1 /***************************************************************************
2 * Copyright (C) 2013 by Andrey Yurovsky *
3 * Andrey Yurovsky <yurovsky@gmail.com> *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
17 ***************************************************************************/
24 #include "helper/binarybuffer.h"
26 #include <target/cortex_m.h>
28 #define SAMD_NUM_PROT_BLOCKS 16
29 #define SAMD_PAGE_SIZE_MAX 1024
31 #define SAMD_FLASH ((uint32_t)0x00000000) /* physical Flash memory */
32 #define SAMD_USER_ROW ((uint32_t)0x00804000) /* User Row of Flash */
33 #define SAMD_PAC1 0x41000000 /* Peripheral Access Control 1 */
34 #define SAMD_DSU 0x41002000 /* Device Service Unit */
35 #define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
37 #define SAMD_DSU_STATUSA 1 /* DSU status register */
38 #define SAMD_DSU_DID 0x18 /* Device ID register */
39 #define SAMD_DSU_CTRL_EXT 0x100 /* CTRL register, external access */
41 #define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
42 #define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
43 #define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
44 #define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interupt Flag Status & Clear */
45 #define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
46 #define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
47 #define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
49 #define SAMD_CMDEX_KEY 0xA5UL
50 #define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
52 /* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
53 #define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
54 #define SAMD_NVM_CMD_WP 0x04 /* Write Page */
55 #define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxilary Row */
56 #define SAMD_NVM_CMD_WAP 0x06 /* Write Auxilary Page */
57 #define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
58 #define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
59 #define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
60 #define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
61 #define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
62 #define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
63 #define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
66 #define SAMD_NVM_CTRLB_MANW 0x80
68 /* Known identifiers */
69 #define SAMD_PROCESSOR_M0 0x01
70 #define SAMD_FAMILY_D 0x00
71 #define SAMD_FAMILY_L 0x01
72 #define SAMD_FAMILY_C 0x02
73 #define SAMD_SERIES_20 0x00
74 #define SAMD_SERIES_21 0x01
75 #define SAMD_SERIES_22 0x02
76 #define SAMD_SERIES_10 0x02
77 #define SAMD_SERIES_11 0x03
78 #define SAMD_SERIES_09 0x04
80 /* Device ID macros */
81 #define SAMD_GET_PROCESSOR(id) (id >> 28)
82 #define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
83 #define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
84 #define SAMD_GET_DEVSEL(id) (id & 0xFF)
86 /* Bits to mask out lockbits in user row */
87 #define NVMUSERROW_LOCKBIT_MASK ((uint64_t)0x0000FFFFFFFFFFFF)
96 /* Known SAMD09 parts. DID reset values missing in RM, see
97 * https://github.com/avrxml/asf/blob/master/sam0/utils/cmsis/samd09/include/ */
98 static const struct samd_part samd09_parts
[] = {
99 { 0x0, "SAMD09D14A", 16, 4 },
100 { 0x7, "SAMD09C13A", 8, 4 },
103 /* Known SAMD10 parts */
104 static const struct samd_part samd10_parts
[] = {
105 { 0x0, "SAMD10D14AMU", 16, 4 },
106 { 0x1, "SAMD10D13AMU", 8, 4 },
107 { 0x2, "SAMD10D12AMU", 4, 4 },
108 { 0x3, "SAMD10D14ASU", 16, 4 },
109 { 0x4, "SAMD10D13ASU", 8, 4 },
110 { 0x5, "SAMD10D12ASU", 4, 4 },
111 { 0x6, "SAMD10C14A", 16, 4 },
112 { 0x7, "SAMD10C13A", 8, 4 },
113 { 0x8, "SAMD10C12A", 4, 4 },
116 /* Known SAMD11 parts */
117 static const struct samd_part samd11_parts
[] = {
118 { 0x0, "SAMD11D14AM", 16, 4 },
119 { 0x1, "SAMD11D13AMU", 8, 4 },
120 { 0x2, "SAMD11D12AMU", 4, 4 },
121 { 0x3, "SAMD11D14ASS", 16, 4 },
122 { 0x4, "SAMD11D13ASU", 8, 4 },
