Added a few tweaks while playing with texi.
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (openocd)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (openocd)
27 @subtitle Edition @value{EDITION} for openocd version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (openocd) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About Openocd.
46 * Developers:: Openocd developers
47 * Building:: Building Openocd
48 * Running:: Running Openocd
49 * Configuration:: Openocd Configuration.
50 * Commands:: Openocd Commands
51 * Sample Scripts:: Sample Target Scripts
52 * GDB and Openocd:: Using GDB and Openocd
53 * Upgrading:: Deprecated/Removed Commands
54 * FAQ:: Frequently Asked Questions
55 * License:: GNU Free Documentation License
56 * Index:: Main index.
57 @end menu
58
59 @node About
60 @unnumbered About
61 @cindex about
62
63 The Open On-Chip Debugger (openocd) aims to provide debugging, in-system programming
64 and boundary-scan testing for embedded target devices. The targets are interfaced
65 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
66 connection types in the future.
67
68 Openocd currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
69 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
70 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
71 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
72
73 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
74 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
75 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
76
77 @node Developers
78 @chapter Developers
79 @cindex developers
80
81 Openocd has been created by Dominic Rath as part of a diploma thesis written at the
82 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
83 Others interested in improving the state of free and open debug and testing technology
84 are welcome to participate.
85
86 Other developers have contributed support for additional targets and flashes as well
87 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
88
89 @node Building
90 @chapter Building
91 @cindex building openocd
92
93 You can download the current SVN version with SVN client of your choice from the
94 following repositories:
95
96 (@uref{svn://svn.berlios.de/openocd/trunk})
97
98 or
99
100 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
101
102 Using the SVN command line client, you could use the following command to fetch the
103 latest version (make sure there is no (non-svn) directory called "openocd" in the
104 current directory):
105
106 @smallexample
107 svn checkout svn://svn.berlios.de/openocd/trunk openocd
108 @end smallexample
109
110 Building the OpenOCD requires a recent version of the GNU autotools.
111 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
112 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
113 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
114 paths, resulting in obscure dependency errors (This is an observation I've gathered
115 from the logs of one user - correct me if I'm wrong).
116
117 You further need the appropriate driver files, if you want to build support for
118 a FTDI FT2232 based interface:
119 @itemize @bullet
120 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
121 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
122 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
123 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
124 @end itemize
125
126 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
127 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
128
129 In general, the D2XX driver provides superior performance (several times as fast),
130 but has the draw-back of being binary-only - though that isn't as worse, as it isn't
131 a kernel module, only a user space library.
132
133 To build OpenOCD (on both Linux and Cygwin), use the following commands:
134 @smallexample
135 ./bootstrap
136 @end smallexample
137 Bootstrap generates the configure script, and prepares building on your system.
138 @smallexample
139 ./configure
140 @end smallexample
141 Configure generates the Makefiles used to build OpenOCD.
142 @smallexample
143 make
144 @end smallexample
145 Make builds the OpenOCD, and places the final executable in ./src/.
146
147 The configure script takes several options, specifying which JTAG interfaces
148 should be included:
149
150 @itemize @bullet
151 @item
152 @option{--enable-parport}
153 @item
154 @option{--enable-parport_ppdev}
155 @item
156 @option{--enable-parport_giveio}
157 @item
158 @option{--enable-amtjtagaccel}
159 @item
160 @option{--enable-ft2232_ftd2xx}
161 @footnote{Using the latest D2XX drivers from FTDI and following their installation
162 instructions, I had to use @option{--enable-ft2232_libftd2xx} for the OpenOCD to
163 build properly.}
164 @item
165 @option{--enable-ft2232_libftdi}
166 @item
167 @option{--with-ftd2xx=/path/to/d2xx/}
168 @item
169 @option{--enable-gw16012}
170 @item
171 @option{--enable-usbprog}
172 @item
173 @option{--enable-presto_libftdi}
174 @item
175 @option{--enable-presto_ftd2xx}
176 @end itemize
177
178 If you want to access the parallel port using the PPDEV interface you have to specify
179 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
180 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
181 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
182
183 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
184 absolute path containing no spaces.
