contains a combination of "fuses" and
587 * calibration data. Bits which have a value of zero in the mask will
588 * not be changed. Up to now devices only use the first 64 bits.
589 * @param target Pointer to the target structure.
590 * @param value_input The value to write.
591 * @param value_mask Bitmask, 0 -> value stays untouched.
592 * @return On success ERROR_OK, on failure an errorcode.
593 */
594 static int samd_modify_user_row_masked(struct target *target,
595 uint64_t value_input, uint64_t value_mask)
596 {
597 int res;
598 uint32_t nvm_ctrlb;
599 bool manual_wp = true;
600
601 /* Retrieve the MCU's page size, in bytes. This is also the size of the
602 * entire User Row. */
603 uint32_t page_size;
604 res = samd_get_flash_page_info(target, &page_size, NULL);
605 if (res != ERROR_OK) {
606 LOG_ERROR("Couldn't determine Flash page size");
607 return res;
608 }
609
610 /* Make sure the size is sane. */
611 assert(page_size <= SAMD_PAGE_SIZE_MAX &&
612 page_size >= sizeof(value_input));
613
614 uint8_t buf[SAMD_PAGE_SIZE_MAX];
615 /* Read the user row (comprising one page) by words. */
616 res = target_read_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
617 if (res != ERROR_OK)
618 return res;
619
620 uint64_t value_device;
621 res = read_userrow(target, &value_device);
622 if (res != ERROR_OK)
623 return res;
624 uint64_t value_new = (value_input & value_mask) | (value_device & ~value_mask);
625
626 /* We will need to erase before writing if the new value needs a '1' in any
627 * position for which the current value had a '0'. Otherwise we can avoid
628 * erasing. */
629 if ((~value_device) & value_new) {
630 res = samd_erase_row(target, SAMD_USER_ROW);
631 if (res != ERROR_OK) {
632 LOG_ERROR("Couldn't erase user row");
633 return res;
634 }
635 }
636
637 /* Modify */
638 target_buffer_set_u64(target, buf, value_new);
639
640 /* Write the page buffer back out to the target. */
641 res = target_write_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
642 if (res != ERROR_OK)
643 return res;
644
645 /* Check if we need to do manual page write commands */
646 res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
647 if (res == ERROR_OK)
648 manual_wp = (nvm_ctrlb & SAMD_NVM_CTRLB_MANW) != 0;
649 else {
650 LOG_ERROR("Read of NVM register CTRKB failed.");
651 return ERROR_FAIL;
652 }
653 if (manual_wp) {
654 /* Trigger flash write */
655 res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_WAP);
656 } else {
657 res = samd_check_error(target);
658 }
659
660 return res;
661 }
662
663 /**
664 * Modifies the user row register to the given value.
665 * @param target Pointer to the target structure.
666 * @param value The value to write.
667 * @param startb The bit-offset by which the given value is shifted.
668 * @param endb The bit-offset of the last bit in value to write.
669 * @return On success ERROR_OK, on failure an errorcode.
