Fixed small mistakes in at91sam3 info command
[openocd.git] / src / flash / nor / at91sam3.c
1 /***************************************************************************
2 * Copyright (C) 2009 by Duane Ellis *
3 * openocd@duaneellis.com *
4 * *
5 * Copyright (C) 2010 by Olaf L√ľke (at91sam3s* support) *
6 * olaf@uni-paderborn.de *
7 * *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS for A PARTICULAR PURPOSE. See the *
17 * GNU General public License for more details. *
18 * *
19 * You should have received a copy of the GNU General public License *
20 * along with this program; if not, write to the *
21 * Free Software Foundation, Inc., *
22 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
23 ****************************************************************************/
24
25 /* Some of the the lower level code was based on code supplied by
26 * ATMEL under this copyright. */
27
28 /* BEGIN ATMEL COPYRIGHT */
29 /* ----------------------------------------------------------------------------
30 * ATMEL Microcontroller Software Support
31 * ----------------------------------------------------------------------------
32 * Copyright (c) 2009, Atmel Corporation
33 *
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions are met:
38 *
39 * - Redistributions of source code must retain the above copyright notice,
40 * this list of conditions and the disclaimer below.
41 *
42 * Atmel's name may not be used to endorse or promote products derived from
43 * this software without specific prior written permission.
44 *
45 * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
46 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
47 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
48 * DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
49 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
50 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
51 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
52 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
53 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
54 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 * ----------------------------------------------------------------------------
56 */
57 /* END ATMEL COPYRIGHT */
58
59 #ifdef HAVE_CONFIG_H
60 #include "config.h"
61 #endif
62
63
64 #include "imp.h"
65 #include <helper/time_support.h>
66
67 #define REG_NAME_WIDTH (12)
68
69 // at91sam3u series (has one or two flash banks)
70 #define FLASH_BANK0_BASE_U 0x00080000
71 #define FLASH_BANK1_BASE_U 0x00100000
72
73 // at91sam3s series (has always one flash bank)
74 #define FLASH_BANK_BASE_S 0x00400000
75
76 #define AT91C_EFC_FCMD_GETD (0x0) // (EFC) Get Flash Descriptor
77 #define AT91C_EFC_FCMD_WP (0x1) // (EFC) Write Page
78 #define AT91C_EFC_FCMD_WPL (0x2) // (EFC) Write Page and Lock
79 #define AT91C_EFC_FCMD_EWP (0x3) // (EFC) Erase Page and Write Page
80 #define AT91C_EFC_FCMD_EWPL (0x4) // (EFC) Erase Page and Write Page then Lock
81 #define AT91C_EFC_FCMD_EA (0x5) // (EFC) Erase All
82 // cmd6 is not present int he at91sam3u4/2/1 data sheet table 17-2
83 // #define AT91C_EFC_FCMD_EPL (0x6) // (EFC) Erase plane?
84 // cmd7 is not present int he at91sam3u4/2/1 data sheet table 17-2
85 // #define AT91C_EFC_FCMD_EPA (0x7) // (EFC) Erase pages?
86 #define AT91C_EFC_FCMD_SLB (0x8) // (EFC) Set Lock Bit
87 #define AT91C_EFC_FCMD_CLB (0x9) // (EFC) Clear Lock Bit
88 #define AT91C_EFC_FCMD_GLB (0xA) // (EFC) Get Lock Bit
89 #define AT91C_EFC_FCMD_SFB (0xB) // (EFC) Set Fuse Bit
90 #define AT91C_EFC_FCMD_CFB (0xC) // (EFC) Clear Fuse Bit
91 #define AT91C_EFC_FCMD_GFB (0xD) // (EFC) Get Fuse Bit
92 #define AT91C_EFC_FCMD_STUI (0xE) // (EFC) Start Read Unique ID
93 #define AT91C_EFC_FCMD_SPUI (0xF) // (EFC) Stop Read Unique ID
94
95 #define offset_EFC_FMR 0
96 #define offset_EFC_FCR 4
97 #define offset_EFC_FSR 8
98 #define offset_EFC_FRR 12
99
100
101 extern struct flash_driver at91sam3_flash;
102
103 static float
104 _tomhz(uint32_t freq_hz)
105 {
106 float f;
107
108 f = ((float)(freq_hz)) / 1000000.0;
109 return f;
110 }
111
112 // How the chip is configured.
113 struct sam3_cfg {
114 uint32_t unique_id[4];
115
116 uint32_t slow_freq;
117 uint32_t rc_freq;
118 uint32_t mainosc_freq;
119 uint32_t plla_freq;
120 uint32_t mclk_freq;
121 uint32_t cpu_freq;
122 uint32_t fclk_freq;
123 uint32_t pclk0_freq;
124 uint32_t pclk1_freq;
125 uint32_t pclk2_freq;
126
127
128 #define SAM3_CHIPID_CIDR (0x400E0740)
129 uint32_t CHIPID_CIDR;
130 #define SAM3_CHIPID_EXID (0x400E0744)
131 uint32_t CHIPID_EXID;
132
133 #define SAM3_SUPC_CR (0x400E1210)
134 uint32_t SUPC_CR;
135
136 #define SAM3_PMC_BASE (0x400E0400)
137 #define SAM3_PMC_SCSR (SAM3_PMC_BASE + 0x0008)
138 uint32_t PMC_SCSR;
139 #define SAM3_PMC_PCSR (SAM3_PMC_BASE + 0x0018)
140 uint32_t PMC_PCSR;
141 #define SAM3_CKGR_UCKR (SAM3_PMC_BASE + 0x001c)
142 uint32_t CKGR_UCKR;
143 #define SAM3_CKGR_MOR (SAM3_PMC_BASE + 0x0020)
144 uint32_t CKGR_MOR;
145 #define SAM3_CKGR_MCFR (SAM3_PMC_BASE + 0x0024)
146 uint32_t CKGR_MCFR;
147 #define SAM3_CKGR_PLLAR (SAM3_PMC_BASE + 0x0028)
148 uint32_t CKGR_PLLAR;
149 #define SAM3_PMC_MCKR (SAM3_PMC_BASE + 0x0030)
150 uint32_t PMC_MCKR;
151 #define SAM3_PMC_PCK0 (SAM3_PMC_BASE + 0x0040)
152 uint32_t PMC_PCK0;
153 #define SAM3_PMC_PCK1 (SAM3_PMC_BASE + 0x0044)
154 uint32_t PMC_PCK1;
155 #define SAM3_PMC_PCK2 (SAM3_PMC_BASE + 0x0048)
156 uint32_t PMC_PCK2;
157 #define SAM3_PMC_SR (SAM3_PMC_BASE + 0x0068)
158 uint32_t PMC_SR;
159 #define SAM3_PMC_IMR (SAM3_PMC_BASE + 0x006c)
160 uint32_t PMC_IMR;
161 #define SAM3_PMC_FSMR (SAM3_PMC_BASE + 0x0070)
162 uint32_t PMC_FSMR;
163 #define SAM3_PMC_FSPR (SAM3_PMC_BASE + 0x0074)
164 uint32_t PMC_FSPR;
165 };
166
167
168 struct sam3_bank_private {
169 int probed;
170 // DANGER: THERE ARE DRAGONS HERE..
171 // NOTE: If you add more 'ghost' pointers
172 // be aware that you must *manually* update
173 // these pointers in the function sam3_GetDetails()
174 // See the comment "Here there be dragons"
175
176 // so we can find the chip we belong to
177 struct sam3_chip *pChip;
178 // so we can find the orginal bank pointer
179 struct flash_bank *pBank;
180 unsigned bank_number;
181 uint32_t controller_address;
182 uint32_t base_address;
183 bool present;
184 unsigned size_bytes;
185 unsigned nsectors;
186 unsigned sector_size;
187 unsigned page_size;
188 };
189
190 struct sam3_chip_details {
191 // THERE ARE DRAGONS HERE..
192 // note: If you add pointers here
193 // becareful about them as they
194 // may need to be updated inside
195 // the function: "sam3_GetDetails()
196 // which copy/overwrites the
197 // 'runtime' copy of this structure
198 uint32_t chipid_cidr;
199 const char *name;
200
201 unsigned n_gpnvms;
202 #define SAM3_N_NVM_BITS 3
203 unsigned gpnvm[SAM3_N_NVM_BITS];
204 unsigned total_flash_size;
205 unsigned total_sram_size;
206 unsigned n_banks;
207 #define SAM3_MAX_FLASH_BANKS 2
208 // these are "initialized" from the global const data
209 struct sam3_bank_private bank[SAM3_MAX_FLASH_BANKS];
210 };
211
212
213 struct sam3_chip {
214 struct sam3_chip *next;
215 int probed;
216
217 // this is "initialized" from the global const structure
218 struct sam3_chip_details details;
219 struct target *target;
220 struct sam3_cfg cfg;
221 };
222
223
224 struct sam3_reg_list {
225 uint32_t address; size_t struct_offset; const char *name;
226 void (*explain_func)(struct sam3_chip *pInfo);
227 };
228
229
230 static struct sam3_chip *all_sam3_chips;
231
232 static struct sam3_chip *
233 get_current_sam3(struct command_context *cmd_ctx)
234 {
235 struct target *t;
236 static struct sam3_chip *p;
237
238 t = get_current_target(cmd_ctx);
239 if (!t) {
240 command_print(cmd_ctx, "No current target?");
241 return NULL;
242 }
243
244 p = all_sam3_chips;
245 if (!p) {
246 // this should not happen
247 // the command is not registered until the chip is created?
248 command_print(cmd_ctx, "No SAM3 chips exist?");
249 return NULL;
250 }
251
252 while (p) {
253 if (p->target == t) {
254 return p;
255 }
256 p = p->next;
257 }
258 command_print(cmd_ctx, "Cannot find SAM3 chip?");
259 return NULL;
260 }
261
262
263 // these are used to *initialize* the "pChip->details" structure.