123 { 0x5, "SAMD11D12ASU", 4, 4 },
124 { 0x6, "SAMD11C14A", 16, 4 },
125 { 0x7, "SAMD11C13A", 8, 4 },
126 { 0x8, "SAMD11C12A", 4, 4 },
127 { 0x9, "SAMD11D14AU", 16, 4 },
130 /* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
131 static const struct samd_part samd20_parts
[] = {
132 { 0x0, "SAMD20J18A", 256, 32 },
133 { 0x1, "SAMD20J17A", 128, 16 },
134 { 0x2, "SAMD20J16A", 64, 8 },
135 { 0x3, "SAMD20J15A", 32, 4 },
136 { 0x4, "SAMD20J14A", 16, 2 },
137 { 0x5, "SAMD20G18A", 256, 32 },
138 { 0x6, "SAMD20G17A", 128, 16 },
139 { 0x7, "SAMD20G16A", 64, 8 },
140 { 0x8, "SAMD20G15A", 32, 4 },
141 { 0x9, "SAMD20G14A", 16, 2 },
142 { 0xA, "SAMD20E18A", 256, 32 },
143 { 0xB, "SAMD20E17A", 128, 16 },
144 { 0xC, "SAMD20E16A", 64, 8 },
145 { 0xD, "SAMD20E15A", 32, 4 },
146 { 0xE, "SAMD20E14A", 16, 2 },
149 /* Known SAMD21 parts. */
150 static const struct samd_part samd21_parts
[] = {
151 { 0x0, "SAMD21J18A", 256, 32 },
152 { 0x1, "SAMD21J17A", 128, 16 },
153 { 0x2, "SAMD21J16A", 64, 8 },
154 { 0x3, "SAMD21J15A", 32, 4 },
155 { 0x4, "SAMD21J14A", 16, 2 },
156 { 0x5, "SAMD21G18A", 256, 32 },
157 { 0x6, "SAMD21G17A", 128, 16 },
158 { 0x7, "SAMD21G16A", 64, 8 },
159 { 0x8, "SAMD21G15A", 32, 4 },
160 { 0x9, "SAMD21G14A", 16, 2 },
161 { 0xA, "SAMD21E18A", 256, 32 },
162 { 0xB, "SAMD21E17A", 128, 16 },
163 { 0xC, "SAMD21E16A", 64, 8 },
164 { 0xD, "SAMD21E15A", 32, 4 },
165 { 0xE, "SAMD21E14A", 16, 2 },
167 /* SAMR21 parts have integrated SAMD21 with a radio */
168 { 0x18, "SAMR21G19A", 256, 32 }, /* with 512k of serial flash */
169 { 0x19, "SAMR21G18A", 256, 32 },
170 { 0x1A, "SAMR21G17A", 128, 32 },
171 { 0x1B, "SAMR21G16A", 64, 16 },
172 { 0x1C, "SAMR21E18A", 256, 32 },
173 { 0x1D, "SAMR21E17A", 128, 32 },
174 { 0x1E, "SAMR21E16A", 64, 16 },
176 /* SAMD21 B Variants (Table 3-7 from rev I of datasheet) */
177 { 0x20, "SAMD21J16B", 64, 8 },
178 { 0x21, "SAMD21J15B", 32, 4 },
179 { 0x23, "SAMD21G16B", 64, 8 },
180 { 0x24, "SAMD21G15B", 32, 4 },
181 { 0x26, "SAMD21E16B", 64, 8 },
182 { 0x27, "SAMD21E15B", 32, 4 },
184 /* Known SAMDA1 parts.
185 SAMD-A1 series uses the same series identifier like the SAMD21
186 taken from http://ww1.microchip.com/downloads/en/DeviceDoc/40001895A.pdf (pages 14-17) */
187 { 0x29, "SAMDA1J16A", 64, 8 },
188 { 0x2A, "SAMDA1J15A", 32, 4 },
189 { 0x2B, "SAMDA1J14A", 16, 4 },
190 { 0x2C, "SAMDA1G16A", 64, 8 },
191 { 0x2D, "SAMDA1G15A", 32, 4 },
192 { 0x2E, "SAMDA1G14A", 16, 4 },
193 { 0x2F, "SAMDA1E16A", 64, 8 },
194 { 0x30, "SAMDA1E15A", 32, 4 },
195 { 0x31, "SAMDA1E14A", 16, 4 },
196 { 0x64, "SAMDA1J16B", 64, 8 },
197 { 0x65, "SAMDA1J15B", 32, 4 },
198 { 0x66, "SAMDA1J14B", 16, 4 },
199 { 0x67, "SAMDA1G16B", 64, 8 },
200 { 0x68, "SAMDA1G15B", 32, 4 },
201 { 0x69, "SAMDA1G14B", 16, 4 },
202 { 0x6A, "SAMDA1E16B", 64, 8 },
203 { 0x6B, "SAMDA1E15B", 32, 4 },
204 { 0x6C, "SAMDA1E14B", 16, 4 },
207 /* Known SAML21 parts. */
208 static const struct samd_part saml21_parts
[] = {
209 { 0x00, "SAML21J18A", 256, 32 },
210 { 0x01, "SAML21J17A", 128, 16 },
211 { 0x02, "SAML21J16A", 64, 8 },
212 { 0x05, "SAML21G18A", 256, 32 },
213 { 0x06, "SAML21G17A", 128, 16 },
214 { 0x07, "SAML21G16A", 64, 8 },
215 { 0x0A, "SAML21E18A", 256, 32 },
216 { 0x0B, "SAML21E17A", 128, 16 },
217 { 0x0C, "SAML21E16A", 64, 8 },
218 { 0x0D, "SAML21E15A", 32, 4 },
219 { 0x0F, "SAML21J18B", 256, 32 },
220 { 0x10, "SAML21J17B", 128, 16 },
221 { 0x11, "SAML21J16B", 64, 8 },
222 { 0x14, "SAML21G18B", 256, 32 },
223 { 0x15, "SAML21G17B", 128, 16 },
224 { 0x16, "SAML21G16B", 64, 8 },
225 { 0x19, "SAML21E18B", 256, 32 },
226 { 0x1A, "SAML21E17B", 128, 16 },
227 { 0x1B, "SAML21E16B", 64, 8 },
228 { 0x1C, "SAML21E15B", 32, 4 },
230 /* SAMR30 parts have integrated SAML21 with a radio */
231 { 0x1E, "SAMR30G18A", 256, 32 },
232 { 0x1F, "SAMR30E18A", 256, 32 },
234 /* SAMR34/R35 parts have integrated SAML21 with a lora radio */
235 { 0x28, "SAMR34J18", 256, 32 },
238 /* Known SAML22 parts. */