670 */
671 static int samd_modify_user_row(struct target *target, uint64_t value,
672 uint8_t startb, uint8_t endb)
673 {
674 uint64_t mask = 0;
675 int i;
676 for (i = startb ; i <= endb ; i++)
677 mask |= ((uint64_t)1) << i;
678
679 return samd_modify_user_row_masked(target, value << startb, mask);
680 }
681
682 static int samd_protect(struct flash_bank *bank, int set, int first_prot_bl, int last_prot_bl)
683 {
684 int res = ERROR_OK;
685 int prot_block;
686
687 /* We can issue lock/unlock region commands with the target running but
688 * the settings won't persist unless we're able to modify the LOCK regions
689 * and that requires the target to be halted. */
690 if (bank->target->state != TARGET_HALTED) {
691 LOG_ERROR("Target not halted");
692 return ERROR_TARGET_NOT_HALTED;
693 }
694
695 for (prot_block = first_prot_bl; prot_block <= last_prot_bl; prot_block++) {
696 if (set != bank->prot_blocks[prot_block].is_protected) {
697 /* Load an address that is within this protection block (we use offset 0) */
698 res = target_write_u32(bank->target,
699 SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
700 bank->prot_blocks[prot_block].offset >> 1);
701 if (res != ERROR_OK)
702 goto exit;
703
704 /* Tell the controller to lock that block */
705 res = samd_issue_nvmctrl_command(bank->target,
706 set ? SAMD_NVM_CMD_LR : SAMD_NVM_CMD_UR);
707 if (res != ERROR_OK)
708 goto exit;
709 }
710 }
711
712 /* We've now applied our changes, however they will be undone by the next
713 * reset unless we also apply them to the LOCK bits in the User Page. The
714 * LOCK bits start at bit 48, corresponding to Sector 0 and end with bit 63,
715 * corresponding to Sector 15. A '1' means unlocked and a '0' means
716 * locked. See Table 9-3 in the SAMD20 datasheet for more details. */
717
718 res = samd_modify_user_row(bank->target,
719 set ? (uint64_t)0 : (uint64_t)UINT64_MAX,
720 48 + first_prot_bl, 48 + last_prot_bl);
721 if (res != ERROR_OK)
722 LOG_WARNING("SAMD: protect settings were not made persistent!");
723
724 res = ERROR_OK;
725
726 exit:
727 samd_protect_check(bank);
728
729 return res;
730 }
731
732 static int samd_erase(struct flash_bank *bank, int first_sect, int last_sect)
733 {
734 int res, s;
735 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
736
737 if (bank->target->state != TARGET_HALTED) {
738 LOG_ERROR("Target not halted");
739
740 return ERROR_TARGET_NOT_HALTED;
741 }
742
743 if (!chip->probed) {
744 if (samd_probe(bank) != ERROR_OK)
745 return ERROR_FLASH_BANK_NOT_PROBED;
746 }
747
748 /* For each sector to be erased */
749 for (s = first_sect; s <= last_sect; s++) {
750 res = samd_erase_row(bank->target, bank->sectors[s].offset);
751 if (res != ERROR_OK) {
752 LOG_ERROR("SAMD: failed to erase sector %d at 0x%08" PRIx32, s, bank->sectors[s].offset);
753 return res;
754 }
755 }
756
757 return ERROR_OK;
758 }
759
760
761 static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
762 uint32_t offset, uint32_t count)
763 {
764 int res;
765 uint32_t nvm_ctrlb;
766 uint32_t address;
767 uint32_t pg_offset;
768 uint32_t nb;
769 uint32_t nw;
770 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
771 uint8_t *pb = NULL;
772 bool manual_wp;
773
774 if (bank->target->state != TARGET_HALTED) {
775 LOG_ERROR("Target not halted");
776 return ERROR_TARGET_NOT_HALTED;
777 }
778
779 if (!chip->probed) {
780 if (samd_probe(bank) != ERROR_OK)
781 return ERROR_FLASH_BANK_NOT_PROBED;
782 }
783
784 /* Check if we need to do manual page write commands */
785 res = target_read_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
786
787 if (res != ERROR_OK)
788 return res;
789
790 if (nvm_ctrlb & SAMD_NVM_CTRLB_MANW)
791 manual_wp = true;
792 else
793 manual_wp = false;