185
186 Linux users should copy the various parts of the D2XX package to the appropriate
187 locations, i.e. /usr/include, /usr/lib.
188
189 @node Running
190 @chapter Running
191 @cindex running openocd
192 @cindex --configfile
193 @cindex --debug_level
194 @cindex --logfile
195 @cindex --search
196 The OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
197 Run with @option{--help} or @option{-h} to view the available command line arguments.
198
199 It reads its configuration by default from the file openocd.cfg located in the current
200 working directory. This may be overwritten with the @option{-f <configfile>} command line
201 switch. @option{-f} can be specified multiple times, in which case the config files
202 are executed in order.
203
204 Also it is possible to interleave commands w/config scripts using the @option{-c}.
205
206 To enable debug output (when reporting problems or working on OpenOCD itself), use
207 the @option{-d} command line switch. This sets the debug_level to "3", outputting
208 the most information, including debug messages. The default setting is "2", outputting
209 only informational messages, warnings and errors. You can also change this setting
210 from within a telnet or gdb session (@option{debug_level <n>}).
211
212 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
213
214 Search paths for config/script files can be added to openocd by using
215 the @option{-s <search>} switch. The current directory and the OpenOCD target library
216 is in the search path by default.
217
218 NB! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
219 with the target. In general, it is possible for the JTAG controller to be unresponsive until
220 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
221
222 @node Configuration
223 @chapter Configuration
224 @cindex configuration
225 The Open On-Chip Debugger (OpenOCD) runs as a daemon, and reads it current configuration
226 by default from the file openocd.cfg in the current directory. A different configuration
227 file can be specified with the @option{-f <conf.file>} given at the openocd command line.
228
229 The configuration file is used to specify on which ports the daemon listens for new
230 connections, the JTAG interface used to connect to the target, the layout of the JTAG
231 chain, the targets that should be debugged, and connected flashes.
232
233 @section Daemon configuration
234
235 @itemize @bullet
236 @item @b{init} This command terminates the configuration stage and enters the normal
237 command mode. This can be useful to add commands to the startup scripts and commands
238 such as resetting the target, programming flash, etc.
239 @cindex init
240 @item @b{telnet_port} <@var{number}>
241 @cindex telnet_port
242 Port on which to listen for incoming telnet connections
243 @item @b{gdb_port} <@var{number}>
244 @cindex gdb_port
245 First port on which to listen for incoming GDB connections. The GDB port for the
246 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
247 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
248 @cindex gdb_detach
249 Configures what openocd will do when gdb detaches from the daeman.
250 Default behaviour is <@var{resume}>
251 @item @b{gdb_memory_map} <@var{enable|disable}>
252 @cindex gdb_memory_map
253 Set to <@var{enable}> so that openocd will send the memory configuration to gdb when
254 requested. gdb will then know when to set hardware breakpoints, and program flash
255 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
256 for flash programming to work.
257 Default behaviour is <@var{disable}>
258 @item @b{gdb_flash_program} <@var{enable|disable}>
259 @cindex gdb_flash_program
260 Set to <@var{enable}> so that openocd will program the flash memory when a
261 vFlash packet is received.
262 Default behaviour is <@var{disable}>
263 @item @b{daemon_startup} <@var{mode}>
264 @cindex daemon_startup
265 @option{mode} can either @option{attach} or @option{reset}
266 Tells the OpenOCD whether it should reset the target when the daemon is launched, or
267 if it should just attach to the target.
268 @end itemize
269
270 @section JTAG interface configuration
271
272 @itemize @bullet
273 @item @b{interface} <@var{name}>
274 @cindex interface
275 Use the interface driver <@var{name}> to connect to the target. Currently supported
276 interfaces are
277 @itemize @minus
278 @item @b{parport}
279 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
280 @end itemize
281 @itemize @minus
282 @item @b{amt_jtagaccel}
283 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
284 mode parallel port
285 @end itemize
286 @itemize @minus
287 @item @b{ft2232}
288 FTDI FT2232 based devices using either the open-source libftdi or the binary only
289 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
290 platform. The libftdi uses libusb, and should be portable to all systems that provide
291 libusb.