264 static const struct sam3_chip_details all_sam3_details[] = {
265 // Start at91sam3u* series
266 {
267 .chipid_cidr = 0x28100960,
268 .name = "at91sam3u4e",
269 .total_flash_size = 256 * 1024,
270 .total_sram_size = 52 * 1024,
271 .n_gpnvms = 3,
272 .n_banks = 2,
273
274 // System boots at address 0x0
275 // gpnvm[1] = selects boot code
276 // if gpnvm[1] == 0
277 // boot is via "SAMBA" (rom)
278 // else
279 // boot is via FLASH
280 // Selection is via gpnvm[2]
281 // endif
282 //
283 // NOTE: banks 0 & 1 switch places
284 // if gpnvm[2] == 0
285 // Bank0 is the boot rom
286 // else
287 // Bank1 is the boot rom
288 // endif
289 // .bank[0] = {
290 {
291 {
292 .probed = 0,
293 .pChip = NULL,
294 .pBank = NULL,
295 .bank_number = 0,
296 .base_address = FLASH_BANK0_BASE_U,
297 .controller_address = 0x400e0800,
298 .present = 1,
299 .size_bytes = 128 * 1024,
300 .nsectors = 16,
301 .sector_size = 8192,
302 .page_size = 256,
303 },
304
305 // .bank[1] = {
306 {
307 .probed = 0,
308 .pChip = NULL,
309 .pBank = NULL,
310 .bank_number = 1,
311 .base_address = FLASH_BANK1_BASE_U,
312 .controller_address = 0x400e0a00,
313 .present = 1,
314 .size_bytes = 128 * 1024,
315 .nsectors = 16,
316 .sector_size = 8192,
317 .page_size = 256,
318 },
319 },
320 },
321
322 {
323 .chipid_cidr = 0x281a0760,
324 .name = "at91sam3u2e",
325 .total_flash_size = 128 * 1024,
326 .total_sram_size = 36 * 1024,
327 .n_gpnvms = 2,
328 .n_banks = 1,
329
330 // System boots at address 0x0
331 // gpnvm[1] = selects boot code
332 // if gpnvm[1] == 0
333 // boot is via "SAMBA" (rom)
334 // else
335 // boot is via FLASH
336 // Selection is via gpnvm[2]
337 // endif
338 // .bank[0] = {
339 {
340 {
341 .probed = 0,
342 .pChip = NULL,
343 .pBank = NULL,
344 .bank_number = 0,
345 .base_address = FLASH_BANK0_BASE_U,
346 .controller_address = 0x400e0800,
347 .present = 1,
348 .size_bytes = 128 * 1024,
349 .nsectors = 16,
350 .sector_size = 8192,
351 .page_size = 256,
352 },
353 // .bank[1] = {
354 {
355 .present = 0,
356 .probed = 0,
357 .bank_number = 1,
358 },
359 },
360 },
361 {
362 .chipid_cidr = 0x28190560,
363 .name = "at91sam3u1e",
364 .total_flash_size = 64 * 1024,
365 .total_sram_size = 20 * 1024,
366 .n_gpnvms = 2,
367 .n_banks = 1,
368
369 // System boots at address 0x0
370 // gpnvm[1] = selects boot code
371 // if gpnvm[1] == 0
372 // boot is via "SAMBA" (rom)
373 // else
374 // boot is via FLASH
375 // Selection is via gpnvm[2]
376 // endif
377 //
378
379 // .bank[0] = {
380 {
381 {
382 .probed = 0,
383 .pChip = NULL,
384 .pBank = NULL,
385 .bank_number = 0,
386 .base_address = FLASH_BANK0_BASE_U,
387 .controller_address = 0x400e0800,
388 .present = 1,
389 .size_bytes = 64 * 1024,
390 .nsectors = 8,
391 .sector_size = 8192,
392 .page_size = 256,
393 },
394
395 // .bank[1] = {
396 {
397 .present = 0,
398 .probed = 0,
399 .bank_number = 1,
400 },
401 },
402 },
403
404 {
405 .chipid_cidr = 0x28000960,
406 .name = "at91sam3u4c",
407 .total_flash_size = 256 * 1024,
408 .total_sram_size = 52 * 1024,
409 .n_gpnvms = 3,
410 .n_banks = 2,
411
412 // System boots at address 0x0
413 // gpnvm[1] = selects boot code
414 // if gpnvm[1] == 0
415 // boot is via "SAMBA" (rom)
416 // else
417 // boot is via FLASH
418 // Selection is via gpnvm[2]
419 // endif
420 //
421 // NOTE: banks 0 & 1 switch places
422 // if gpnvm[2] == 0
423 // Bank0 is the boot rom
424 // else
425 // Bank1 is the boot rom
426 // endif
427 {
428 {
429 // .bank[0] = {
430 .probed = 0,
431 .pChip = NULL,
432 .pBank = NULL,
433 .bank_number = 0,
434 .base_address = FLASH_BANK0_BASE_U,
435 .controller_address = 0x400e0800,
436 .present = 1,
437 .size_bytes = 128 * 1024,
438 .nsectors = 16,
439 .sector_size = 8192,
440 .page_size = 256,
441 },
442 // .bank[1] = {
443 {
444 .probed = 0,
445 .pChip = NULL,
446 .pBank = NULL,
447 .bank_number = 1,
448 .base_address = FLASH_BANK1_BASE_U,
449 .controller_address = 0x400e0a00,
450 .present = 1,
451 .size_bytes = 128 * 1024,
452 .nsectors = 16,
453 .sector_size = 8192,
454 .page_size = 256,
455 },
456 },
457 },
458
459 {
460 .chipid_cidr = 0x280a0760,
461 .name = "at91sam3u2c",
462 .total_flash_size = 128 * 1024,
463 .total_sram_size = 36 * 1024,
464 .n_gpnvms = 2,
465 .n_banks = 1,
466
467 // System boots at address 0x0
468 // gpnvm[1] = selects boot code
469 // if gpnvm[1] == 0
470 // boot is via "SAMBA" (rom)
471 // else
472 // boot is via FLASH
473 // Selection is via gpnvm[2]
474 // endif
475 {
476 // .bank[0] = {
477 {
478 .probed = 0,
479 .pChip = NULL,
480 .pBank = NULL,
481 .bank_number = 0,
482 .base_address = FLASH_BANK0_BASE_U,
483 .controller_address = 0x400e0800,
484 .present = 1,
485 .size_bytes = 128 * 1024,
486 .nsectors = 16,
487 .sector_size = 8192,
488 .page_size = 256,
489 },
490 // .bank[1] = {
491 {
492 .present = 0,
493 .probed = 0,
494 .bank_number = 1,
495 },
496 },
497 },
498 {
499 .chipid_cidr = 0x28090560,
500 .name = "at91sam3u1c",
501 .total_flash_size = 64 * 1024,
502 .total_sram_size = 20 * 1024,
503 .n_gpnvms = 2,
504 .n_banks = 1,
505
506 // System boots at address 0x0
507 // gpnvm[1] = selects boot code
508 // if gpnvm[1] == 0
509 // boot is via "SAMBA" (rom)
510 // else
511 // boot is via FLASH
512 // Selection is via gpnvm[2]
513 // endif
514 //
515
516 {
517 // .bank[0] = {
518 {
519 .probed = 0,
520 .pChip = NULL,
521 .pBank = NULL,
522 .bank_number = 0,
523 .base_address = FLASH_BANK0_BASE_U,
524 .controller_address = 0x400e0800,
525 .present = 1,
526 .size_bytes = 64 * 1024,
527 .nsectors = 8,
528 .sector_size = 8192,
529 .page_size = 256,
530 },
531 // .bank[1] = {
532 {
533 .present = 0,
534 .probed = 0,
535 .bank_number = 1,
536
537 },
538 },
539 },
540
541 // Start at91sam3s* series
542
543 // Note: The preliminary at91sam3s datasheet says on page 302
544 // that the flash controller is at address 0x400E0800.
545 // This is _not_ the case, the controller resides at address 0x400e0a0.
546 {
547 .chipid_cidr = 0x28A00960,
548 .name = "at91sam3s4c",
549 .total_flash_size = 256 * 1024,
550 .total_sram_size = 48 * 1024,
551 .n_gpnvms = 2,
552 .n_banks = 1,
553 {
554 // .bank[0] = {
555 {
556 .probed = 0,
557 .pChip = NULL,
558 .pBank = NULL,
559 .bank_number = 0,
560 .base_address = FLASH_BANK_BASE_S,
561
562 .controller_address = 0x400e0a00,
563 .present = 1,
564 .size_bytes = 256 * 1024,
565 .nsectors = 32,
566 .sector_size = 8192,
567 .page_size = 256,
568 },
569 // .bank[1] = {
570 {
571 .present = 0,
572 .probed = 0,
573 .bank_number = 1,
574
575 },
576 },
577 },
578
579 {
580 .chipid_cidr = 0x28900960,
581 .name = "at91sam3s4b",
582 .total_flash_size = 256 * 1024,
583 .total_sram_size = 48 * 1024,
584 .n_gpnvms = 2,
585 .n_banks = 1,
586 {
587 // .bank[0] = {
588 {
589 .probed = 0,
590 .pChip = NULL,
591 .pBank = NULL,
592 .bank_number = 0,
593 .base_address = FLASH_BANK_BASE_S,
594
595 .controller_address = 0x400e0a00,
596 .present = 1,
597 .size_bytes = 256 * 1024,
598 .nsectors = 32,
599 .sector_size = 8192,
600 .page_size = 256,
601 },
602 // .bank[1] = {
603 {
604 .present = 0,
605 .probed = 0,
606 .bank_number = 1,
607
608 },
609 },
610 },
611 {
612 .chipid_cidr = 0x28800960,
613 .name = "at91sam3s4a",
614 .total_flash_size = 256 * 1024,
615 .total_sram_size = 48 * 1024,
616 .n_gpnvms = 2,
617 .n_banks = 1,
618 {
619 // .bank[0] = {
620 {
621 .probed = 0,
622 .pChip = NULL,
623 .pBank = NULL,
624 .bank_number = 0,
625 .base_address = FLASH_BANK_BASE_S,
626
627 .controller_address = 0x400e0a00,
628 .present = 1,
629 .size_bytes = 256 * 1024,
630 .nsectors = 32,
631 .sector_size = 8192,
632 .page_size = 256,
633 },
634 // .bank[1] = {
635 {
636 .present = 0,
637 .probed = 0,
638 .bank_number = 1,
639
640 },
641 },
642 },
643 {
644 .chipid_cidr = 0x28AA0760,
645 .name = "at91sam3s2c",
646 .total_flash_size = 128 * 1024,
647 .total_sram_size = 32 * 1024,
648 .n_gpnvms = 2,
649 .n_banks = 1,
650 {
651 // .bank[0] = {
652 {
653 .probed = 0,
654 .pChip = NULL,
655 .pBank = NULL,
656 .bank_number = 0,
657 .base_address = FLASH_BANK_BASE_S,
658
659 .controller_address = 0x400e0a00,
660 .present = 1,
661 .size_bytes = 128 * 1024,
662 .nsectors = 16,
663 .sector_size = 8192,
664 .page_size = 256,
665 },
666 // .bank[1] = {
667 {
668 .present = 0,
669 .probed = 0,
670 .bank_number = 1,
671
672 },
673 },
674 },
675 {
676 .chipid_cidr = 0x289A0760,
677 .name = "at91sam3s2b",
678 .total_flash_size = 128 * 1024,
679 .total_sram_size = 32 * 1024,
680 .n_gpnvms = 2,
681 .n_banks = 1,
682 {
683 // .bank[0] = {
684 {
685 .probed = 0,
686 .pChip = NULL,
687 .pBank = NULL,
688 .bank_number = 0,
689 .base_address = FLASH_BANK_BASE_S,
690
691 .controller_address = 0x400e0a00,
692 .present = 1,
693 .size_bytes = 128 * 1024,
694 .nsectors = 16,
695 .sector_size = 8192,
696 .page_size = 256,
697 },
698 // .bank[1] = {
699 {
700 .present = 0,
701 .probed = 0,
702 .bank_number = 1,
703
704 },
705 },
706 },
707 {
708 .chipid_cidr = 0x288A0760,
709 .name = "at91sam3s2a",
710 .total_flash_size = 128 * 1024,
711 .total_sram_size = 32 * 1024,
712 .n_gpnvms = 2,
713 .n_banks = 1,
714 {
715 // .bank[0] = {
716 {
717 .probed = 0,
718 .pChip = NULL,
719 .pBank = NULL,
720 .bank_number = 0,
721 .base_address = FLASH_BANK_BASE_S,
722
723 .controller_address = 0x400e0a00,
724 .present = 1,
725 .size_bytes = 128 * 1024,
726 .nsectors = 16,
727 .sector_size = 8192,
728 .page_size = 256,
729 },
730 // .bank[1] = {
731 {
732 .present = 0,
733 .probed = 0,
734 .bank_number = 1,
735
736 },
737 },
738 },
739 {
740 .chipid_cidr = 0x28A90560,
741 .name = "at91sam3s1c",
742 .total_flash_size = 64 * 1024,
743 .total_sram_size = 16 * 1024,
744 .n_gpnvms = 2,
745 .n_banks = 1,
746 {
747 // .bank[0] = {
748 {
749 .probed = 0,
750 .pChip = NULL,
751 .pBank = NULL,
752 .bank_number = 0,
753 .base_address = FLASH_BANK_BASE_S,
754
755 .controller_address = 0x400e0a00,
756 .present = 1,
757 .size_bytes = 64 * 1024,
758 .nsectors = 8,
759 .sector_size = 8192,
760 .page_size = 256,
761 },
762 // .bank[1] = {
763 {
764 .present = 0,
765 .probed = 0,
766 .bank_number = 1,
767
768 },
769 },
770 },
771 {
772 .chipid_cidr = 0x28990560,
773 .name = "at91sam3s1b",
774 .total_flash_size = 64 * 1024,
775 .total_sram_size = 16 * 1024,
776 .n_gpnvms = 2,
777 .n_banks = 1,
778 {
779 // .bank[0] = {
780 {
781 .probed = 0,
782 .pChip = NULL,
783 .pBank = NULL,
784 .bank_number = 0,
785 .base_address = FLASH_BANK_BASE_S,
786
787 .controller_address = 0x400e0a00,
788 .present = 1,
789 .size_bytes = 64 * 1024,
790 .nsectors = 8,
791 .sector_size = 8192,
792 .page_size = 256,
793 },
794 // .bank[1] = {
795 {
796 .present = 0,
797 .probed = 0,
798 .bank_number = 1,
799
800 },
801 },
802 },
803 {
804 .chipid_cidr = 0x28890560,
805 .name = "at91sam3s1a",
806 .total_flash_size = 64 * 1024,
807 .total_sram_size = 16 * 1024,
808 .n_gpnvms = 2,
809 .n_banks = 1,
810 {
811 // .bank[0] = {
812 {
813 .probed = 0,
814 .pChip = NULL,
815 .pBank = NULL,
816 .bank_number = 0,
817 .base_address = FLASH_BANK_BASE_S,
818
819 .controller_address = 0x400e0a00,
820 .present = 1,
821 .size_bytes = 64 * 1024,
822 .nsectors = 8,
823 .sector_size = 8192,
824 .page_size = 256,
825 },
826 // .bank[1] = {
827 {
828 .present = 0,
829 .probed = 0,
830 .bank_number = 1,
831
832 },
833 },
834 },
835 // terminate
836 {
837 .chipid_cidr = 0,
838 .name = NULL,
839 }
840 };
841
842 /* Globals above */
843 /***********************************************************************
844 **********************************************************************
845 **********************************************************************
846 **********************************************************************
847 **********************************************************************
848 **********************************************************************/
849 /* *ATMEL* style code - from the SAM3 driver code */
850
851 /**
852 * Get the current status of the EEFC and
853 * the value of some status bits (LOCKE, PROGE).