794
795 res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_PBC);
796 if (res != ERROR_OK) {
797 LOG_ERROR("%s: %d", __func__, __LINE__);
798 return res;
799 }
800
801 while (count) {
802 nb = chip->page_size - offset % chip->page_size;
803 if (count < nb)
804 nb = count;
805
806 address = bank->base + offset;
807 pg_offset = offset % chip->page_size;
808
809 if (offset % 4 || (offset + nb) % 4) {
810 /* Either start or end of write is not word aligned */
811 if (!pb) {
812 pb = malloc(chip->page_size);
813 if (!pb)
814 return ERROR_FAIL;
815 }
816
817 /* Set temporary page buffer to 0xff and overwrite the relevant part */
818 memset(pb, 0xff, chip->page_size);
819 memcpy(pb + pg_offset, buffer, nb);
820
821 /* Align start address to a word boundary */
822 address -= offset % 4;
823 pg_offset -= offset % 4;
824 assert(pg_offset % 4 == 0);
825
826 /* Extend length to whole words */
827 nw = (nb + offset % 4 + 3) / 4;
828 assert(pg_offset + 4 * nw <= chip->page_size);
829
830 /* Now we have original data extended by 0xff bytes
831 * to the nearest word boundary on both start and end */
832 res = target_write_memory(bank->target, address, 4, nw, pb + pg_offset);
833 } else {
834 assert(nb % 4 == 0);
835 nw = nb / 4;
836 assert(pg_offset + 4 * nw <= chip->page_size);
837
838 /* Word aligned data, use direct write from buffer */
839 res = target_write_memory(bank->target, address, 4, nw, buffer);
840 }
841 if (res != ERROR_OK) {
842 LOG_ERROR("%s: %d", __func__, __LINE__);
843 goto free_pb;
844 }
845
846 /* Devices with errata 13134 have automatic page write enabled by default
847 * For other devices issue a write page CMD to the NVM
848 * If the page has not been written up to the last word
849 * then issue CMD_WP always */
850 if (manual_wp || pg_offset + 4 * nw < chip->page_size) {
851 res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_WP);
852 } else {
853 /* Access through AHB is stalled while flash is being programmed */
854 usleep(200);
855
856 res = samd_check_error(bank->target);
857 }
858
859 if (res != ERROR_OK) {
860 LOG_ERROR("%s: write failed at address 0x%08" PRIx32, __func__, address);
861 goto free_pb;
862 }
863
864 /* We're done with the page contents */
865 count -= nb;
866 offset += nb;
867 buffer += nb;
868 }
869
870 free_pb:
871 if (pb)
872 free(pb);
873
874 return res;
875 }
876
877 FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
878 {
879 if (bank->base != SAMD_FLASH) {
880 LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
881 "[at91samd series] )",
882 bank->base, SAMD_FLASH);
883 return ERROR_FAIL;
884 }
885
886 struct samd_info *chip;
887 chip = calloc(1, sizeof(*chip));
888 if (!chip) {
889 LOG_ERROR("No memory for flash bank chip info");
890 return ERROR_FAIL;
891 }
892
893 chip->target = bank->target;
894 chip->probed = false;
895
896 bank->driver_priv = chip;
897
898 return ERROR_OK;
899 }
900
901 COMMAND_HANDLER(samd_handle_info_command)
902 {
903 return ERROR_OK;
904 }
905
906 COMMAND_HANDLER(samd_handle_chip_erase_command)
907 {
908 struct target *target = get_current_target(CMD_CTX);
909 int res = ERROR_FAIL;
910
911 if (target) {
912 /* Enable access to the DSU by disabling the write protect bit */
913 target_write_u32(target, SAMD_PAC1, (1<<1));
914 /* intentionally without error checking - not accessible on secured chip */
915
916 /* Tell the DSU to perform a full chip erase. It takes about 240ms to
917 * perform the erase. */
918 res = target_write_u8(target, SAMD_DSU + SAMD_DSU_CTRL_EXT, (1<<4));
919 if (res == ERROR_OK)
920 command_print(CMD_CTX, "chip erase started");
921 else
922 command_print(CMD_CTX, "write to DSU CTRL failed");
923 }
924
925 return res;
926 }
927