292 @end itemize
293 @itemize @minus
294 @item @b{ep93xx}
295 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
296 @end itemize
297 @itemize @minus
298 @item @b{presto}
299 ASIX PRESTO USB JTAG programmer.
300 @end itemize
301 @itemize @minus
302 @item @b{usbprog}
303 usbprog is a freely programmable USB adapter.
304 @end itemize
305 @itemize @minus
306 @item @b{gw16012}
307 Gateworks GW16012 JTAG programmer.
308 @end itemize
309 @end itemize
310
311 @itemize @bullet
312 @item @b{jtag_speed} <@var{reset speed}> <@var{post reset speed}>
313 @cindex jtag_speed
314 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
315 speed. The actual effect of this option depends on the JTAG interface used. Reset
316 speed is used during reset and post reset speed after reset. post reset speed
317 is optional, in which case the reset speed is used.
318 @itemize @minus
319
320 @item wiggler: maximum speed / @var{number}
321 @item ft2232: 6MHz / (@var{number}+1)
322 @item amt jtagaccel: 8 / 2**@var{number}
323 @end itemize
324
325 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
326 especially true for synthesized cores (-S).
327
328 @item @b{jtag_khz} <@var{reset speed kHz}> <@var{post reset speed kHz}>
329 @cindex jtag_khz
330 Same as jtag_speed, except that the speed is specified in maximum kHz. If
331 the device can not support the rate asked for, or can not translate from
332 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
333 is not supported, then an error is reported.
334
335 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
336 @cindex reset_config
337 The configuration of the reset signals available on the JTAG interface AND the target.
338 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
339 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
340 @option{srst_only} or @option{trst_and_srst}.
341
342 [@var{combination}] is an optional value specifying broken reset signal implementations.
343 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
344 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
345 that the system is reset together with the test logic (only hypothetical, I haven't
346 seen hardware with such a bug, and can be worked around).
347 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
348 The default behaviour if no option given is @option{separate}.
349
350 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
351 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
352 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
353 (default) and @option{srst_push_pull} for the system reset. These values only affect
354 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
355
356 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
357 @cindex jtag_device
358 Describes the devices that form the JTAG daisy chain, with the first device being
359 the one closest to TDO. The parameters are the length of the instruction register
360 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
361 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
362 The IDCODE instruction will in future be used to query devices for their JTAG
363 identification code. This line is the same for all ARM7 and ARM9 devices.
364 Other devices, like CPLDs, require different parameters. An example configuration
365 line for a Xilinx XC9500 CPLD would look like this:
366 @smallexample
367 jtag_device 8 0x01 0x0e3 0xfe
368 @end smallexample
369 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
370 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
371 The IDCODE instruction is 0xfe.
372
373 @item @b{jtag_nsrst_delay} <@var{ms}>
374 @cindex jtag_nsrst_delay
375 How long (in miliseconds) the OpenOCD should wait after deasserting nSRST before
376 starting new JTAG operations.
377 @item @b{jtag_ntrst_delay} <@var{ms}>
378 @cindex jtag_ntrst_delay
379 How long (in miliseconds) the OpenOCD should wait after deasserting nTRST before
380 starting new JTAG operations.
381
382 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
383 or on-chip features) keep a reset line asserted for some time after the external reset
384 got deasserted.
385 @end itemize
386
387 @section parport options
388
389 @itemize @bullet
390 @item @b{parport_port} <@var{number}>
391 @cindex parport_port
392 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
393 the @file{/dev/parport} device
394
395 When using PPDEV to access the parallel port, use the number of the parallel port:
396 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
397 you may encounter a problem.
398 @item @b{parport_cable} <@var{name}>
399 @cindex parport_cable
400 The layout of the parallel port cable used to connect to the target.
401 Currently supported cables are
402 @itemize @minus
403 @item @b{wiggler}
404 @cindex wiggler
405 Original Wiggler layout, also supported by several clones, such
406 as the Olimex ARM-JTAG
407 @item @b{old_amt_wiggler}
408 @cindex old_amt_wiggler
409 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
410 version available from the website uses the original Wiggler layout ('@var{wiggler}')
411 @item @b{chameleon}
412 @cindex chameleon
413 Describes the connection of the Amontec Chameleon's CPLD when operated in
414 configuration mode. This is only used to program the Chameleon itself, not
415 a connected target.