854 * @param pPrivate - info about the bank
855 * @param v - result goes here
856 */
857 static int
858 EFC_GetStatus(struct sam3_bank_private *pPrivate, uint32_t *v)
859 {
860 int r;
861 r = target_read_u32(pPrivate->pChip->target, pPrivate->controller_address + offset_EFC_FSR, v);
862 LOG_DEBUG("Status: 0x%08x (lockerror: %d, cmderror: %d, ready: %d)",
863 (unsigned int)(*v),
864 ((unsigned int)((*v >> 2) & 1)),
865 ((unsigned int)((*v >> 1) & 1)),
866 ((unsigned int)((*v >> 0) & 1)));
867
868 return r;
869 }
870
871 /**
872 * Get the result of the last executed command.
873 * @param pPrivate - info about the bank
874 * @param v - result goes here
875 */
876 static int
877 EFC_GetResult(struct sam3_bank_private *pPrivate, uint32_t *v)
878 {
879 int r;
880 uint32_t rv;
881 r = target_read_u32(pPrivate->pChip->target, pPrivate->controller_address + offset_EFC_FRR, &rv);
882 if (v) {
883 *v = rv;
884 }
885 LOG_DEBUG("Result: 0x%08x", ((unsigned int)(rv)));
886 return r;
887 }
888
889 static int
890 EFC_StartCommand(struct sam3_bank_private *pPrivate,
891 unsigned command, unsigned argument)
892 {
893 uint32_t n,v;
894 int r;
895 int retry;
896
897 retry = 0;
898 do_retry:
899
900 // Check command & argument
901 switch (command) {
902
903 case AT91C_EFC_FCMD_WP:
904 case AT91C_EFC_FCMD_WPL:
905 case AT91C_EFC_FCMD_EWP:
906 case AT91C_EFC_FCMD_EWPL:
907 // case AT91C_EFC_FCMD_EPL:
908 // case AT91C_EFC_FCMD_EPA:
909 case AT91C_EFC_FCMD_SLB:
910 case AT91C_EFC_FCMD_CLB:
911 n = (pPrivate->size_bytes / pPrivate->page_size);
912 if (argument >= n) {
913 LOG_ERROR("*BUG*: Embedded flash has only %u pages", (unsigned)(n));
914 }
915 break;
916
917 case AT91C_EFC_FCMD_SFB:
918 case AT91C_EFC_FCMD_CFB:
919 if (argument >= pPrivate->pChip->details.n_gpnvms) {
920 LOG_ERROR("*BUG*: Embedded flash has only %d GPNVMs",
921 pPrivate->pChip->details.n_gpnvms);
922 }
923 break;
924
925 case AT91C_EFC_FCMD_GETD:
926 case AT91C_EFC_FCMD_EA:
927 case AT91C_EFC_FCMD_GLB:
928 case AT91C_EFC_FCMD_GFB:
929 case AT91C_EFC_FCMD_STUI:
930 case AT91C_EFC_FCMD_SPUI:
931 if (argument != 0) {
932 LOG_ERROR("Argument is meaningless for cmd: %d", command);
933 }
934 break;
935 default:
936 LOG_ERROR("Unknown command %d", command);
937 break;
938 }
939
940 if (command == AT91C_EFC_FCMD_SPUI) {
941 // this is a very special situation.
942 // Situation (1) - error/retry - see below
943 // And we are being called recursively
944 // Situation (2) - normal, finished reading unique id
945 } else {
946 // it should be "ready"
947 EFC_GetStatus(pPrivate, &v);
948 if (v & 1) {
949 // then it is ready
950 // we go on
951 } else {
952 if (retry) {
953 // we have done this before
954 // the controller is not responding.
955 LOG_ERROR("flash controller(%d) is not ready! Error", pPrivate->bank_number);
956 return ERROR_FAIL;
957 } else {
958 retry++;
959 LOG_ERROR("Flash controller(%d) is not ready, attempting reset",
960 pPrivate->bank_number);
961 // we do that by issuing the *STOP* command
962 EFC_StartCommand(pPrivate, AT91C_EFC_FCMD_SPUI, 0);
963 // above is recursive, and further recursion is blocked by
964 // if (command == AT91C_EFC_FCMD_SPUI) above
965 goto do_retry;
966 }
967 }
968 }
969
970 v = (0x5A << 24) | (argument << 8) | command;
971 LOG_DEBUG("Command: 0x%08x", ((unsigned int)(v)));
972 r = target_write_u32(pPrivate->pBank->target,
973 pPrivate->controller_address + offset_EFC_FCR,
974 v);
975 if (r != ERROR_OK) {
976 LOG_DEBUG("Error Write failed");
977 }
978 return r;
979 }
980
981 /**
982 * Performs the given command and wait until its completion (or an error).
983 * @param pPrivate - info about the bank
984 * @param command - Command to perform.
985 * @param argument - Optional command argument.
986 * @param status - put command status bits here
987 */
988 static int
989 EFC_PerformCommand(struct sam3_bank_private *pPrivate,
990 unsigned command,
991 unsigned argument,
992 uint32_t *status)
993 {
994
995 int r;
996 uint32_t v;
997 long long ms_now, ms_end;
998
999 // default
1000 if (status) {
1001 *status = 0;
1002 }
1003
1004 r = EFC_StartCommand(pPrivate, command, argument);
1005 if (r != ERROR_OK) {
1006 return r;
1007 }
1008
1009 ms_end = 500 + timeval_ms();
1010
1011
1012 do {
1013 r = EFC_GetStatus(pPrivate, &v);
1014 if (r != ERROR_OK) {
1015 return r;
1016 }
1017 ms_now = timeval_ms();
1018 if (ms_now > ms_end) {
1019 // error
1020 LOG_ERROR("Command timeout");
1021 return ERROR_FAIL;
1022 }
1023 }
1024 while ((v & 1) == 0)
1025 ;
1026
1027 // error bits..
1028 if (status) {
1029 *status = (v & 0x6);
1030 }
1031 return ERROR_OK;
1032
1033 }
1034
1035
1036
1037
1038
1039 /**
1040 * Read the unique ID.
1041 * @param pPrivate - info about the bank
1042 * The unique ID is stored in the 'pPrivate' structure.
1043 */
1044 static int
1045 FLASHD_ReadUniqueID (struct sam3_bank_private *pPrivate)
1046 {
1047 int r;
1048 uint32_t v;
1049 int x;
1050 // assume 0
1051 pPrivate->pChip->cfg.unique_id[0] = 0;
1052 pPrivate->pChip->cfg.unique_id[1] = 0;
1053 pPrivate->pChip->cfg.unique_id[2] = 0;
1054 pPrivate->pChip->cfg.unique_id[3] = 0;
1055
1056 LOG_DEBUG("Begin");
1057 r = EFC_StartCommand(pPrivate, AT91C_EFC_FCMD_STUI, 0);
1058 if (r < 0) {
1059 return r;
1060 }
1061
1062 for (x = 0 ; x < 4 ; x++) {
1063 r = target_read_u32(pPrivate->pChip->target,
1064 pPrivate->pBank->base + (x * 4),
1065 &v);
1066 if (r < 0) {
1067 return r;
1068 }
1069 pPrivate->pChip->cfg.unique_id[x] = v;
1070 }
1071
1072 r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SPUI, 0, NULL);
1073 LOG_DEBUG("End: R=%d, id = 0x%08x, 0x%08x, 0x%08x, 0x%08x",
1074 r,
1075 (unsigned int)(pPrivate->pChip->cfg.unique_id[0]),
1076 (unsigned int)(pPrivate->pChip->cfg.unique_id[1]),
1077 (unsigned int)(pPrivate->pChip->cfg.unique_id[2]),
1078 (unsigned int)(pPrivate->pChip->cfg.unique_id[3]));
1079 return r;
1080
1081 }
1082
1083 /**
1084 * Erases the entire flash.
1085 * @param pPrivate - the info about the bank.
1086 */
1087 static int
1088 FLASHD_EraseEntireBank(struct sam3_bank_private *pPrivate)
1089 {
1090 LOG_DEBUG("Here");
1091 return EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_EA, 0, NULL);
1092 }
1093
1094
1095
1096 /**
1097 * Gets current GPNVM state.
1098 * @param pPrivate - info about the bank.
1099 * @param gpnvm - GPNVM bit index.
1100 * @param puthere - result stored here.
1101 */
1102 //------------------------------------------------------------------------------
1103 static int
1104 FLASHD_GetGPNVM(struct sam3_bank_private *pPrivate, unsigned gpnvm, unsigned *puthere)
1105 {
1106 uint32_t v;
1107 int r;
1108
1109 LOG_DEBUG("Here");
1110 if (pPrivate->bank_number != 0) {
1111 LOG_ERROR("GPNVM only works with Bank0");
1112 return ERROR_FAIL;
1113 }
1114
1115 if (gpnvm >= pPrivate->pChip->details.n_gpnvms) {
1116 LOG_ERROR("Invalid GPNVM %d, max: %d, ignored",
1117 gpnvm,pPrivate->pChip->details.n_gpnvms);
1118 return ERROR_FAIL;
1119 }
1120
1121 // Get GPNVMs status
1122 r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_GFB, 0, NULL);
1123 if (r != ERROR_OK) {
1124 LOG_ERROR("Failed");
1125 return r;
1126 }
1127
1128 r = EFC_GetResult(pPrivate, &v);
1129
1130 if (puthere) {
1131 // Check if GPNVM is set
1132 // get the bit and make it a 0/1
1133 *puthere = (v >> gpnvm) & 1;
1134 }
1135
1136 return r;
1137 }
1138
1139
1140
1141
1142 /**
1143 * Clears the selected GPNVM bit.