928 COMMAND_HANDLER(samd_handle_set_security_command)
929 {
930 int res = ERROR_OK;
931 struct target *target = get_current_target(CMD_CTX);
932
933 if (CMD_ARGC < 1 || (CMD_ARGC >= 1 && (strcmp(CMD_ARGV[0], "enable")))) {
934 command_print(CMD_CTX, "supply the \"enable\" argument to proceed.");
935 return ERROR_COMMAND_SYNTAX_ERROR;
936 }
937
938 if (target) {
939 if (target->state != TARGET_HALTED) {
940 LOG_ERROR("Target not halted");
941 return ERROR_TARGET_NOT_HALTED;
942 }
943
944 res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_SSB);
945
946 /* Check (and clear) error conditions */
947 if (res == ERROR_OK)
948 command_print(CMD_CTX, "chip secured on next power-cycle");
949 else
950 command_print(CMD_CTX, "failed to secure chip");
951 }
952
953 return res;
954 }
955
956 COMMAND_HANDLER(samd_handle_eeprom_command)
957 {
958 int res = ERROR_OK;
959 struct target *target = get_current_target(CMD_CTX);
960
961 if (target) {
962 if (target->state != TARGET_HALTED) {
963 LOG_ERROR("Target not halted");
964 return ERROR_TARGET_NOT_HALTED;
965 }
966
967 if (CMD_ARGC >= 1) {
968 int val = atoi(CMD_ARGV[0]);
969 uint32_t code;
970
971 if (val == 0)
972 code = 7;
973 else {
974 /* Try to match size in bytes with corresponding size code */
975 for (code = 0; code <= 6; code++) {
976 if (val == (2 << (13 - code)))
977 break;
978 }
979
980 if (code > 6) {
981 command_print(CMD_CTX, "Invalid EEPROM size. Please see "
982 "datasheet for a list valid sizes.");
983 return ERROR_COMMAND_SYNTAX_ERROR;
984 }
985 }
986
987 res = samd_modify_user_row(target, code, 4, 6);
988 } else {
989 uint16_t val;
990 res = target_read_u16(target, SAMD_USER_ROW, &val);
991 if (res == ERROR_OK) {
992 uint32_t size = ((val >> 4) & 0x7); /* grab size code */
993
994 if (size == 0x7)
995 command_print(CMD_CTX, "EEPROM is disabled");
996 else {
997 /* Otherwise, 6 is 256B, 0 is 16KB */
998 command_print(CMD_CTX, "EEPROM size is %u bytes",
999 (2 << (13 - size)));
1000 }
1001 }
1002 }
1003 }
1004
1005 return res;
1006 }
1007
1008 static COMMAND_HELPER(get_u64_from_hexarg, unsigned int num, uint64_t *value)
1009 {
1010 if (num >= CMD_ARGC) {
1011 command_print(CMD_CTX, "Too few Arguments.");
1012 return ERROR_COMMAND_SYNTAX_ERROR;
1013 }
1014
1015 if (strlen(CMD_ARGV[num]) >= 3 &&
1016 CMD_ARGV[num][0] == '0' &&
1017 CMD_ARGV[num][1] == 'x') {
1018 char *check = NULL;
1019 *value = strtoull(&(CMD_ARGV[num][2]), &check, 16);
1020 if ((value == 0 && errno == ERANGE) ||
1021 check == NULL || *check != 0) {
1022 command_print(CMD_CTX, "Invalid 64-bit hex value in argument %d.",
1023 num + 1);
1024 return ERROR_COMMAND_SYNTAX_ERROR;
1025 }
1026 } else {
1027 command_print(CMD_CTX, "Argument %d needs to be a hex value.", num + 1);
1028 return ERROR_COMMAND_SYNTAX_ERROR;
1029 }
1030 return ERROR_OK;
1031 }
1032
1033 COMMAND_HANDLER(samd_handle_nvmuserrow_command)
1034 {
1035 int res = ERROR_OK;
1036 struct target *target = get_current_target(CMD_CTX);
1037
1038 if (target) {
1039 if (CMD_ARGC > 2) {
1040 command_print(CMD_CTX, "Too much Arguments given.");
1041 return ERROR_COMMAND_SYNTAX_ERROR;
1042 }
1043
1044 if (CMD_ARGC > 0) {
1045 if (target->state != TARGET_HALTED) {
1046 LOG_ERROR("Target not halted.");
1047 return ERROR_TARGET_NOT_HALTED;
1048 }
1049
1050 uint64_t mask;
1051 res = samd_get_reservedmask(target, &mask);
1052 if (res != ERROR_OK) {
1053 LOG_ERROR("Couldn't determine the mask for reserved bits.");
1054 return ERROR_FAIL;
1055 }
1056 mask &= NVMUSERROW_LOCKBIT_MASK;
1057
1058 uint64_t value;
1059 res = CALL_COMMAND_HANDLER(get_u64_from_hexarg, 0, &value);
1060 if (res != ERROR_OK)
1061 return res;
1062 if (CMD_ARGC == 2) {
1063 uint64_t mask_temp;
1064 res = CALL_COMMAND_HANDLER(get_u64_from_hexarg, 1, &mask_temp);