239 static const struct samd_part saml22_parts
[] = {
240 { 0x00, "SAML22N18A", 256, 32 },
241 { 0x01, "SAML22N17A", 128, 16 },
242 { 0x02, "SAML22N16A", 64, 8 },
243 { 0x05, "SAML22J18A", 256, 32 },
244 { 0x06, "SAML22J17A", 128, 16 },
245 { 0x07, "SAML22J16A", 64, 8 },
246 { 0x0A, "SAML22G18A", 256, 32 },
247 { 0x0B, "SAML22G17A", 128, 16 },
248 { 0x0C, "SAML22G16A", 64, 8 },
251 /* Known SAMC20 parts. */
252 static const struct samd_part samc20_parts
[] = {
253 { 0x00, "SAMC20J18A", 256, 32 },
254 { 0x01, "SAMC20J17A", 128, 16 },
255 { 0x02, "SAMC20J16A", 64, 8 },
256 { 0x03, "SAMC20J15A", 32, 4 },
257 { 0x05, "SAMC20G18A", 256, 32 },
258 { 0x06, "SAMC20G17A", 128, 16 },
259 { 0x07, "SAMC20G16A", 64, 8 },
260 { 0x08, "SAMC20G15A", 32, 4 },
261 { 0x0A, "SAMC20E18A", 256, 32 },
262 { 0x0B, "SAMC20E17A", 128, 16 },
263 { 0x0C, "SAMC20E16A", 64, 8 },
264 { 0x0D, "SAMC20E15A", 32, 4 },
267 /* Known SAMC21 parts. */
268 static const struct samd_part samc21_parts
[] = {
269 { 0x00, "SAMC21J18A", 256, 32 },
270 { 0x01, "SAMC21J17A", 128, 16 },
271 { 0x02, "SAMC21J16A", 64, 8 },
272 { 0x03, "SAMC21J15A", 32, 4 },
273 { 0x05, "SAMC21G18A", 256, 32 },
274 { 0x06, "SAMC21G17A", 128, 16 },
275 { 0x07, "SAMC21G16A", 64, 8 },
276 { 0x08, "SAMC21G15A", 32, 4 },
277 { 0x0A, "SAMC21E18A", 256, 32 },
278 { 0x0B, "SAMC21E17A", 128, 16 },
279 { 0x0C, "SAMC21E16A", 64, 8 },
280 { 0x0D, "SAMC21E15A", 32, 4 },
283 /* Each family of parts contains a parts table in the DEVSEL field of DID. The
284 * processor ID, family ID, and series ID are used to determine which exact
285 * family this is and then we can use the corresponding table. */
290 const struct samd_part
*parts
;
292 uint64_t nvm_userrow_res_mask
; /* protect bits which are reserved, 0 -> protect */
295 /* Known SAMD families */
296 static const struct samd_family samd_families
[] = {
297 { SAMD_PROCESSOR_M0
, SAMD_FAMILY_D
, SAMD_SERIES_20
,
298 samd20_parts
, ARRAY_SIZE(samd20_parts
),
299 (uint64_t)0xFFFF01FFFE01FF77 },
300 { SAMD_PROCESSOR_M0
, SAMD_FAMILY_D
, SAMD_SERIES_21
,
301 samd21_parts
, ARRAY_SIZE(samd21_parts
),
302 (uint64_t)0xFFFF01FFFE01FF77 },
303 { SAMD_PROCESSOR_M0
, SAMD_FAMILY_D
, SAMD_SERIES_09
,
304 samd09_parts
, ARRAY_SIZE(samd09_parts
),
305 (uint64_t)0xFFFF01FFFE01FF77 },
306 { SAMD_PROCESSOR_M0
, SAMD_FAMILY_D
, SAMD_SERIES_10
,
307 samd10_parts
, ARRAY_SIZE(samd10_parts
),
308 (uint64_t)0xFFFF01FFFE01FF77 },
309 { SAMD_PROCESSOR_M0
, SAMD_FAMILY_D
, SAMD_SERIES_11
,
310 samd11_parts
, ARRAY_SIZE(samd11_parts
),
311 (uint64_t)0xFFFF01FFFE01FF77 },
312 { SAMD_PROCESSOR_M0
, SAMD_FAMILY_L
, SAMD_SERIES_21
,
313 saml21_parts
, ARRAY_SIZE(saml21_parts
),
314 (uint64_t)0xFFFF03FFFC01FF77 },
315 { SAMD_PROCESSOR_M0
, SAMD_FAMILY_L
, SAMD_SERIES_22
,
316 saml22_parts
, ARRAY_SIZE(saml22_parts
),
317 (uint64_t)0xFFFF03FFFC01FF77 },
318 { SAMD_PROCESSOR_M0
, SAMD_FAMILY_C
, SAMD_SERIES_20
,
319 samc20_parts
, ARRAY_SIZE(samc20_parts
),
320 (uint64_t)0xFFFF03FFFC01FF77 },
321 { SAMD_PROCESSOR_M0
, SAMD_FAMILY_C
, SAMD_SERIES_21
,
322 samc21_parts
, ARRAY_SIZE(samc21_parts
),
323 (uint64_t)0xFFFF03FFFC01FF77 },
333 struct target
*target
;
338 * Gives the family structure to specific device id.
339 * @param id The id of the device.
340 * @return On failure NULL, otherwise a pointer to the structure.
342 static const struct samd_family
*samd_find_family(uint32_t id
)
344 uint8_t processor
= SAMD_GET_PROCESSOR(id
);
345 uint8_t family
= SAMD_GET_FAMILY(id
);
346 uint8_t series
= SAMD_GET_SERIES(id
);
348 for (unsigned i
= 0; i
< ARRAY_SIZE(samd_families
); i
++) {
349 if (samd_families
[i
].processor
== processor
&&
350 samd_families
[i
].series
== series
&&
351 samd_families
[i
].family
== family
)
352 return &samd_families
[i
];
359 * Gives the part structure to specific device id.
360 * @param id The id of the device.
361 * @return On failure NULL, otherwise a pointer to the structure.