416 @item @b{dlc5}
417 @cindex dlc5
418 Xilinx Parallel cable III.
419 @item @b{triton}
420 @cindex triton
421 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
422 This is also the layout used by the HollyGates design
423 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
424 @item @b{flashlink}
425 @cindex flashlink
426 ST Parallel cable.
427 @end itemize
428 @item @b{parport_write_on_exit} <@var{on|off}>
429 @cindex parport_write_on_exit
430 This will configure the parallel driver to write a known value to the parallel
431 interface on exiting openocd
432 @end itemize
433
434 @section amt_jtagaccel options
435 @itemize @bullet
436 @item @b{parport_port} <@var{number}>
437 @cindex parport_port
438 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
439 @file{/dev/parport} device
440 @end itemize
441 @section ft2232 options
442
443 @itemize @bullet
444 @item @b{ft2232_device_desc} <@var{description}>
445 @cindex ft2232_device_desc
446 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
447 default value is used. This setting is only valid if compiled with FTD2XX support.
448 @item @b{ft2232_layout} <@var{name}>
449 @cindex ft2232_layout
450 The layout of the FT2232 GPIO signals used to control output-enables and reset
451 signals. Valid layouts are
452 @itemize @minus
453 @item @b{usbjtag}
454 The "USBJTAG-1" layout described in the original OpenOCD diploma thesis
455 @item @b{jtagkey}
456 Amontec JTAGkey and JTAGkey-tiny
457 @item @b{signalyzer}
458 Signalyzer
459 @item @b{olimex-jtag}
460 Olimex ARM-USB-OCD
461 @item @b{m5960}
462 American Microsystems M5960
463 @item @b{evb_lm3s811}
464 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
465 SRST signals on external connector
466 @item @b{comstick}
467 Hitex STR9 comstick
468 @item @b{stm32stick}
469 Hitex STM32 Performance Stick
470 @item @b{flyswatter}
471 Tin Can Tools Flyswatter
472 @item @b{turtelizer2}
473 egnite Software turtelizer2
474 @item @b{oocdlink}
475 OOCDLink
476 @end itemize
477
478 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
479 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
480 default values are used. This command is not available on Windows.
481 @item @b{ft2232_latency} <@var{ms}>
482 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
483 ft2232_read() fails to return the expected number of bytes. This can be caused by
484 USB communication delays and has proved hard to reproduce and debug. Setting the
485 FT2232 latency timer to a larger value increases delays for short USB packages but it
486 also reduces the risk of timeouts before receiving the expected number of bytes.
487 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
488 @end itemize
489
490 @section ep93xx options
491 @cindex ep93xx options
492 Currently, there are no options available for the ep93xx interface.
493
494 @page
495 @section Target configuration
496
497 @itemize @bullet
498 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
499 <@var{variant}>
500 @cindex target
501 Defines a target that should be debugged. Currently supported types are:
502 @itemize @minus
503 @item @b{arm7tdmi}
504 @item @b{arm720t}
505 @item @b{arm9tdmi}
506 @item @b{arm920t}
507 @item @b{arm922t}
508 @item @b{arm926ejs}
509 @item @b{arm966e}
510 @item @b{cortex_m3}
511 @item @b{feroceon}
512 @item @b{xscale}
513 @end itemize
514
515 If you want to use a target board that is not on this list, see Adding a new
516 target board
517
518 Endianess may be @option{little} or @option{big}.
519
520 The reset_mode specifies what should happen to the target when a reset occurs:
521 @itemize @minus
522 @item @b{reset_halt}
523 @cindex reset_halt
524 Immediately request a target halt after reset. This allows targets to be debugged
525 from the very first instruction. This is only possible with targets and JTAG
526 interfaces that correctly implement the reset signals.