1065 if (res != ERROR_OK)
1066 return res;
1067 mask &= mask_temp;
1068 }
1069 res = samd_modify_user_row_masked(target, value, mask);
1070 if (res != ERROR_OK)
1071 return res;
1072 }
1073
1074 /* read register */
1075 uint64_t value;
1076 res = read_userrow(target, &value);
1077 if (res == ERROR_OK)
1078 command_print(CMD_CTX, "NVMUSERROW: 0x%016"PRIX64, value);
1079 else
1080 LOG_ERROR("NVMUSERROW could not be read.");
1081 }
1082 return res;
1083 }
1084
1085 COMMAND_HANDLER(samd_handle_bootloader_command)
1086 {
1087 int res = ERROR_OK;
1088 struct target *target = get_current_target(CMD_CTX);
1089
1090 if (target) {
1091 if (target->state != TARGET_HALTED) {
1092 LOG_ERROR("Target not halted");
1093 return ERROR_TARGET_NOT_HALTED;
1094 }
1095
1096 /* Retrieve the MCU's page size, in bytes. */
1097 uint32_t page_size;
1098 res = samd_get_flash_page_info(target, &page_size, NULL);
1099 if (res != ERROR_OK) {
1100 LOG_ERROR("Couldn't determine Flash page size");
1101 return res;
1102 }
1103
1104 if (CMD_ARGC >= 1) {
1105 int val = atoi(CMD_ARGV[0]);
1106 uint32_t code;
1107
1108 if (val == 0)
1109 code = 7;
1110 else {
1111 /* Try to match size in bytes with corresponding size code */
1112 for (code = 0; code <= 6; code++) {
1113 if ((unsigned int)val == (2UL << (8UL - code)) * page_size)
1114 break;
1115 }
1116
1117 if (code > 6) {
1118 command_print(CMD_CTX, "Invalid bootloader size. Please "
1119 "see datasheet for a list valid sizes.");
1120 return ERROR_COMMAND_SYNTAX_ERROR;
1121 }
1122
1123 }
1124
1125 res = samd_modify_user_row(target, code, 0, 2);
1126 } else {
1127 uint16_t val;
1128 res = target_read_u16(target, SAMD_USER_ROW, &val);
1129 if (res == ERROR_OK) {
1130 uint32_t size = (val & 0x7); /* grab size code */
1131 uint32_t nb;
1132
1133 if (size == 0x7)
1134 nb = 0;
1135 else
1136 nb = (2 << (8 - size)) * page_size;
1137
1138 /* There are 4 pages per row */
1139 command_print(CMD_CTX, "Bootloader size is %" PRIu32 " bytes (%" PRIu32 " rows)",
1140 nb, (uint32_t)(nb / (page_size * 4)));
1141 }
1142 }
1143 }
1144
1145 return res;
1146 }
1147
1148
1149
1150 COMMAND_HANDLER(samd_handle_reset_deassert)
1151 {
1152 struct target *target = get_current_target(CMD_CTX);
1153 int retval = ERROR_OK;
1154 enum reset_types jtag_reset_config = jtag_get_reset_config();
1155
1156 /* If the target has been unresponsive before, try to re-establish
1157 * communication now - CPU is held in reset by DSU, DAP is working */
1158 if (!target_was_examined(target))
1159 target_examine_one(target);
1160 target_poll(target);
1161
1162 /* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
1163 * so we just release reset held by DSU
1164 *
1165 * n_RESET (srst) clears the DP, so reenable debug and set vector catch here
1166 *
1167 * After vectreset DSU release is not needed however makes no harm
1168 */
1169 if (target->reset_halt && (jtag_reset_config & RESET_HAS_SRST)) {
1170 retval = target_write_u32(target, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1171 if (retval == ERROR_OK)
1172 retval = target_write_u32(target, DCB_DEMCR,
1173 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1174 /* do not return on error here, releasing DSU reset is more important */
1175 }
1176
1177 /* clear CPU Reset Phase Extension bit */
1178 int retval2 = target_write_u8(target, SAMD_DSU + SAMD_DSU_STATUSA, (1<<1));
1179 if (retval2 != ERROR_OK)
1180 return retval2;
1181
1182 return retval;
1183 }
1184
1185 static const struct command_registration at91samd_exec_command_handlers[] = {
1186 {
1187 .name = "dsu_reset_deassert",
1188 .handler = samd_handle_reset_deassert,
1189 .mode = COMMAND_EXEC,
1190 .help = "Deasert internal reset held by DSU."