363 static const struct samd_part
*samd_find_part(uint32_t id
)
365 uint8_t devsel
= SAMD_GET_DEVSEL(id
);
366 const struct samd_family
*family
= samd_find_family(id
);
370 for (unsigned i
= 0; i
< family
->num_parts
; i
++) {
371 if (family
->parts
[i
].id
== devsel
)
372 return &family
->parts
[i
];
378 static int samd_protect_check(struct flash_bank
*bank
)
383 res
= target_read_u16(bank
->target
,
384 SAMD_NVMCTRL
+ SAMD_NVMCTRL_LOCK
, &lock
);
388 /* Lock bits are active-low */
389 for (prot_block
= 0; prot_block
< bank
->num_prot_blocks
; prot_block
++)
390 bank
->prot_blocks
[prot_block
].is_protected
= !(lock
& (1u<<prot_block
));
395 static int samd_get_flash_page_info(struct target
*target
,
396 uint32_t *sizep
, int *nump
)
401 res
= target_read_u32(target
, SAMD_NVMCTRL
+ SAMD_NVMCTRL_PARAM
, ¶m
);
402 if (res
== ERROR_OK
) {
403 /* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
404 * so 0 is 8KB and 7 is 1024KB. */
406 *sizep
= (8 << ((param
>> 16) & 0x7));
407 /* The NVMP field (bits 15:0) indicates the total number of pages */
409 *nump
= param
& 0xFFFF;
411 LOG_ERROR("Couldn't read NVM Parameters register");
417 static int samd_probe(struct flash_bank
*bank
)
421 struct samd_info
*chip
= (struct samd_info
*)bank
->driver_priv
;
422 const struct samd_part
*part
;
427 res
= target_read_u32(bank
->target
, SAMD_DSU
+ SAMD_DSU_DID
, &id
);
428 if (res
!= ERROR_OK
) {
429 LOG_ERROR("Couldn't read Device ID register");
433 part
= samd_find_part(id
);
435 LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32
, id
);
439 bank
->size
= part
->flash_kb
* 1024;
441 res
= samd_get_flash_page_info(bank
->target
, &chip
->page_size
,
443 if (res
!= ERROR_OK
) {
444 LOG_ERROR("Couldn't determine Flash page size");
448 /* Sanity check: the total flash size in the DSU should match the page size
449 * multiplied by the number of pages. */
450 if (bank
->size
!= chip
->num_pages
* chip
->page_size
) {
451 LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
452 "Identified %" PRIu32
"KB Flash but NVMCTRL reports %u %" PRIu32
"B pages",
453 part
->flash_kb
, chip
->num_pages
, chip
->page_size
);
456 /* Erase granularity = 1 row = 4 pages */
457 chip
->sector_size
= chip
->page_size
* 4;
459 /* Allocate the sector table */
460 bank
->num_sectors
= chip
->num_pages
/ 4;
461 bank
->sectors
= alloc_block_array(0, chip
->sector_size
, bank
->num_sectors
);
465 /* 16 protection blocks per device */
466 chip
->prot_block_size
= bank
->size
/ SAMD_NUM_PROT_BLOCKS
;
468 /* Allocate the table of protection blocks */
469 bank
->num_prot_blocks
= SAMD_NUM_PROT_BLOCKS
;
470 bank
->prot_blocks
= alloc_block_array(0, chip
->prot_block_size
, bank
->num_prot_blocks
);
471 if (!bank
->prot_blocks
)
474 samd_protect_check(bank
);
479 LOG_INFO("SAMD MCU: %s (%" PRIu32
"KB Flash, %" PRIu32
"KB RAM)", part
->name
,
480 part
->flash_kb
, part
->ram_kb
);
485 static int samd_check_error(struct target
*target
)
490 ret
= target_read_u16(target
,
491 SAMD_NVMCTRL
+ SAMD_NVMCTRL_STATUS
, &status
);
492 if (ret
!= ERROR_OK
) {
493 LOG_ERROR("Can't read NVM status");
497 if ((status
& 0x001C) == 0)
500 if (status
& (1 << 4)) { /* NVME */
501 LOG_ERROR("SAMD: NVM Error");
502 ret
= ERROR_FLASH_OPERATION_FAILED
;
505 if (status
& (1 << 3)) { /* LOCKE */
506 LOG_ERROR("SAMD: NVM lock error");
507 ret
= ERROR_FLASH_PROTECTED
;
510 if (status
& (1 << 2)) { /* PROGE */
511 LOG_ERROR("SAMD: NVM programming error");
512 ret
= ERROR_FLASH_OPER_UNSUPPORTED
;
515 /* Clear the error conditions by writing a one to them */
516 ret2
= target_write_u16(target
,
517 SAMD_NVMCTRL
+ SAMD_NVMCTRL_STATUS
, status
);
518 if (ret2
!= ERROR_OK
)
519 LOG_ERROR("Can't clear NVM error conditions");
524 static int samd_issue_nvmctrl_command(struct target
*target
, uint16_t cmd
)
528 if (target
->state
!= TARGET_HALTED
) {
529 LOG_ERROR("Target not halted");
530 return ERROR_TARGET_NOT_HALTED
;
533 /* Issue the NVM command */
534 res
= target_write_u16(target
,
535 SAMD_NVMCTRL
+ SAMD_NVMCTRL_CTRLA
, SAMD_NVM_CMD(cmd
));
539 /* Check to see if the NVM command resulted in an error condition. */
540 return samd_check_error(target
);
544 * Erases a flash-row at the given address.
545 * @param target Pointer to the target structure.
546 * @param address The address of the row.
547 * @return On success ERROR_OK, on failure an errorcode.
549 static int samd_erase_row(struct target
*target
, uint32_t address
)
553 /* Set an address contained in the row to be erased */
554 res
= target_write_u32(target
,
555 SAMD_NVMCTRL
+ SAMD_NVMCTRL_ADDR
, address
>> 1);
557 /* Issue the Erase Row command to erase that row. */
559 res
= samd_issue_nvmctrl_command(target
,
560 address
== SAMD_USER_ROW ? SAMD_NVM_CMD_EAR
: SAMD_NVM_CMD_ER
);
562 if (res
!= ERROR_OK
) {
563 LOG_ERROR("Failed to erase row containing %08" PRIx32
, address
);
571 * Returns the bitmask of reserved bits in register.