527 @item @b{reset_init}
528 @cindex reset_init
529 Similar to @option{reset_halt}, but executes the script file defined to handle the
530 'reset' event for the target. Like @option{reset_halt} this only works with
531 correct reset implementations.
532 @item @b{reset_run}
533 @cindex reset_run
534 Simply let the target run after a reset.
535 @item @b{run_and_halt}
536 @cindex run_and_halt
537 Let the target run for some time (default: 1s), and then request halt.
538 @item @b{run_and_init}
539 @cindex run_and_init
540 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
541 to run for some time, then halted, and the @option{reset} event script is executed.
542 @end itemize
543
544 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
545 completely independent (like the LPC2000 series), or where the JTAG interface is
546 unavailable for some time during startup (like the STR7 series), you can't use
547 @option{reset_halt} or @option{reset_init}.
548
549 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
550 @cindex target_script
551 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
552
553 TODO: describe exact semantic of events
554 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
555 @cindex run_and_halt_time
556 The amount of time the debugger should wait after releasing reset before it asserts
557 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
558 reset modes.
559 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
560 <@var{backup}|@var{nobackup}>
561 @cindex working_area
562 Specifies a working area for the debugger to use. This may be used to speed-up
563 downloads to target memory and flash operations, or to perform otherwise unavailable
564 operations (some coprocessor operations on ARM7/9 systems, for example). The last
565 parameter decides whether the memory should be preserved <@var{backup}>. If possible, use
566 a working_area that doesn't need to be backed up, as that slows down operation.
567 @end itemize
568
569 @subsection arm7tdmi options
570 @cindex arm7tdmi options
571 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
572 The arm7tdmi target definition requires at least one additional argument, specifying
573 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
574 The optional [@var{variant}] parameter has been removed in recent versions.
575 The correct feature set is determined at runtime.
576
577 @subsection arm720t options
578 @cindex arm720t options
579 ARM720t options are similar to ARM7TDMI options.
580
581 @subsection arm9tdmi options
582 @cindex arm9tdmi options
583 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
584 @option{arm920t}, @option{arm922t} and @option{arm940t}.
585 This enables the hardware single-stepping support found on these cores.
586
587 @subsection arm920t options
588 @cindex arm920t options
589 ARM920t options are similar to ARM9TDMI options.
590
591 @subsection arm966e options
592 @cindex arm966e options
593 ARM966e options are similar to ARM9TDMI options.
594
595 @subsection xscale options
596 @cindex xscale options
597 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
598 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
599
600 @section Flash configuration
601 @cindex Flash configuration
602
603 @itemize @bullet
604 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
605 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
606 @cindex flash bank
607 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
608 and <@var{bus_width}> bytes using the selected flash <driver>.
609
610 @item @b{flash auto_erase} <@option{on}|@option{off}>
611 @cindex flash auto_erase
612 auto erase flash banks prior to writing. Currently only works when using
613 @option{flash write_image} command. Default is @option{off}.
614 @end itemize
615
616 @subsection lpc2000 options
617 @cindex lpc2000 options
618
619 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
620 <@var{clock}> [@var{calc_checksum}]
621 LPC flashes don't require the chip and bus width to be specified. Additional
622 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
623 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
624 of the target this flash belongs to (first is 0), the frequency at which the core
625 is currently running (in kHz - must be an integral number), and the optional keyword
626 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
627 vector table.
628
629 @subsection cfi options
630 @cindex cfi options
631
632 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
633 <@var{target#}>
634 CFI flashes require the number of the target they're connected to as an additional
635 argument. The CFI driver makes use of a working area (specified for the target)
636 to significantly speed up operation.
637
638 @var{chip_width} and @var{bus_width} are specified in bytes.
639
640 @subsection at91sam7 options
641 @cindex at91sam7 options
642
643 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
644 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
645 reading the chip-id and type.
646
647 @subsection str7 options
648 @cindex str7 options
649
650 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
651 variant can be either STR71x, STR73x or STR75x.