1144 * @param pPrivate info about the bank
1145 * @param gpnvm GPNVM index.
1146 * @returns 0 if successful; otherwise returns an error code.
1147 */
1148 static int
1149 FLASHD_ClrGPNVM(struct sam3_bank_private *pPrivate, unsigned gpnvm)
1150 {
1151 int r;
1152 unsigned v;
1153
1154 LOG_DEBUG("Here");
1155 if (pPrivate->bank_number != 0) {
1156 LOG_ERROR("GPNVM only works with Bank0");
1157 return ERROR_FAIL;
1158 }
1159
1160 if (gpnvm >= pPrivate->pChip->details.n_gpnvms) {
1161 LOG_ERROR("Invalid GPNVM %d, max: %d, ignored",
1162 gpnvm,pPrivate->pChip->details.n_gpnvms);
1163 return ERROR_FAIL;
1164 }
1165
1166 r = FLASHD_GetGPNVM(pPrivate, gpnvm, &v);
1167 if (r != ERROR_OK) {
1168 LOG_DEBUG("Failed: %d",r);
1169 return r;
1170 }
1171 r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_CFB, gpnvm, NULL);
1172 LOG_DEBUG("End: %d",r);
1173 return r;
1174 }
1175
1176
1177
1178 /**
1179 * Sets the selected GPNVM bit.
1180 * @param pPrivate info about the bank
1181 * @param gpnvm GPNVM index.
1182 */
1183 static int
1184 FLASHD_SetGPNVM(struct sam3_bank_private *pPrivate, unsigned gpnvm)
1185 {
1186 int r;
1187 unsigned v;
1188
1189 if (pPrivate->bank_number != 0) {
1190 LOG_ERROR("GPNVM only works with Bank0");
1191 return ERROR_FAIL;
1192 }
1193
1194 if (gpnvm >= pPrivate->pChip->details.n_gpnvms) {
1195 LOG_ERROR("Invalid GPNVM %d, max: %d, ignored",
1196 gpnvm,pPrivate->pChip->details.n_gpnvms);
1197 return ERROR_FAIL;
1198 }
1199
1200 r = FLASHD_GetGPNVM(pPrivate, gpnvm, &v);
1201 if (r != ERROR_OK) {
1202 return r;
1203 }
1204 if (v) {
1205 // already set
1206 r = ERROR_OK;
1207 } else {
1208 // set it
1209 r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SFB, gpnvm, NULL);
1210 }
1211 return r;
1212 }
1213
1214
1215 /**
1216 * Returns a bit field (at most 64) of locked regions within a page.
1217 * @param pPrivate info about the bank
1218 * @param v where to store locked bits
1219 */
1220 static int
1221 FLASHD_GetLockBits(struct sam3_bank_private *pPrivate, uint32_t *v)
1222 {
1223 int r;
1224 LOG_DEBUG("Here");
1225 r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_GLB, 0, NULL);
1226 if (r == ERROR_OK) {
1227 r = EFC_GetResult(pPrivate, v);
1228 }
1229 LOG_DEBUG("End: %d",r);
1230 return r;
1231 }
1232
1233
1234 /**
1235 * Unlocks all the regions in the given address range.
1236 * @param pPrivate info about the bank
1237 * @param start_sector first sector to unlock
1238 * @param end_sector last (inclusive) to unlock
1239 */
1240
1241 static int
1242 FLASHD_Unlock(struct sam3_bank_private *pPrivate,
1243 unsigned start_sector,
1244 unsigned end_sector)
1245 {
1246 int r;
1247 uint32_t status;
1248 uint32_t pg;
1249 uint32_t pages_per_sector;
1250
1251 pages_per_sector = pPrivate->sector_size / pPrivate->page_size;
1252
1253 /* Unlock all pages */
1254 while (start_sector <= end_sector) {
1255 pg = start_sector * pages_per_sector;
1256
1257 r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_CLB, pg, &status);
1258 if (r != ERROR_OK) {
1259 return r;
1260 }
1261 start_sector++;
1262 }
1263
1264 return ERROR_OK;
1265 }
1266
1267
1268 /**
1269 * Locks regions
1270 * @param pPrivate - info about the bank
1271 * @param start_sector - first sector to lock
1272 * @param end_sector - last sector (inclusive) to lock
1273 */
1274 static int
1275 FLASHD_Lock(struct sam3_bank_private *pPrivate,
1276 unsigned start_sector,
1277 unsigned end_sector)
1278 {
1279 uint32_t status;
1280 uint32_t pg;
1281 uint32_t pages_per_sector;
1282 int r;
1283
1284 pages_per_sector = pPrivate->sector_size / pPrivate->page_size;
1285
1286 /* Lock all pages */
1287 while (start_sector <= end_sector) {
1288 pg = start_sector * pages_per_sector;
1289
1290 r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SLB, pg, &status);
1291 if (r != ERROR_OK) {
1292 return r;
1293 }
1294 start_sector++;
1295 }
1296 return ERROR_OK;
1297 }
1298
1299
1300 /****** END SAM3 CODE ********/
1301
1302 /* begin helpful debug code */
1303 // print the fieldname, the field value, in dec & hex, and return field value
1304 static uint32_t
1305 sam3_reg_fieldname(struct sam3_chip *pChip,
1306 const char *regname,
1307 uint32_t value,
1308 unsigned shift,
1309 unsigned width)
1310 {
1311 uint32_t v;
1312 int hwidth, dwidth;
1313
1314
1315 // extract the field
1316 v = value >> shift;
1317 v = v & ((1 << width)-1);
1318 if (width <= 16) {
1319 hwidth = 4;
1320 dwidth = 5;
1321 } else {
1322 hwidth = 8;
1323 dwidth = 12;
1324 }
1325
1326 // show the basics
1327 LOG_USER_N("\t%*s: %*d [0x%0*x] ",
1328 REG_NAME_WIDTH, regname,
1329 dwidth, v,
1330 hwidth, v);
1331 return v;
1332 }
1333
1334
1335 static const char _unknown[] = "unknown";
1336 static const char * const eproc_names[] = {
1337 _unknown, // 0
1338 "arm946es", // 1
1339 "arm7tdmi", // 2
1340 "cortex-m3", // 3
1341 "arm920t", // 4
1342 "arm926ejs", // 5
1343 _unknown, // 6
1344 _unknown, // 7
1345 _unknown, // 8
1346 _unknown, // 9
1347 _unknown, // 10
1348 _unknown, // 11
1349 _unknown, // 12
1350 _unknown, // 13
1351 _unknown, // 14
1352 _unknown, // 15
1353 };
1354
1355 #define nvpsize2 nvpsize // these two tables are identical
1356 static const char * const nvpsize[] = {
1357 "none", // 0
1358 "8K bytes", // 1
1359 "16K bytes", // 2
1360 "32K bytes", // 3
1361 _unknown, // 4
1362 "64K bytes", // 5
1363 _unknown, // 6
1364 "128K bytes", // 7
1365 _unknown, // 8
1366 "256K bytes", // 9
1367 "512K bytes", // 10
1368 _unknown, // 11
1369 "1024K bytes", // 12
1370 _unknown, // 13
1371 "2048K bytes", // 14
1372 _unknown, // 15
1373 };
1374
1375
1376 static const char * const sramsize[] = {
1377 "48K Bytes", // 0
1378 "1K Bytes", // 1
1379 "2K Bytes", // 2
1380 "6K Bytes", // 3
1381 "112K Bytes", // 4
1382 "4K Bytes", // 5
1383 "80K Bytes", // 6
1384 "160K Bytes", // 7
1385 "8K Bytes", // 8
1386 "16K Bytes", // 9
1387 "32K Bytes", // 10
1388 "64K Bytes", // 11
1389 "128K Bytes", // 12
1390 "256K Bytes", // 13
1391 "96K Bytes", // 14
1392 "512K Bytes", // 15
1393
1394 };
1395
1396 static const struct archnames { unsigned value; const char *name; } archnames[] = {
1397 { 0x19, "AT91SAM9xx Series" },
1398 { 0x29, "AT91SAM9XExx Series" },
1399 { 0x34, "AT91x34 Series" },
1400 { 0x37, "CAP7 Series" },
1401 { 0x39, "CAP9 Series" },
1402 { 0x3B, "CAP11 Series" },
1403 { 0x40, "AT91x40 Series" },
1404 { 0x42, "AT91x42 Series" },
1405 { 0x55, "AT91x55 Series" },
1406 { 0x60, "AT91SAM7Axx Series" },
1407 { 0x61, "AT91SAM7AQxx Series" },
1408 { 0x63, "AT91x63 Series" },
1409 { 0x70, "AT91SAM7Sxx Series" },
1410 { 0x71, "AT91SAM7XCxx Series" },
1411 { 0x72, "AT91SAM7SExx Series" },
1412 { 0x73, "AT91SAM7Lxx Series" },
1413 { 0x75, "AT91SAM7Xxx Series" },
1414 { 0x76, "AT91SAM7SLxx Series" },
1415 { 0x80, "ATSAM3UxC Series (100-pin version)" },
1416 { 0x81, "ATSAM3UxE Series (144-pin version)" },
1417 { 0x83, "ATSAM3AxC Series (100-pin version)" },
1418 { 0x84, "ATSAM3XxC Series (100-pin version)" },
1419 { 0x85, "ATSAM3XxE Series (144-pin version)" },
1420 { 0x86, "ATSAM3XxG Series (208/217-pin version)" },
1421 { 0x88, "ATSAM3SxA Series (48-pin version)" },
1422 { 0x89, "ATSAM3SxB Series (64-pin version)" },
1423 { 0x8A, "ATSAM3SxC Series (100-pin version)" },
1424 { 0x92, "AT91x92 Series" },
1425 { 0xF0, "AT75Cxx Series" },
1426 { -1, NULL },
1427
1428 };
1429
1430 static const char * const nvptype[] = {
1431 "rom", // 0
1432 "romless or onchip flash", // 1
1433 "embedded flash memory", // 2
1434 "rom(nvpsiz) + embedded flash (nvpsiz2)", //3
1435 "sram emulating flash", // 4
1436 _unknown, // 5
1437 _unknown, // 6
1438 _unknown, // 7
1439
1440 };
1441
1442 static const char *_yes_or_no(uint32_t v)
1443 {
1444 if (v) {
1445 return "YES";
1446 } else {
1447 return "NO";
1448 }
1449 }
1450
1451 static const char * const _rc_freq[] = {
1452 "4 MHz", "8 MHz", "12 MHz", "reserved"
1453 };
1454
1455 static void
1456 sam3_explain_ckgr_mor(struct sam3_chip *pChip)
1457 {
1458 uint32_t v;
1459 uint32_t rcen;
1460
1461 v = sam3_reg_fieldname(pChip, "MOSCXTEN", pChip->cfg.CKGR_MOR, 0, 1);
1462 LOG_USER("(main xtal enabled: %s)",
1463 _yes_or_no(v));
1464 v = sam3_reg_fieldname(pChip, "MOSCXTBY", pChip->cfg.CKGR_MOR, 1, 1);