572 * @param target Pointer to the target structure.
573 * @param mask Bitmask, 0 -> value stays untouched.
574 * @return On success ERROR_OK, on failure an errorcode.
576 static int samd_get_reservedmask(struct target
*target
, uint64_t *mask
)
579 /* Get the devicetype */
581 res
= target_read_u32(target
, SAMD_DSU
+ SAMD_DSU_DID
, &id
);
582 if (res
!= ERROR_OK
) {
583 LOG_ERROR("Couldn't read Device ID register");
586 const struct samd_family
*family
;
587 family
= samd_find_family(id
);
588 if (family
== NULL
) {
589 LOG_ERROR("Couldn't determine device family");
592 *mask
= family
->nvm_userrow_res_mask
;
596 static int read_userrow(struct target
*target
, uint64_t *userrow
)
601 res
= target_read_memory(target
, SAMD_USER_ROW
, 4, 2, buffer
);
605 *userrow
= target_buffer_get_u64(target
, buffer
);
610 * Modify the contents of the User Row in Flash. The User Row itself
611 * has a size of one page and contains a combination of "fuses" and
612 * calibration data. Bits which have a value of zero in the mask will
613 * not be changed. Up to now devices only use the first 64 bits.
614 * @param target Pointer to the target structure.
615 * @param value_input The value to write.
616 * @param value_mask Bitmask, 0 -> value stays untouched.
617 * @return On success ERROR_OK, on failure an errorcode.
619 static int samd_modify_user_row_masked(struct target
*target
,
620 uint64_t value_input
, uint64_t value_mask
)
624 bool manual_wp
= true;
626 /* Retrieve the MCU's page size, in bytes. This is also the size of the
627 * entire User Row. */
629 res
= samd_get_flash_page_info(target
, &page_size
, NULL
);
630 if (res
!= ERROR_OK
) {
631 LOG_ERROR("Couldn't determine Flash page size");
635 /* Make sure the size is sane. */
636 assert(page_size
<= SAMD_PAGE_SIZE_MAX
&&
637 page_size
>= sizeof(value_input
));
639 uint8_t buf
[SAMD_PAGE_SIZE_MAX
];
640 /* Read the user row (comprising one page) by words. */
641 res
= target_read_memory(target
, SAMD_USER_ROW
, 4, page_size
/ 4, buf
);
645 uint64_t value_device
;
646 res
= read_userrow(target
, &value_device
);
649 uint64_t value_new
= (value_input
& value_mask
) | (value_device
& ~value_mask
);
651 /* We will need to erase before writing if the new value needs a '1' in any
652 * position for which the current value had a '0'. Otherwise we can avoid
654 if ((~value_device
) & value_new
) {
655 res
= samd_erase_row(target
, SAMD_USER_ROW
);
656 if (res
!= ERROR_OK
) {
657 LOG_ERROR("Couldn't erase user row");
663 target_buffer_set_u64(target
, buf
, value_new
);
665 /* Write the page buffer back out to the target. */
666 res
= target_write_memory(target
, SAMD_USER_ROW
, 4, page_size
/ 4, buf
);
670 /* Check if we need to do manual page write commands */
671 res
= target_read_u32(target
, SAMD_NVMCTRL
+ SAMD_NVMCTRL_CTRLB
, &nvm_ctrlb
);
673 manual_wp
= (nvm_ctrlb
& SAMD_NVM_CTRLB_MANW
) != 0;
675 LOG_ERROR("Read of NVM register CTRKB failed.");
679 /* Trigger flash write */
680 res
= samd_issue_nvmctrl_command(target
, SAMD_NVM_CMD_WAP
);
682 res
= samd_check_error(target
);
689 * Modifies the user row register to the given value.
690 * @param target Pointer to the target structure.
691 * @param value The value to write.
692 * @param startb The bit-offset by which the given value is shifted.
693 * @param endb The bit-offset of the last bit in value to write.
694 * @return On success ERROR_OK, on failure an errorcode.
696 static int samd_modify_user_row(struct target
*target
, uint64_t value
,
697 uint8_t startb
, uint8_t endb
)
701 for (i
= startb
; i
<= endb
; i
++)
702 mask
|= ((uint64_t)1) << i
;
704 return samd_modify_user_row_masked(target
, value
<< startb
, mask
);
707 static int samd_protect(struct flash_bank
*bank
, int set
, int first_prot_bl
, int last_prot_bl
)
712 /* We can issue lock/unlock region commands with the target running but
713 * the settings won't persist unless we're able to modify the LOCK regions
714 * and that requires the target to be halted. */
715 if (bank
->target
->state
!= TARGET_HALTED
) {
716 LOG_ERROR("Target not halted");
717 return ERROR_TARGET_NOT_HALTED
;
720 for (prot_block
= first_prot_bl
; prot_block
<= last_prot_bl
; prot_block
++) {
721 if (set
!= bank
->prot_blocks
[prot_block
].is_protected
) {
722 /* Load an address that is within this protection block (we use offset 0) */
723 res
= target_write_u32(bank
->target
,
724 SAMD_NVMCTRL
+ SAMD_NVMCTRL_ADDR
,
725 bank
->prot_blocks
[prot_block
].offset
>> 1);
729 /* Tell the controller to lock that block */
730 res
= samd_issue_nvmctrl_command(bank
->target
,
731 set ? SAMD_NVM_CMD_LR
: SAMD_NVM_CMD_UR
);
737 /* We've now applied our changes, however they will be undone by the next
738 * reset unless we also apply them to the LOCK bits in the User Page. The
739 * LOCK bits start at bit 48, corresponding to Sector 0 and end with bit 63,
740 * corresponding to Sector 15. A '1' means unlocked and a '0' means
741 * locked. See Table 9-3 in the SAMD20 datasheet for more details. */
743 res
= samd_modify_user_row(bank
->target
,
744 set ?