1191 },
1192 {
1193 .name = "info",
1194 .handler = samd_handle_info_command,
1195 .mode = COMMAND_EXEC,
1196 .help = "Print information about the current at91samd chip "
1197 "and its flash configuration.",
1198 },
1199 {
1200 .name = "chip-erase",
1201 .handler = samd_handle_chip_erase_command,
1202 .mode = COMMAND_EXEC,
1203 .help = "Erase the entire Flash by using the Chip-"
1204 "Erase feature in the Device Service Unit (DSU).",
1205 },
1206 {
1207 .name = "set-security",
1208 .handler = samd_handle_set_security_command,
1209 .mode = COMMAND_EXEC,
1210 .help = "Secure the chip's Flash by setting the Security Bit. "
1211 "This makes it impossible to read the Flash contents. "
1212 "The only way to undo this is to issue the chip-erase "
1213 "command.",
1214 },
1215 {
1216 .name = "eeprom",
1217 .usage = "[size_in_bytes]",
1218 .handler = samd_handle_eeprom_command,
1219 .mode = COMMAND_EXEC,
1220 .help = "Show or set the EEPROM size setting, stored in the User Row. "
1221 "Please see Table 20-3 of the SAMD20 datasheet for allowed values. "
1222 "Changes are stored immediately but take affect after the MCU is "
1223 "reset.",
1224 },
1225 {
1226 .name = "bootloader",
1227 .usage = "[size_in_bytes]",
1228 .handler = samd_handle_bootloader_command,
1229 .mode = COMMAND_EXEC,
1230 .help = "Show or set the bootloader size, stored in the User Row. "
1231 "Please see Table 20-2 of the SAMD20 datasheet for allowed values. "
1232 "Changes are stored immediately but take affect after the MCU is "
1233 "reset.",
1234 },
1235 {
1236 .name = "nvmuserrow",
1237 .usage = "[value] [mask]",
1238 .handler = samd_handle_nvmuserrow_command,
1239 .mode = COMMAND_EXEC,
1240 .help = "Show or set the nvmuserrow register. It is 64 bit wide "
1241 "and located at address 0x804000. Use the optional mask argument "
1242 "to prevent changes at positions where the bitvalue is zero. "
1243 "For security reasons the lock- and reserved-bits are masked out "
1244 "in background and therefore cannot be changed.",
1245 },
1246 COMMAND_REGISTRATION_DONE
1247 };
1248
1249 static const struct command_registration at91samd_command_handlers[] = {
1250 {
1251 .name = "at91samd",
1252 .mode = COMMAND_ANY,
1253 .help = "at91samd flash command group",
1254 .usage = "",
1255 .chain = at91samd_exec_command_handlers,
1256 },
1257 COMMAND_REGISTRATION_DONE
1258 };
1259
1260 struct flash_driver at91samd_flash = {
1261 .name = "at91samd",
1262 .commands = at91samd_command_handlers,
1263 .flash_bank_command = samd_flash_bank_command,
1264 .erase = samd_erase,
1265 .protect = samd_protect,
1266 .write = samd_write,
1267 .read = default_flash_read,
1268 .probe = samd_probe,
1269 .auto_probe = samd_probe,
1270 .erase_check = default_flash_blank_check,
1271 .protect_check = samd_protect_check,
1272 .free_driver_priv = default_flash_free_driver_priv,
1273 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)