1465 LOG_USER("(main osc bypass: %s)",
1466 _yes_or_no(v));
1467 rcen = sam3_reg_fieldname(pChip, "MOSCRCEN", pChip->cfg.CKGR_MOR, 3, 1);
1468 LOG_USER("(onchip RC-OSC enabled: %s)",
1469 _yes_or_no(rcen));
1470 v = sam3_reg_fieldname(pChip, "MOSCRCF", pChip->cfg.CKGR_MOR, 4, 3);
1471 LOG_USER("(onchip RC-OSC freq: %s)",
1472 _rc_freq[v]);
1473
1474 pChip->cfg.rc_freq = 0;
1475 if (rcen) {
1476 switch (v) {
1477 default:
1478 pChip->cfg.rc_freq = 0;
1479 break;
1480 case 0:
1481 pChip->cfg.rc_freq = 4 * 1000 * 1000;
1482 break;
1483 case 1:
1484 pChip->cfg.rc_freq = 8 * 1000 * 1000;
1485 break;
1486 case 2:
1487 pChip->cfg.rc_freq = 12* 1000 * 1000;
1488 break;
1489 }
1490 }
1491
1492 v = sam3_reg_fieldname(pChip,"MOSCXTST", pChip->cfg.CKGR_MOR, 8, 8);
1493 LOG_USER("(startup clks, time= %f uSecs)",
1494 ((float)(v * 1000000)) / ((float)(pChip->cfg.slow_freq)));
1495 v = sam3_reg_fieldname(pChip, "MOSCSEL", pChip->cfg.CKGR_MOR, 24, 1);
1496 LOG_USER("(mainosc source: %s)",
1497 v ? "external xtal" : "internal RC");
1498
1499 v = sam3_reg_fieldname(pChip,"CFDEN", pChip->cfg.CKGR_MOR, 25, 1);
1500 LOG_USER("(clock failure enabled: %s)",
1501 _yes_or_no(v));
1502 }
1503
1504
1505
1506 static void
1507 sam3_explain_chipid_cidr(struct sam3_chip *pChip)
1508 {
1509 int x;
1510 uint32_t v;
1511 const char *cp;
1512
1513 sam3_reg_fieldname(pChip, "Version", pChip->cfg.CHIPID_CIDR, 0, 5);
1514 LOG_USER_N("\n");
1515
1516 v = sam3_reg_fieldname(pChip, "EPROC", pChip->cfg.CHIPID_CIDR, 5, 3);
1517 LOG_USER("%s", eproc_names[v]);
1518
1519 v = sam3_reg_fieldname(pChip, "NVPSIZE", pChip->cfg.CHIPID_CIDR, 8, 4);
1520 LOG_USER("%s", nvpsize[v]);
1521
1522 v = sam3_reg_fieldname(pChip, "NVPSIZE2", pChip->cfg.CHIPID_CIDR, 12, 4);
1523 LOG_USER("%s", nvpsize2[v]);
1524
1525 v = sam3_reg_fieldname(pChip, "SRAMSIZE", pChip->cfg.CHIPID_CIDR, 16,4);
1526 LOG_USER("%s", sramsize[ v ]);
1527
1528 v = sam3_reg_fieldname(pChip, "ARCH", pChip->cfg.CHIPID_CIDR, 20, 8);
1529 cp = _unknown;
1530 for (x = 0 ; archnames[x].name ; x++) {
1531 if (v == archnames[x].value) {
1532 cp = archnames[x].name;
1533 break;
1534 }
1535 }
1536
1537 LOG_USER("%s", cp);
1538
1539 v = sam3_reg_fieldname(pChip, "NVPTYP", pChip->cfg.CHIPID_CIDR, 28, 3);
1540 LOG_USER("%s", nvptype[ v ]);
1541
1542 v = sam3_reg_fieldname(pChip, "EXTID", pChip->cfg.CHIPID_CIDR, 31, 1);
1543 LOG_USER("(exists: %s)", _yes_or_no(v));
1544 }
1545
1546 static void
1547 sam3_explain_ckgr_mcfr(struct sam3_chip *pChip)
1548 {
1549 uint32_t v;
1550
1551
1552 v = sam3_reg_fieldname(pChip, "MAINFRDY", pChip->cfg.CKGR_MCFR, 16, 1);
1553 LOG_USER("(main ready: %s)", _yes_or_no(v));
1554
1555 v = sam3_reg_fieldname(pChip, "MAINF", pChip->cfg.CKGR_MCFR, 0, 16);
1556
1557 v = (v * pChip->cfg.slow_freq) / 16;
1558 pChip->cfg.mainosc_freq = v;
1559
1560 LOG_USER("(%3.03f Mhz (%d.%03dkhz slowclk)",
1561 _tomhz(v),
1562 pChip->cfg.slow_freq / 1000,
1563 pChip->cfg.slow_freq % 1000);
1564
1565 }
1566
1567 static void
1568 sam3_explain_ckgr_plla(struct sam3_chip *pChip)
1569 {
1570 uint32_t mula,diva;
1571
1572 diva = sam3_reg_fieldname(pChip, "DIVA", pChip->cfg.CKGR_PLLAR, 0, 8);
1573 LOG_USER_N("\n");
1574 mula = sam3_reg_fieldname(pChip, "MULA", pChip->cfg.CKGR_PLLAR, 16, 11);
1575 LOG_USER_N("\n");
1576 pChip->cfg.plla_freq = 0;
1577 if (mula == 0) {
1578 LOG_USER("\tPLLA Freq: (Disabled,mula = 0)");
1579 } else if (diva == 0) {
1580 LOG_USER("\tPLLA Freq: (Disabled,diva = 0)");
1581 } else if (diva == 1) {
1582 pChip->cfg.plla_freq = (pChip->cfg.mainosc_freq * (mula + 1));
1583 LOG_USER("\tPLLA Freq: %3.03f MHz",
1584 _tomhz(pChip->cfg.plla_freq));
1585 }
1586 }
1587
1588
1589 static void
1590 sam3_explain_mckr(struct sam3_chip *pChip)
1591 {
1592 uint32_t css, pres, fin = 0;
1593 int pdiv = 0;
1594 const char *cp = NULL;
1595
1596 css = sam3_reg_fieldname(pChip, "CSS", pChip->cfg.PMC_MCKR, 0, 2);
1597 switch (css & 3) {
1598 case 0:
1599 fin = pChip->cfg.slow_freq;
1600 cp = "slowclk";
1601 break;
1602 case 1:
1603 fin = pChip->cfg.mainosc_freq;
1604 cp = "mainosc";
1605 break;
1606 case 2:
1607 fin = pChip->cfg.plla_freq;
1608 cp = "plla";
1609 break;
1610 case 3:
1611 if (pChip->cfg.CKGR_UCKR & (1 << 16)) {
1612 fin = 480 * 1000 * 1000;
1613 cp = "upll";
1614 } else {
1615 fin = 0;
1616 cp = "upll (*ERROR* UPLL is disabled)";
1617 }
1618 break;
1619 default:
1620 assert(0);
1621 break;
1622 }
1623
1624 LOG_USER("%s (%3.03f Mhz)",
1625 cp,
1626 _tomhz(fin));
1627 pres = sam3_reg_fieldname(pChip, "PRES", pChip->cfg.PMC_MCKR, 4, 3);
1628 switch (pres & 0x07) {
1629 case 0:
1630 pdiv = 1;
1631 cp = "selected clock";
1632 break;
1633 case 1:
1634 pdiv = 2;
1635 cp = "clock/2";
1636 break;
1637 case 2:
1638 pdiv = 4;
1639 cp = "clock/4";
1640 break;
1641 case 3:
1642 pdiv = 8;
1643 cp = "clock/8";
1644 break;
1645 case 4:
1646 pdiv = 16;
1647 cp = "clock/16";
1648 break;
1649 case 5:
1650 pdiv = 32;
1651 cp = "clock/32";
1652 break;
1653 case 6:
1654 pdiv = 64;
1655 cp = "clock/64";
1656 break;
1657 case 7:
1658 pdiv = 6;
1659 cp = "clock/6";
1660 break;
1661 default:
1662 assert(0);
1663 break;
1664 }
1665 LOG_USER("(%s)", cp);
1666 fin = fin / pdiv;
1667 // sam3 has a *SINGLE* clock -
1668 // other at91 series parts have divisors for these.
1669 pChip->cfg.cpu_freq = fin;
1670 pChip->cfg.mclk_freq = fin;
1671 pChip->cfg.fclk_freq = fin;
1672 LOG_USER("\t\tResult CPU Freq: %3.03f",
1673 _tomhz(fin));
1674 }
1675
1676 #if 0
1677 static struct sam3_chip *
1678 target2sam3(struct target *pTarget)
1679 {
1680 struct sam3_chip *pChip;
1681
1682 if (pTarget == NULL) {
1683 return NULL;
1684 }
1685
1686 pChip = all_sam3_chips;
1687 while (pChip) {
1688 if (pChip->target == pTarget) {
1689 break; // return below
1690 } else {
1691 pChip = pChip->next;
1692 }
1693 }
1694 return pChip;
1695 }
1696 #endif
1697
1698 static uint32_t *
1699 sam3_get_reg_ptr(struct sam3_cfg *pCfg, const struct sam3_reg_list *pList)
1700 {
1701 // this function exists to help
1702 // keep funky offsetof() errors
1703 // and casting from causing bugs
1704
1705 // By using prototypes - we can detect what would
1706 // be casting errors.
1707
1708 return ((uint32_t *)(void *)(((char *)(pCfg)) + pList->struct_offset));
1709 }
1710
1711
1712 #define SAM3_ENTRY(NAME, FUNC) { .address = SAM3_ ## NAME, .struct_offset = offsetof(struct sam3_cfg, NAME), #NAME, FUNC }
1713 static const struct sam3_reg_list sam3_all_regs[] = {
1714 SAM3_ENTRY(CKGR_MOR , sam3_explain_ckgr_mor),
1715 SAM3_ENTRY(CKGR_MCFR , sam3_explain_ckgr_mcfr),
1716 SAM3_ENTRY(CKGR_PLLAR , sam3_explain_ckgr_plla),
1717 SAM3_ENTRY(CKGR_UCKR , NULL),
1718 SAM3_ENTRY(PMC_FSMR , NULL),
1719 SAM3_ENTRY(PMC_FSPR , NULL),
1720 SAM3_ENTRY(PMC_IMR , NULL),
1721 SAM3_ENTRY(PMC_MCKR , sam3_explain_mckr),
1722 SAM3_ENTRY(PMC_PCK0 , NULL),
1723 SAM3_ENTRY(PMC_PCK1 , NULL),
1724 SAM3_ENTRY(PMC_PCK2 , NULL),
1725 SAM3_ENTRY(PMC_PCSR , NULL),
1726 SAM3_ENTRY(PMC_SCSR , NULL),
1727 SAM3_ENTRY(PMC_SR , NULL),
1728 SAM3_ENTRY(CHIPID_CIDR , sam3_explain_chipid_cidr),
1729 SAM3_ENTRY(CHIPID_EXID , NULL),
1730 SAM3_ENTRY(SUPC_CR, NULL),
1731
1732 // TERMINATE THE LIST
1733 { .name = NULL }
1734 };
1735 #undef SAM3_ENTRY
1736
1737
1738
1739
1740 static struct sam3_bank_private *
1741 get_sam3_bank_private(struct flash_bank *bank)
1742 {
1743 return (struct sam3_bank_private *)(bank->driver_priv);
1744 }
1745
1746 /**
1747 * Given a pointer to where it goes in the structure,
1748 * determine the register name, address from the all registers table.
1749 */
1750 static const struct sam3_reg_list *
1751 sam3_GetReg(struct sam3_chip *pChip, uint32_t *goes_here)
1752 {
1753 const struct sam3_reg_list *pReg;
1754
1755 pReg = &(sam3_all_regs[0]);
1756 while (pReg->name) {
1757 uint32_t *pPossible;
1758
1759 // calculate where this one go..
1760 // it is "possibly" this register.
1761
1762 pPossible = ((uint32_t *)(void *)(((char *)(&(pChip->cfg))) + pReg->struct_offset));
1763
1764 // well? Is it this register
1765 if (pPossible == goes_here) {
1766 // Jump for joy!
1767 return pReg;
1768 }
1769
1770 // next...
1771 pReg++;
1772 }
1773 // This is *TOTAL*PANIC* - we are totally screwed.