(uint64_t)0 : (uint64_t)UINT64_MAX
,
745 48 + first_prot_bl
, 48 + last_prot_bl
);
747 LOG_WARNING("SAMD: protect settings were not made persistent!");
752 samd_protect_check(bank
);
757 static int samd_erase(struct flash_bank
*bank
, int first_sect
, int last_sect
)
760 struct samd_info
*chip
= (struct samd_info
*)bank
->driver_priv
;
762 if (bank
->target
->state
!= TARGET_HALTED
) {
763 LOG_ERROR("Target not halted");
765 return ERROR_TARGET_NOT_HALTED
;
769 if (samd_probe(bank
) != ERROR_OK
)
770 return ERROR_FLASH_BANK_NOT_PROBED
;
773 /* For each sector to be erased */
774 for (s
= first_sect
; s
<= last_sect
; s
++) {
775 res
= samd_erase_row(bank
->target
, bank
->sectors
[s
].offset
);
776 if (res
!= ERROR_OK
) {
777 LOG_ERROR("SAMD: failed to erase sector %d at 0x%08" PRIx32
, s
, bank
->sectors
[s
].offset
);
786 static int samd_write(struct flash_bank
*bank
, const uint8_t *buffer
,
787 uint32_t offset
, uint32_t count
)
795 struct samd_info
*chip
= (struct samd_info
*)bank
->driver_priv
;
799 if (bank
->target
->state
!= TARGET_HALTED
) {
800 LOG_ERROR("Target not halted");
801 return ERROR_TARGET_NOT_HALTED
;
805 if (samd_probe(bank
) != ERROR_OK
)
806 return ERROR_FLASH_BANK_NOT_PROBED
;
809 /* Check if we need to do manual page write commands */
810 res
= target_read_u32(bank
->target
, SAMD_NVMCTRL
+ SAMD_NVMCTRL_CTRLB
, &nvm_ctrlb
);
815 if (nvm_ctrlb
& SAMD_NVM_CTRLB_MANW
)
820 res
= samd_issue_nvmctrl_command(bank
->target
, SAMD_NVM_CMD_PBC
);
821 if (res
!= ERROR_OK
) {
822 LOG_ERROR("%s: %d", __func__
, __LINE__
);
827 nb
= chip
->page_size
- offset
% chip
->page_size
;
831 address
= bank
->base
+ offset
;
832 pg_offset
= offset
% chip
->page_size
;
834 if (offset
% 4 || (offset
+ nb
) % 4) {
835 /* Either start or end of write is not word aligned */
837 pb
= malloc(chip
->page_size
);
842 /* Set temporary page buffer to 0xff and overwrite the relevant part */
843 memset(pb
, 0xff, chip
->page_size
);
844 memcpy(pb
+ pg_offset
, buffer
, nb
);
846 /* Align start address to a word boundary */
847 address
-= offset
% 4;
848 pg_offset
-= offset
% 4;
849 assert(pg_offset
% 4 == 0);
851 /* Extend length to whole words */
852 nw
= (nb
+ offset
% 4 + 3) / 4;
853 assert(pg_offset
+ 4 * nw
<= chip
->page_size
);
855 /* Now we have original data extended by 0xff bytes
856 * to the nearest word boundary on both start and end */
857 res
= target_write_memory(bank
->target
, address
, 4, nw
, pb
+ pg_offset
);
861 assert(pg_offset
+ 4 * nw
<= chip
->page_size
);
863 /* Word aligned data, use direct write from buffer */
864 res
= target_write_memory(bank
->target
, address
, 4, nw
, buffer
);
866 if (res
!= ERROR_OK
) {
867 LOG_ERROR("%s: %d", __func__
, __LINE__
);
871 /* Devices with errata 13134 have automatic page write enabled by default
872 * For other devices issue a write page CMD to the NVM
873 * If the page has not been written up to the last word
874 * then issue CMD_WP always */
875 if (manual_wp
|| pg_offset
+ 4 * nw
< chip
->page_size
) {
876 res
= samd_issue_nvmctrl_command(bank
->target
, SAMD_NVM_CMD_WP
);
878 /* Access through AHB is stalled while flash is being programmed */
881 res
= samd_check_error(bank
->target
);
884 if (res
!= ERROR_OK
) {
885 LOG_ERROR("%s: write failed at address 0x%08" PRIx32
, __func__
, address
);
889 /* We're done with the page contents */
902 FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command
)
904 if (bank
->base
!= SAMD_FLASH
) {
905 LOG_ERROR("Address 0x%08" PRIx32
" invalid bank address (try 0x%08" PRIx32
906 "[at91samd series] )",
907 bank
->base
, SAMD_FLASH
);
911 struct samd_info
*chip
;
912 chip
= calloc(1, sizeof(*chip
));
914 LOG_ERROR("No memory for flash bank chip info");
918 chip
->target
= bank
->target
;
919 chip
->probed
= false;
921 bank
->driver_priv
= chip
;
926 COMMAND_HANDLER(samd_handle_info_command
)
931 COMMAND_HANDLER(samd_handle_chip_erase_command
)
933 struct target
*target
= get_current_target(CMD_CTX
);
934 int res
= ERROR_FAIL
;
937 /* Enable access to the DSU by disabling the write protect bit */
938 target_write_u32(target
, SAMD_PAC1
, (1<<1));
939 /* intentionally without error checking - not accessible on secured chip */
941 /* Tell the DSU to perform a full chip erase. It takes about 240ms to
942 * perform the erase. */
943 res
= target_write_u8(target
, SAMD_DSU
+ SAMD_DSU_CTRL_EXT
, (1<<4));
945 command_print(CMD_CTX
, "chip erase started");
947 command_print(CMD_CTX
, "write to DSU CTRL failed");
953 COMMAND_HANDLER(samd_handle_set_security_command
)
956 struct target
*target
= get_current_target(CMD_CTX
);
958 if (CMD_ARGC
< 1 || (CMD_ARGC
>= 1 && (strcmp(CMD_ARGV
[0], "enable")))) {
959 command_print(CMD_CTX
, "supply the \"enable\" argument to proceed.");
960 return ERROR_COMMAND_SYNTAX_ERROR
;
964 if (target
->state
!= TARGET_HALTED
) {
965 LOG_ERROR("Target not halted");
966 return ERROR_TARGET_NOT_HALTED
;
969 res
= samd_issue_nvmctrl_command(target
, SAMD_NVM_CMD_SSB
);
971 /* Check (and clear) error conditions */
973 command_print(CMD_CTX
, "chip secured on next power-cycle");
975 command_print(CMD_CTX
, "failed to secure chip");
981 COMMAND_HANDLER(samd_handle_eeprom_command
)
984 struct target
*target
= get_current_target(CMD_CTX
);
987 if (target
->state
!= TARGET_HALTED
) {
988 LOG_ERROR("Target not halted");
989 return ERROR_TARGET_NOT_HALTED
;
993 int val
= atoi(CMD_ARGV
[0]);
999 /* Try to match size in bytes with corresponding size code */
1000 for (code
= 0; code
<= 6; code
++) {
1001 if (val
== (2 << (13 - code
)))
1006 command_print(CMD_CTX
, "Invalid EEPROM size. Please see "
1007 "datasheet for a list valid sizes.");
1008 return ERROR_COMMAND_SYNTAX_ERROR
;
1012 res
= samd_modify_user_row(target
, code
, 4, 6);
1015 res
= target_read_u16(target
, SAMD_USER_ROW
, &val
);
1016 if (res
== ERROR_OK
) {
1017 uint32_t size
= ((val
>> 4) & 0x7); /* grab size code */
1020 command_print(CMD_CTX
, "EEPROM is disabled");
1022 /* Otherwise, 6 is 256B, 0 is 16KB */
1023 command_print(CMD_CTX
, "EEPROM size is %u bytes",
1024 (2 << (13 - size
)));
1033 static COMMAND_HELPER(get_u64_from_hexarg
, unsigned int num
, uint64_t *value
)
1035 if (num
>= CMD_ARGC
) {
1036 command_print(CMD_CTX
, "Too few Arguments.");
1037 return ERROR_COMMAND_SYNTAX_ERROR
;
1040 if (strlen(CMD_ARGV
[num
]) >= 3 &&
1041 CMD_ARGV
[num
][0] == '0' &&
1042 CMD_ARGV
[num
][1] == 'x') {
1044 *value
= strtoull(&(CMD_ARGV
[num
][2]), &check
, 16);
1045 if ((value
== 0 && errno
== ERANGE
) ||
1046 check
== NULL
|| *check
!= 0) {
1047 command_print(CMD_CTX
, "Invalid 64-bit hex value in argument %d.",
1049 return ERROR_COMMAND_SYNTAX_ERROR
;
1052 command_print(CMD_CTX
, "Argument %d needs to be a hex value.", num
+ 1);
1053 return ERROR_COMMAND_SYNTAX_ERROR
;
1058 COMMAND_HANDLER(samd_handle_nvmuserrow_command
)
1061 struct target
*target
= get_current_target(CMD_CTX
);
1065 command_print(CMD_CTX
, "Too much Arguments given.");
1066 return ERROR_COMMAND_SYNTAX_ERROR
;
1070 if (target
->state
!= TARGET_HALTED
) {
1071 LOG_ERROR("Target not halted.");
1072 return ERROR_TARGET_NOT_HALTED
;
1076 res
= samd_get_reservedmask(target
, &mask
);
1077 if (res
!= ERROR_OK
) {
1078 LOG_ERROR("Couldn't determine the mask for reserved bits.");
1081 mask
&= NVMUSERROW_LOCKBIT_MASK
;
1084 res
= CALL_COMMAND_HANDLER(get_u64_from_hexarg
, 0, &value
);
1085 if (res
!= ERROR_OK
)
1087 if (CMD_ARGC
== 2) {
1089 res
= CALL_COMMAND_HANDLER(get_u64_from_hexarg
, 1, &mask_temp
);
1090 if (res
!= ERROR_OK
)
1094 res
= samd_modify_user_row_masked(target
, value
, mask
);
1095 if (res
!= ERROR_OK
)
1101 res
= read_userrow(target
, &value
);
1102 if (res
== ERROR_OK
)
1103 command_print(CMD_CTX
, "NVMUSERROW: 0x%016"PRIX64
, value
);
1105 LOG_ERROR("NVMUSERROW could not be read.");
1110 COMMAND_HANDLER(samd_handle_bootloader_command
)
1113 struct target
*target
= get_current_target(CMD_CTX
);
1116 if (target
->state
!= TARGET_HALTED
) {
1117 LOG_ERROR("Target not halted");
1118 return ERROR_TARGET_NOT_HALTED
;
1121 /* Retrieve the MCU's page size, in bytes. */
1123 res
= samd_get_flash_page_info(target
, &page_size
, NULL
);
1124 if (res
!= ERROR_OK
) {
1125 LOG_ERROR("Couldn't determine Flash page size");
1129 if (CMD_ARGC
>= 1) {
1130 int val
= atoi(CMD_ARGV
[0]);
1136 /* Try to match size in bytes with corresponding size code */
1137 for (code
= 0; code
<= 6; code
++) {
1138 if ((unsigned int)val
== (2UL << (8UL - code
)) * page_size
)
1143 command_print(CMD_CTX
, "Invalid bootloader size. Please "
1144 "see datasheet for a list valid sizes.");
1145 return ERROR_COMMAND_SYNTAX_ERROR
;
1150 res
= samd_modify_user_row(target
, code
, 0, 2);
1153 res
= target_read_u16(target
, SAMD_USER_ROW
, &val
);