1774 LOG_ERROR("INVALID SAM3 REGISTER");
1775 return NULL;
1776 }
1777
1778
1779 static int
1780 sam3_ReadThisReg(struct sam3_chip *pChip, uint32_t *goes_here)
1781 {
1782 const struct sam3_reg_list *pReg;
1783 int r;
1784
1785 pReg = sam3_GetReg(pChip, goes_here);
1786 if (!pReg) {
1787 return ERROR_FAIL;
1788 }
1789
1790 r = target_read_u32(pChip->target, pReg->address, goes_here);
1791 if (r != ERROR_OK) {
1792 LOG_ERROR("Cannot read SAM3 register: %s @ 0x%08x, Err: %d",
1793 pReg->name, (unsigned)(pReg->address), r);
1794 }
1795 return r;
1796 }
1797
1798
1799
1800 static int
1801 sam3_ReadAllRegs(struct sam3_chip *pChip)
1802 {
1803 int r;
1804 const struct sam3_reg_list *pReg;
1805
1806 pReg = &(sam3_all_regs[0]);
1807 while (pReg->name) {
1808 r = sam3_ReadThisReg(pChip,
1809 sam3_get_reg_ptr(&(pChip->cfg), pReg));
1810 if (r != ERROR_OK) {
1811 LOG_ERROR("Cannot read SAM3 registere: %s @ 0x%08x, Error: %d",
1812 pReg->name, ((unsigned)(pReg->address)), r);
1813 return r;
1814 }
1815
1816 pReg++;
1817 }
1818
1819 return ERROR_OK;
1820 }
1821
1822
1823 static int
1824 sam3_GetInfo(struct sam3_chip *pChip)
1825 {
1826 const struct sam3_reg_list *pReg;
1827 uint32_t regval;
1828
1829 pReg = &(sam3_all_regs[0]);
1830 while (pReg->name) {
1831 // display all regs
1832 LOG_DEBUG("Start: %s", pReg->name);
1833 regval = *sam3_get_reg_ptr(&(pChip->cfg), pReg);
1834 LOG_USER("%*s: [0x%08x] -> 0x%08x",
1835 REG_NAME_WIDTH,
1836 pReg->name,
1837 pReg->address,
1838 regval);
1839 if (pReg->explain_func) {
1840 (*(pReg->explain_func))(pChip);
1841 }
1842 LOG_DEBUG("End: %s", pReg->name);
1843 pReg++;
1844 }
1845 LOG_USER(" rc-osc: %3.03f MHz", _tomhz(pChip->cfg.rc_freq));
1846 LOG_USER(" mainosc: %3.03f MHz", _tomhz(pChip->cfg.mainosc_freq));
1847 LOG_USER(" plla: %3.03f MHz", _tomhz(pChip->cfg.plla_freq));
1848 LOG_USER(" cpu-freq: %3.03f MHz", _tomhz(pChip->cfg.cpu_freq));
1849 LOG_USER("mclk-freq: %3.03f MHz", _tomhz(pChip->cfg.mclk_freq));
1850
1851
1852 LOG_USER(" UniqueId: 0x%08x 0x%08x 0x%08x 0x%08x",
1853 pChip->cfg.unique_id[0],
1854 pChip->cfg.unique_id[1],
1855 pChip->cfg.unique_id[2],
1856 pChip->cfg.unique_id[3]);
1857
1858
1859 return ERROR_OK;
1860 }
1861
1862
1863 static int
1864 sam3_erase_check(struct flash_bank *bank)
1865 {
1866 int x;
1867
1868 LOG_DEBUG("Here");
1869 if (bank->target->state != TARGET_HALTED) {
1870 LOG_ERROR("Target not halted");
1871 return ERROR_TARGET_NOT_HALTED;
1872 }
1873 if (0 == bank->num_sectors) {
1874 LOG_ERROR("Target: not supported/not probed");
1875 return ERROR_FAIL;
1876 }
1877
1878 LOG_INFO("sam3 - supports auto-erase, erase_check ignored");
1879 for (x = 0 ; x < bank->num_sectors ; x++) {
1880 bank->sectors[x].is_erased = 1;
1881 }
1882
1883 LOG_DEBUG("Done");
1884 return ERROR_OK;
1885 }
1886
1887 static int
1888 sam3_protect_check(struct flash_bank *bank)
1889 {
1890 int r;
1891 uint32_t v=0;
1892 unsigned x;
1893 struct sam3_bank_private *pPrivate;
1894
1895 LOG_DEBUG("Begin");
1896 if (bank->target->state != TARGET_HALTED) {
1897 LOG_ERROR("Target not halted");
1898 return ERROR_TARGET_NOT_HALTED;
1899 }
1900
1901 pPrivate = get_sam3_bank_private(bank);
1902 if (!pPrivate) {
1903 LOG_ERROR("no private for this bank?");
1904 return ERROR_FAIL;
1905 }
1906 if (!(pPrivate->probed)) {
1907 return ERROR_FLASH_BANK_NOT_PROBED;
1908 }
1909
1910 r = FLASHD_GetLockBits(pPrivate , &v);
1911 if (r != ERROR_OK) {
1912 LOG_DEBUG("Failed: %d",r);
1913 return r;
1914 }
1915
1916 for (x = 0 ; x < pPrivate->nsectors ; x++) {
1917 bank->sectors[x].is_protected = (!!(v & (1 << x)));
1918 }
1919 LOG_DEBUG("Done");
1920 return ERROR_OK;
1921 }
1922
1923 FLASH_BANK_COMMAND_HANDLER(sam3_flash_bank_command)
1924 {
1925 struct sam3_chip *pChip;
1926
1927 pChip = all_sam3_chips;
1928
1929 // is this an existing chip?
1930 while (pChip) {
1931 if (pChip->target == bank->target) {
1932 break;
1933 }
1934 pChip = pChip->next;
1935 }
1936
1937 if (!pChip) {
1938 // this is a *NEW* chip
1939 pChip = calloc(1, sizeof(struct sam3_chip));
1940 if (!pChip) {
1941 LOG_ERROR("NO RAM!");
1942 return ERROR_FAIL;
1943 }
1944 pChip->target = bank->target;
1945 // insert at head
1946 pChip->next = all_sam3_chips;
1947 all_sam3_chips = pChip;
1948 pChip->target = bank->target;
1949 // assumption is this runs at 32khz
1950 pChip->cfg.slow_freq = 32768;
1951 pChip->probed = 0;
1952 }
1953
1954 switch (bank->base) {
1955 default:
1956 LOG_ERROR("Address 0x%08x invalid bank address (try 0x%08x or 0x%08x \
1957 [at91sam3u series] or 0x%08x [at91sam3s series])",
1958 ((unsigned int)(bank->base)),
1959 ((unsigned int)(FLASH_BANK0_BASE_U)),
1960 ((unsigned int)(FLASH_BANK1_BASE_U)),
1961 ((unsigned int)(FLASH_BANK_BASE_S)));
1962 return ERROR_FAIL;
1963 break;
1964
1965 // at91sam3u series
1966 case FLASH_BANK0_BASE_U:
1967 bank->driver_priv = &(pChip->details.bank[0]);
1968 bank->bank_number = 0;
1969 pChip->details.bank[0].pChip = pChip;
1970 pChip->details.bank[0].pBank = bank;
1971 break;
1972 case FLASH_BANK1_BASE_U:
1973 bank->driver_priv = &(pChip->details.bank[1]);
1974 bank->bank_number = 1;
1975 pChip->details.bank[1].pChip = pChip;
1976 pChip->details.bank[1].pBank = bank;
1977
1978 // at91sam3s series
1979 case FLASH_BANK_BASE_S:
1980 bank->driver_priv = &(pChip->details.bank[0]);
1981 bank->bank_number = 0;
1982 pChip->details.bank[0].pChip = pChip;
1983 pChip->details.bank[0].pBank = bank;
1984 break;
1985 }
1986
1987 // we initialize after probing.
1988 return ERROR_OK;
1989 }
1990
1991 static int
1992 sam3_GetDetails(struct sam3_bank_private *pPrivate)
1993 {
1994 const struct sam3_chip_details *pDetails;
1995 struct sam3_chip *pChip;
1996 struct flash_bank *saved_banks[SAM3_MAX_FLASH_BANKS];
1997 unsigned x;
1998
1999 LOG_DEBUG("Begin");
2000 pDetails = all_sam3_details;
2001 while (pDetails->name) {
2002 if (pDetails->chipid_cidr == pPrivate->pChip->cfg.CHIPID_CIDR) {
2003 break;
2004 } else {
2005 pDetails++;
2006 }
2007 }
2008 if (pDetails->name == NULL) {
2009 LOG_ERROR("SAM3 ChipID 0x%08x not found in table (perhaps you can this chip?)",
2010 (unsigned int)(pPrivate->pChip->cfg.CHIPID_CIDR));
2011 // Help the victim, print details about the chip
2012 LOG_INFO("SAM3 CHIPID_CIDR: 0x%08x decodes as follows",
2013 pPrivate->pChip->cfg.CHIPID_CIDR);
2014 sam3_explain_chipid_cidr(pPrivate->pChip);
2015 return ERROR_FAIL;
2016 }
2017
2018 // DANGER: THERE ARE DRAGONS HERE
2019
2020 // get our pChip - it is going
2021 // to be over-written shortly
2022 pChip = pPrivate->pChip;
2023
2024 // Note that, in reality:
2025 //
2026 // pPrivate = &(pChip->details.bank[0])
2027 // or pPrivate = &(pChip->details.bank[1])
2028 //
2029
2030 // save the "bank" pointers
2031 for (x = 0 ; x < SAM3_MAX_FLASH_BANKS ; x++) {
2032 saved_banks[ x ] = pChip->details.bank[x].pBank;
2033 }
2034
2035 // Overwrite the "details" structure.
2036 memcpy(&(pPrivate->pChip->details),
2037 pDetails,
2038 sizeof(pPrivate->pChip->details));
2039
2040 // now fix the ghosted pointers
2041 for (x = 0 ; x < SAM3_MAX_FLASH_BANKS ; x++) {
2042 pChip->details.bank[x].pChip = pChip;
2043 pChip->details.bank[x].pBank = saved_banks[x];
2044 }
2045
2046 // update the *BANK*SIZE*
2047
2048 LOG_DEBUG("End");
2049 return ERROR_OK;
2050 }
2051
2052
2053
2054 static int
2055 _sam3_probe(struct flash_bank *bank, int noise)
2056 {
2057 unsigned x;
2058 int r;
2059 struct sam3_bank_private *pPrivate;
2060
2061
2062 LOG_DEBUG("Begin: Bank: %d, Noise: %d", bank->bank_number, noise);
2063 if (bank->target->state != TARGET_HALTED)
2064 {
2065 LOG_ERROR("Target not halted");
2066 return ERROR_TARGET_NOT_HALTED;
2067 }
2068
2069 pPrivate = get_sam3_bank_private(bank);
2070 if (!pPrivate) {
2071 LOG_ERROR("Invalid/unknown bank number");
2072 return ERROR_FAIL;
2073 }
2074
2075 r = sam3_ReadAllRegs(pPrivate->pChip);
2076 if (r != ERROR_OK) {
2077 return r;
2078 }
2079
2080
2081 LOG_DEBUG("Here");
2082 if (pPrivate->pChip->probed) {
2083 r = sam3_GetInfo(pPrivate->pChip);
2084 } else {
2085 r = sam3_GetDetails(pPrivate);
2086 }
2087 if (r != ERROR_OK) {
2088 return r;
2089 }
2090
2091 // update the flash bank size
2092 for (x = 0 ; x < SAM3_MAX_FLASH_BANKS ; x++) {
2093 if (bank->base == pPrivate->pChip->details.bank[0].base_address) {
2094 bank->size = pPrivate->pChip->details.bank[0].size_bytes;
2095 break;
2096 }
2097 }
2098
2099 if (bank->sectors == NULL) {
2100 bank->sectors = calloc(pPrivate->nsectors, (sizeof((bank->sectors)[0])));
2101 if (bank->sectors == NULL) {
2102 LOG_ERROR("No memory!");
2103 return ERROR_FAIL;
2104 }
2105 bank->num_sectors = pPrivate->nsectors;
2106
2107 for (x = 0 ; ((int)(x)) < bank->num_sectors ; x++) {
2108 bank->sectors[x].size = pPrivate->sector_size;
2109 bank->sectors[x].offset = x * (pPrivate->sector_size);
2110 // mark as unknown
2111 bank->sectors[x].is_erased = -1;
2112 bank->sectors[x].is_protected = -1;
2113 }
2114 }
2115
2116 pPrivate->probed = 1;
2117
2118 r = sam3_protect_check(bank);
2119 if (r != ERROR_OK) {
2120 return r;
2121 }
2122
2123 LOG_DEBUG("Bank = %d, nbanks = %d",
2124 pPrivate->bank_number , pPrivate->pChip->details.n_banks);
2125 if ((pPrivate->bank_number + 1) == pPrivate->pChip->details.n_banks) {
2126 // read unique id,
2127 // it appears to be associated with the *last* flash bank.