1154 if (res
== ERROR_OK
) {
1155 uint32_t size
= (val
& 0x7); /* grab size code */
1161 nb
= (2 << (8 - size
)) * page_size
;
1163 /* There are 4 pages per row */
1164 command_print(CMD_CTX
, "Bootloader size is %" PRIu32
" bytes (%" PRIu32
" rows)",
1165 nb
, (uint32_t)(nb
/ (page_size
* 4)));
1175 COMMAND_HANDLER(samd_handle_reset_deassert
)
1177 struct target
*target
= get_current_target(CMD_CTX
);
1178 int retval
= ERROR_OK
;
1179 enum reset_types jtag_reset_config
= jtag_get_reset_config();
1181 /* If the target has been unresponsive before, try to re-establish
1182 * communication now - CPU is held in reset by DSU, DAP is working */
1183 if (!target_was_examined(target
))
1184 target_examine_one(target
);
1185 target_poll(target
);
1187 /* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
1188 * so we just release reset held by DSU
1190 * n_RESET (srst) clears the DP, so reenable debug and set vector catch here
1192 * After vectreset DSU release is not needed however makes no harm
1194 if (target
->reset_halt
&& (jtag_reset_config
& RESET_HAS_SRST
)) {
1195 retval
= target_write_u32(target
, DCB_DHCSR
, DBGKEY
| C_HALT
| C_DEBUGEN
);
1196 if (retval
== ERROR_OK
)
1197 retval
= target_write_u32(target
, DCB_DEMCR
,
1198 TRCENA
| VC_HARDERR
| VC_BUSERR
| VC_CORERESET
);
1199 /* do not return on error here, releasing DSU reset is more important */
1202 /* clear CPU Reset Phase Extension bit */
1203 int retval2
= target_write_u8(target
, SAMD_DSU
+ SAMD_DSU_STATUSA
, (1<<1));
1204 if (retval2
!= ERROR_OK
)
1210 static const struct command_registration at91samd_exec_command_handlers
[] = {
1212 .name
= "dsu_reset_deassert",
1213 .handler
= samd_handle_reset_deassert
,
1214 .mode
= COMMAND_EXEC
,
1215 .help
= "Deasert internal reset held by DSU."
1219 .handler
= samd_handle_info_command
,
1220 .mode
= COMMAND_EXEC
,
1221 .help
= "Print information about the current at91samd chip "
1222 "and its flash configuration.",
1225 .name
= "chip-erase",
1226 .handler
= samd_handle_chip_erase_command
,
1227 .mode
= COMMAND_EXEC
,
1228 .help
= "Erase the entire Flash by using the Chip-"
1229 "Erase feature in the Device Service Unit (DSU).",
1232 .name
= "set-security",
1233 .handler
= samd_handle_set_security_command
,
1234 .mode
= COMMAND_EXEC
,
1235 .help
= "Secure the chip's Flash by setting the Security Bit. "
1236 "This makes it impossible to read the Flash contents. "
1237 "The only way to undo this is to issue the chip-erase "
1242 .usage
= "[size_in_bytes]",
1243 .handler
= samd_handle_eeprom_command
,
1244 .mode
= COMMAND_EXEC
,
1245 .help
= "Show or set the EEPROM size setting, stored in the User Row. "
1246 "Please see Table 20-3 of the SAMD20 datasheet for allowed values. "
1247 "Changes are stored immediately but take affect after the MCU is "
1251 .name
= "bootloader",
1252 .usage
= "[size_in_bytes]",
1253 .handler
= samd_handle_bootloader_command
,
1254 .mode
= COMMAND_EXEC
,
1255 .help
= "Show or set the bootloader size, stored in the User Row. "
1256 "Please see Table 20-2 of the SAMD20 datasheet for allowed values. "
1257 "Changes are stored immediately but take affect after the MCU is "
1261 .name
= "nvmuserrow",
1262 .usage
= "[value] [mask]",
1263 .handler
= samd_handle_nvmuserrow_command
,
1264 .mode
= COMMAND_EXEC
,
1265 .help
= "Show or set the nvmuserrow register. It is 64 bit wide "
1266 "and located at address 0x804000. Use the optional mask argument "
1267 "to prevent changes at positions where the bitvalue is zero. "
1268 "For security reasons the lock- and reserved-bits are masked out "
1269 "in background and therefore cannot be changed.",
1271 COMMAND_REGISTRATION_DONE
1274 static const struct command_registration at91samd_command_handlers
[] = {
1277 .mode
= COMMAND_ANY
,
1278 .help
= "at91samd flash command group",
1280 .chain
= at91samd_exec_command_handlers
,
1282 COMMAND_REGISTRATION_DONE
1285 struct flash_driver at91samd_flash
= {
1287 .commands
= at91samd_command_handlers
,
1288 .flash_bank_command
= samd_flash_bank_command
,
1289 .erase
= samd_erase
,
1290 .protect
= samd_protect
,
1291 .write
= samd_write
,
1292 .read
= default_flash_read
,
1293 .probe
= samd_probe
,
1294 .auto_probe
= samd_probe
,
1295 .erase_check
= default_flash_blank_check
,
1296 .protect_check
= samd_protect_check
,
1297 .free_driver_priv
= default_flash_free_driver_priv
,