2128 FLASHD_ReadUniqueID(pPrivate);
2129 }
2130
2131 return r;
2132 }
2133
2134 static int
2135 sam3_probe(struct flash_bank *bank)
2136 {
2137 return _sam3_probe(bank, 1);
2138 }
2139
2140 static int
2141 sam3_auto_probe(struct flash_bank *bank)
2142 {
2143 return _sam3_probe(bank, 0);
2144 }
2145
2146
2147
2148 static int
2149 sam3_erase(struct flash_bank *bank, int first, int last)
2150 {
2151 struct sam3_bank_private *pPrivate;
2152 int r;
2153
2154 LOG_DEBUG("Here");
2155 if (bank->target->state != TARGET_HALTED) {
2156 LOG_ERROR("Target not halted");
2157 return ERROR_TARGET_NOT_HALTED;
2158 }
2159
2160 r = sam3_auto_probe(bank);
2161 if (r != ERROR_OK) {
2162 LOG_DEBUG("Here,r=%d",r);
2163 return r;
2164 }
2165
2166 pPrivate = get_sam3_bank_private(bank);
2167 if (!(pPrivate->probed)) {
2168 return ERROR_FLASH_BANK_NOT_PROBED;
2169 }
2170
2171 if ((first == 0) && ((last + 1)== ((int)(pPrivate->nsectors)))) {
2172 // whole chip
2173 LOG_DEBUG("Here");
2174 return FLASHD_EraseEntireBank(pPrivate);
2175 }
2176 LOG_INFO("sam3 auto-erases while programing (request ignored)");
2177 return ERROR_OK;
2178 }
2179
2180 static int
2181 sam3_protect(struct flash_bank *bank, int set, int first, int last)
2182 {
2183 struct sam3_bank_private *pPrivate;
2184 int r;
2185
2186 LOG_DEBUG("Here");
2187 if (bank->target->state != TARGET_HALTED) {
2188 LOG_ERROR("Target not halted");
2189 return ERROR_TARGET_NOT_HALTED;
2190 }
2191
2192 pPrivate = get_sam3_bank_private(bank);
2193 if (!(pPrivate->probed)) {
2194 return ERROR_FLASH_BANK_NOT_PROBED;
2195 }
2196
2197 if (set) {
2198 r = FLASHD_Lock(pPrivate, (unsigned)(first), (unsigned)(last));
2199 } else {
2200 r = FLASHD_Unlock(pPrivate, (unsigned)(first), (unsigned)(last));
2201 }
2202 LOG_DEBUG("End: r=%d",r);
2203
2204 return r;
2205
2206 }
2207
2208
2209 static int
2210 sam3_info(struct flash_bank *bank, char *buf, int buf_size)
2211 {
2212 if (bank->target->state != TARGET_HALTED) {
2213 LOG_ERROR("Target not halted");
2214 return ERROR_TARGET_NOT_HALTED;
2215 }
2216 buf[ 0 ] = 0;
2217 return ERROR_OK;
2218 }
2219
2220 static int
2221 sam3_page_read(struct sam3_bank_private *pPrivate, unsigned pagenum, uint8_t *buf)
2222 {
2223 uint32_t adr;
2224 int r;
2225
2226 adr = pagenum * pPrivate->page_size;
2227 adr += adr + pPrivate->base_address;
2228
2229 r = target_read_memory(pPrivate->pChip->target,
2230 adr,
2231 4, /* THIS*MUST*BE* in 32bit values */
2232 pPrivate->page_size / 4,
2233 buf);
2234 if (r != ERROR_OK) {
2235 LOG_ERROR("SAM3: Flash program failed to read page phys address: 0x%08x", (unsigned int)(adr));
2236 }
2237 return r;
2238 }
2239
2240 // The code below is basically this:
2241 // compiled with
2242 // arm-none-eabi-gcc -mthumb -mcpu = cortex-m3 -O9 -S ./foobar.c -o foobar.s
2243 //
2244 // Only the *CPU* can write to the flash buffer.
2245 // the DAP cannot... so - we download this 28byte thing
2246 // Run the algorithm - (below)
2247 // to program the device
2248 //
2249 // ========================================
2250 // #include <stdint.h>
2251 //
2252 // struct foo {
2253 // uint32_t *dst;
2254 // const uint32_t *src;
2255 // int n;
2256 // volatile uint32_t *base;
2257 // uint32_t cmd;
2258 // };
2259 //
2260 //
2261 // uint32_t sam3_function(struct foo *p)
2262 // {
2263 // volatile uint32_t *v;
2264 // uint32_t *d;
2265 // const uint32_t *s;
2266 // int n;
2267 // uint32_t r;
2268 //
2269 // d = p->dst;
2270 // s = p->src;
2271 // n = p->n;
2272 //
2273 // do {
2274 // *d++ = *s++;
2275 // } while (--n)
2276 // ;
2277 //
2278 // v = p->base;
2279 //
2280 // v[ 1 ] = p->cmd;
2281 // do {
2282 // r = v[8/4];
2283 // } while (!(r&1))
2284 // ;
2285 // return r;
2286 // }
2287 // ========================================
2288
2289
2290
2291 static const uint8_t
2292 sam3_page_write_opcodes[] = {
2293 // 24 0000 0446 mov r4, r0
2294 0x04,0x46,
2295 // 25 0002 6168 ldr r1, [r4, #4]
2296 0x61,0x68,
2297 // 26 0004 0068 ldr r0, [r0, #0]
2298 0x00,0x68,
2299 // 27 0006 A268 ldr r2, [r4, #8]
2300 0xa2,0x68,
2301 // 28 @ lr needed for prologue
2302 // 29 .L2:
2303 // 30 0008 51F8043B ldr r3, [r1], #4
2304 0x51,0xf8,0x04,0x3b,
2305 // 31 000c 12F1FF32 adds r2, r2, #-1
2306 0x12,0xf1,0xff,0x32,
2307 // 32 0010 40F8043B str r3, [r0], #4
2308 0x40,0xf8,0x04,0x3b,
2309 // 33 0014 F8D1 bne .L2
2310 0xf8,0xd1,
2311 // 34 0016 E268 ldr r2, [r4, #12]
2312 0xe2,0x68,
2313 // 35 0018 2369 ldr r3, [r4, #16]
2314 0x23,0x69,
2315 // 36 001a 5360 str r3, [r2, #4]
2316 0x53,0x60,
2317 // 37 001c 0832 adds r2, r2, #8
2318 0x08,0x32,
2319 // 38 .L4:
2320 // 39 001e 1068 ldr r0, [r2, #0]
2321 0x10,0x68,
2322 // 40 0020 10F0010F tst r0, #1
2323 0x10,0xf0,0x01,0x0f,
2324 // 41 0024 FBD0 beq .L4
2325 0xfb,0xd0,
2326 0x00,0xBE /* bkpt #0 */
2327 };
2328
2329
2330 static int
2331 sam3_page_write(struct sam3_bank_private *pPrivate, unsigned pagenum, uint8_t *buf)
2332 {
2333 uint32_t adr;
2334 uint32_t status;
2335 int r;
2336
2337 adr = pagenum * pPrivate->page_size;
2338 adr += (adr + pPrivate->base_address);
2339
2340 LOG_DEBUG("Wr Page %u @ phys address: 0x%08x", pagenum, (unsigned int)(adr));
2341 r = target_write_memory(pPrivate->pChip->target,
2342 adr,
2343 4, /* THIS*MUST*BE* in 32bit values */
2344 pPrivate->page_size / 4,
2345 buf);
2346 if (r != ERROR_OK) {
2347 LOG_ERROR("SAM3: Failed to write (buffer) page at phys address 0x%08x", (unsigned int)(adr));
2348 return r;
2349 }
2350
2351 r = EFC_PerformCommand(pPrivate,
2352 // send Erase & Write Page
2353 AT91C_EFC_FCMD_EWP,
2354 pagenum,
2355 &status);
2356
2357 if (r != ERROR_OK) {
2358 LOG_ERROR("SAM3: Error performing Erase & Write page @ phys address 0x%08x", (unsigned int)(adr));
2359 }
2360 if (status & (1 << 2)) {
2361 LOG_ERROR("SAM3: Page @ Phys address 0x%08x is locked", (unsigned int)(adr));
2362 return ERROR_FAIL;
2363 }
2364 if (status & (1 << 1)) {
2365 LOG_ERROR("SAM3: Flash Command error @phys address 0x%08x", (unsigned int)(adr));
2366 return ERROR_FAIL;
2367 }
2368 return ERROR_OK;
2369 }
2370
2371
2372
2373
2374
2375 static int
2376 sam3_write(struct flash_bank *bank,
2377 uint8_t *buffer,
2378 uint32_t offset,
2379 uint32_t count)
2380 {
2381 int n;
2382 unsigned page_cur;
2383 unsigned page_end;
2384 int r;
2385 unsigned page_offset;
2386 struct sam3_bank_private *pPrivate;
2387 uint8_t *pagebuffer;
2388
2389 // incase we bail further below, set this to null
2390 pagebuffer = NULL;
2391
2392 // ignore dumb requests
2393 if (count == 0) {
2394 r = ERROR_OK;
2395 goto done;
2396 }
2397
2398 if (bank->target->state != TARGET_HALTED) {
2399 LOG_ERROR("Target not halted");
2400 r = ERROR_TARGET_NOT_HALTED;
2401 goto done;
2402 }
2403
2404 pPrivate = get_sam3_bank_private(bank);
2405 if (!(pPrivate->probed)) {
2406 r = ERROR_FLASH_BANK_NOT_PROBED;
2407 goto done;
2408 }
2409
2410
2411 if ((offset + count) > pPrivate->size_bytes) {
2412 LOG_ERROR("Flash write error - past end of bank");
2413 LOG_ERROR(" offset: 0x%08x, count 0x%08x, BankEnd: 0x%08x",
2414 (unsigned int)(offset),
2415 (unsigned int)(count),
2416 (unsigned int)(pPrivate->size_bytes));
2417 r = ERROR_FAIL;
2418 goto done;
2419 }
2420
2421 pagebuffer = malloc(pPrivate->page_size);
2422 if( !pagebuffer ){
2423 LOG_ERROR("No memory for %d Byte page buffer", (int)(pPrivate->page_size));
2424 r = ERROR_FAIL;
2425 goto done;
2426 }
2427
2428 // what page do we start & end in?
2429 page_cur = offset / pPrivate->page_size;
2430 page_end = (offset + count - 1) / pPrivate->page_size;
2431
2432 LOG_DEBUG("Offset: 0x%08x, Count: 0x%08x", (unsigned int)(offset), (unsigned int)(count));
2433 LOG_DEBUG("Page start: %d, Page End: %d", (int)(page_cur), (int)(page_end));
2434
2435 // Special case: all one page
2436 //
2437 // Otherwise:
2438 // (1) non-aligned start
2439 // (2) body pages
2440 // (3) non-aligned end.
2441
2442 // Handle special case - all one page.
2443 if (page_cur == page_end) {
2444 LOG_DEBUG("Special case, all in one page");
2445 r = sam3_page_read(pPrivate, page_cur, pagebuffer);
2446 if (r != ERROR_OK) {
2447 goto done;
2448 }
2449
2450 page_offset = (offset & (pPrivate->page_size-1));
2451 memcpy(pagebuffer + page_offset,
2452 buffer,
2453 count);
2454
2455 r = sam3_page_write(pPrivate, page_cur, pagebuffer);
2456 if (r != ERROR_OK) {
2457 goto done;
2458 }
2459 r = ERROR_OK;
2460 goto done;
2461 }
2462
2463 // non-aligned start
2464 page_offset = offset & (pPrivate->page_size - 1);
2465 if (page_offset) {
2466 LOG_DEBUG("Not-Aligned start");
2467 // read the partial
2468 r = sam3_page_read(pPrivate, page_cur, pagebuffer);
2469 if (r != ERROR_OK) {
2470 goto done;
2471 }
2472
2473 // over-write with new data
2474 n = (pPrivate->page_size - page_offset);
2475 memcpy(pagebuffer + page_offset,
2476 buffer,
2477 n);
2478
2479 r = sam3_page_write(pPrivate, page_cur, pagebuffer);
2480 if (r != ERROR_OK) {
2481 goto done;
2482 }
2483
2484 count -= n;
2485 offset += n;
2486 buffer += n;
2487 page_cur++;
2488 }
2489
2490 // intermediate large pages
2491 // also - the final *terminal*
2492 // if that terminal page is a full page
2493 LOG_DEBUG("Full Page Loop: cur=%d, end=%d, count = 0x%08x",
2494 (int)page_cur, (int)page_end, (unsigned int)(count));
2495
2496 while ((page_cur < page_end) &&
2497 (count >= pPrivate->page_size)) {
2498 r = sam3_page_write(pPrivate, page_cur, buffer);
2499 if (r != ERROR_OK) {
2500 goto done;
2501 }
2502 count -= pPrivate->page_size;
2503 buffer += pPrivate->page_size;
2504 page_cur += 1;
2505 }
2506
2507 // terminal partial page?
2508 if (count) {
2509 LOG_DEBUG("Terminal partial page, count = 0x%08x", (unsigned int)(count));
2510 // we have a partial page
2511 r = sam3_page_read(pPrivate, page_cur, pagebuffer);
2512 if (r != ERROR_OK) {
2513 goto done;
2514 }
2515 // data goes at start
2516 memcpy(pagebuffer, buffer, count);
2517 r = sam3_page_write(pPrivate, page_cur, pagebuffer);
2518 if (r != ERROR_OK) {
2519 goto done;
2520 }
2521 buffer += count;
2522 count -= count;
2523 }
2524 LOG_DEBUG("Done!");
2525 r = ERROR_OK;
2526 done:
2527 if( pagebuffer ){
2528 free(pagebuffer);
2529 }
2530 return r;
2531 }
2532
2533 COMMAND_HANDLER(sam3_handle_info_command)
2534 {
2535 struct sam3_chip *pChip;
2536 unsigned x;
2537 int r;
2538
2539 pChip = get_current_sam3(CMD_CTX);
2540 if (!pChip) {
2541 return ERROR_OK;
2542 }
2543
2544 r = 0;
2545
2546 // bank0 must exist before we can do anything
2547 if (pChip->details.bank[0].pBank == NULL) {
2548 x = 0;
2549 need_define:
2550 command_print(CMD_CTX,
2551 "Please define bank %d via command: flash bank %s ... ",
2552 x,
2553 at91sam3_flash.name);
2554 return ERROR_FAIL;
2555 }
2556
2557 // if bank 0 is not probed, then probe it
2558 if (!(pChip->details.bank[0].probed)) {
2559 r = sam3_auto_probe(pChip->details.bank[0].pBank);
2560 if (r != ERROR_OK) {
2561 return ERROR_FAIL;
2562 }
2563 }
2564 // above guarantees the "chip details" structure is valid
2565 // and thus, bank private areas are valid
2566 // and we have a SAM3 chip, what a concept!
2567
2568
2569 // auto-probe other banks, 0 done above
2570 for (x = 1 ; x < SAM3_MAX_FLASH_BANKS ; x++) {
2571 // skip banks not present
2572 if (!(pChip->details.bank[x].present)) {
2573 continue;
2574 }
2575
2576 if (pChip->details.bank[x].pBank == NULL) {
2577 goto need_define;
2578 }
2579
2580 if (pChip->details.bank[x].probed) {
2581 continue;
2582 }
2583
2584 r = sam3_auto_probe(pChip->details.bank[x].pBank);
2585 if (r != ERROR_OK) {
2586 return r;
2587 }
2588 }
2589
2590
2591 r = sam3_GetInfo(pChip);
2592 if (r != ERROR_OK) {
2593 LOG_DEBUG("Sam3Info, Failed %d",r);
2594 return r;
2595 }
2596
2597 return ERROR_OK;
2598 }
2599
2600 COMMAND_HANDLER(sam3_handle_gpnvm_command)
2601 {
2602 unsigned x,v;
2603 int r,who;
2604 struct sam3_chip *pChip;
2605
2606 pChip = get_current_sam3(CMD_CTX);
2607 if (!pChip) {
2608 return ERROR_OK;
2609 }
2610
2611 if (pChip->target->state != TARGET_HALTED) {
2612 LOG_ERROR("sam3 - target not halted");
2613 return ERROR_TARGET_NOT_HALTED;
2614 }
2615
2616
2617 if (pChip->details.bank[0].pBank == NULL) {
2618 command_print(CMD_CTX, "Bank0 must be defined first via: flash bank %s ...",
2619 at91sam3_flash.name);
2620 return ERROR_FAIL;
2621 }
2622 if (!pChip->details.bank[0].probed) {
2623 r = sam3_auto_probe(pChip->details.bank[0].pBank);
2624 if (r != ERROR_OK) {
2625 return r;
2626 }
2627 }
2628
2629
2630 switch (CMD_ARGC) {
2631 default:
2632 command_print(CMD_CTX,"Too many parameters\n");
2633 return ERROR_COMMAND_SYNTAX_ERROR;
2634 break;
2635 case 0:
2636 who = -1;
2637 goto showall;
2638 break;
2639 case 1:
2640 who = -1;
2641 break;
2642 case 2:
2643 if ((0 == strcmp(CMD_ARGV[0], "show")) && (0 == strcmp(CMD_ARGV[1], "all"))) {
2644 who = -1;
2645 } else {
2646 uint32_t v32;
2647 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], v32);
2648 who = v32;
2649 }
2650 break;
2651 }
2652
2653 if (0 == strcmp("show", CMD_ARGV[0])) {
2654 if (who == -1) {
2655 showall:
2656 r = ERROR_OK;
2657 for (x = 0 ; x < pChip->details.n_gpnvms ; x++) {
2658 r = FLASHD_GetGPNVM(&(pChip->details.bank[0]), x, &v);
2659 if (r != ERROR_OK) {
2660 break;
2661 }
2662 command_print(CMD_CTX, "sam3-gpnvm%u: %u", x, v);
2663 }
2664 return r;
2665 }
2666 if ((who >= 0) && (((unsigned)(who)) < pChip->details.n_gpnvms)) {
2667 r = FLASHD_GetGPNVM(&(pChip->details.bank[0]), who, &v);
2668 command_print(CMD_CTX, "sam3-gpnvm%u: %u", who, v);
2669 return r;
2670 } else {
2671 command_print(CMD_CTX, "sam3-gpnvm invalid GPNVM: %u", who);
2672 return ERROR_COMMAND_SYNTAX_ERROR;
2673 }
2674 }
2675
2676 if (who == -1) {
2677 command_print(CMD_CTX, "Missing GPNVM number");
2678 return ERROR_COMMAND_SYNTAX_ERROR;
2679 }
2680
2681 if (0 == strcmp("set", CMD_ARGV[0])) {
2682 r = FLASHD_SetGPNVM(&(pChip->details.bank[0]), who);
2683 } else if ((0 == strcmp("clr", CMD_ARGV[0])) ||
2684 (0 == strcmp("clear", CMD_ARGV[0]))) { // quietly accept both
2685 r = FLASHD_ClrGPNVM(&(pChip->details.bank[0]), who);
2686 } else {
2687 command_print(CMD_CTX, "Unkown command: %s", CMD_ARGV[0]);
2688 r = ERROR_COMMAND_SYNTAX_ERROR;
2689 }
2690 return r;
2691 }
2692
2693 COMMAND_HANDLER(sam3_handle_slowclk_command)
2694 {
2695 struct sam3_chip *pChip;
2696
2697 pChip = get_current_sam3(CMD_CTX);
2698 if (!pChip) {
2699 return ERROR_OK;
2700 }
2701
2702
2703 switch (CMD_ARGC) {
2704 case 0:
2705 // show
2706 break;
2707 case 1:
2708 {
2709 // set
2710 uint32_t v;
2711 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], v);
2712 if (v > 200000) {
2713 // absurd slow clock of 200Khz?
2714 command_print(CMD_CTX,"Absurd/illegal slow clock freq: %d\n", (int)(v));
2715 return ERROR_COMMAND_SYNTAX_ERROR;
2716 }
2717 pChip->cfg.slow_freq = v;
2718 break;
2719 }
2720 default:
2721 // error
2722 command_print(CMD_CTX,"Too many parameters");
2723 return ERROR_COMMAND_SYNTAX_ERROR;
2724 break;
2725 }
2726 command_print(CMD_CTX, "Slowclk freq: %d.%03dkhz",
2727 (int)(pChip->cfg.slow_freq/ 1000),
2728 (int)(pChip->cfg.slow_freq% 1000));
2729 return ERROR_OK;
2730 }
2731
2732 static const struct command_registration at91sam3_exec_command_handlers[] = {
2733 {
2734 .name = "gpnvm",
2735 .handler = sam3_handle_gpnvm_command,
2736 .mode = COMMAND_EXEC,
2737 .usage = "[('clr'|'set'|'show') bitnum]",
2738 .help = "Without arguments, shows all bits in the gpnvm "
2739 "register. Otherwise, clears, sets, or shows one "
2740 "General Purpose Non-Volatile Memory (gpnvm) bit.",
2741 },
2742 {
2743 .name = "info",
2744 .handler = sam3_handle_info_command,
2745 .mode = COMMAND_EXEC,
2746 .help = "Print information about the current at91sam3 chip"
2747 "and its flash configuration.",
2748 },
2749 {
2750 .name = "slowclk",
2751 .handler = sam3_handle_slowclk_command,
2752 .mode = COMMAND_EXEC,
2753 .usage = "[clock_hz]",
2754 .help = "Display or set the slowclock frequency "
2755 "(default 32768 Hz).",
2756 },
2757 COMMAND_REGISTRATION_DONE
2758 };
2759 static const struct command_registration at91sam3_command_handlers[] = {
2760 {
2761 .name = "at91sam3",
2762 .mode = COMMAND_ANY,
2763 .help = "at91sam3 flash command group",
2764 .chain = at91sam3_exec_command_handlers,
2765 },
2766 COMMAND_REGISTRATION_DONE
2767 };
2768
2769 struct flash_driver at91sam3_flash = {
2770 .name = "at91sam3",
2771 .commands = at91sam3_command_handlers,
2772 .flash_bank_command = sam3_flash_bank_command,
2773 .erase = sam3_erase,
2774 .protect = sam3_protect,
2775 .write = sam3_write,
2776 .read = default_flash_read,
2777 .probe = sam3_probe,
2778 .auto_probe = sam3_auto_probe,
2779 .erase_check = sam3_erase_check,
2780 .protect_check = sam3_protect_check,
2781 .info = sam3_info,
2782 };