652
653 @subsection str9 options
654 @cindex str9 options
655
656 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
657 The str9 needs the flash controller to be configured prior to Flash programming, eg.
658 @smallexample
659 str9x flash_config 0 4 2 0 0x80000
660 @end smallexample
661 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
662
663 @subsection str9 options (str9xpec driver)
664
665 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
666 Before using the flash commands the turbo mode will need enabling using str9xpec
667 @option{enable_turbo} <@var{num>.}
668
669 Only use this driver for locking/unlocking the device or configuring the option bytes.
670 Use the standard str9 driver for programming.
671
672 @subsection stellaris (LM3Sxxx) options
673 @cindex stellaris (LM3Sxxx) options
674
675 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
676 stellaris flash plugin only require the @var{target#}.
677
678 @subsection stm32x options
679 @cindex stm32x options
680
681 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
682 stm32x flash plugin only require the @var{target#}.
683
684 @node Target library
685 @chapter Target library
686 @cindex Target library
687
688 OpenOCD comes with a target configuration script library. These scripts can be
689 used as-is or serve as a starting point.
690
691 The target library is published together with the openocd executable and
692 the path to the target library is in the OpenOCD script search path.
693 Similarly there are example scripts for configuring the JTAG interface.
694
695 The command line below uses the example parport configuration scripts
696 that ships with OpenOCD, then configures the str710.cfg target and
697 finally issues the init and reset command. The communication speed
698 is set to 10kHz for reset and 8MHz for post reset.
699
700
701 @smallexample
702 openocd -f interface/parport.cfg -c "jtag_khz 10 8000" -f target/str710.cfg -c "init" -c "reset"
703 @end smallexample
704
705
706 To list the target scripts available:
707
708 @smallexample
709 $ ls /usr/local/lib/openocd/target
710
711 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
712 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
713 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
714 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
715 @end smallexample
716
717
718 @node Commands
719 @chapter Commands
720 @cindex commands
721
722 The Open On-Chip Debugger (OpenOCD) allows user interaction through a telnet interface
723 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
724 is available from both the telnet interface and a GDB session. To issue commands to the
725 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
726 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
727 GDB session.
728
729 @section Daemon
730
731 @itemize @bullet
732 @item @b{sleep} <@var{msec}>
733 @cindex sleep
734 Wait for n milliseconds before resuming. Useful in connection with script files
735 (@var{script} command and @var{target_script} configuration).
736
737 @item @b{shutdown}
738 @cindex shutdown
739 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
740
741 @item @b{debug_level} [@var{n}]
742 @cindex debug_level
743 Display or adjust debug level to n<0-3>
744
745 @item @b{log_output} <@var{file}>
746 @cindex log_output
747 Redirect logging to <file> (default: stderr)
748
749 @item @b{script} <@var{file}>
750 @cindex script
751 Execute commands from <file>
752
753 @end itemize
754
755 @subsection Target state handling
756 @itemize @bullet
757 @item @b{poll} [@option{on}|@option{off}]
758 @cindex poll
759 Poll the target for its current state. If the target is in debug mode, architecture
760 specific information about the current state are printed. An optional parameter
761 allows continuous polling to be enabled and disabled.
762
763 @item @b{halt} [@option{ms}]
764 @cindex halt
765 Send a halt request to the target and waits for it to halt for [@option{ms}].
766 Default [@option{ms}] is 5 seconds if no arg given.
767 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
768 will stop openocd from waiting.
769
770 @item @b{wait_halt} [@option{ms}]
771 @cindex wait_halt
772 Wait for the target to enter debug mode. Optional [@option{ms}] is
773 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
774 arg given.
775
776 @item @b{resume} [@var{address}]
777 @cindex resume
778 Resume the target at its current code position, or at an optional address.
779 Openocd will wait 5 seconds for the target to resume.
780
781 @item @b{step} [@var{address}]
782 @cindex step
783 Single-step the target at its current code position, or at an optional address.
784
785 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
786 |@option{run_and_init}]
787 @cindex reset
788 Do a hard-reset. The optional parameter specifies what should happen after the reset.
789 This optional parameter overwrites the setting specified in the configuration file,
790 making the new behaviour the default for the @option{reset} command.
791 @itemize @minus
792 @item @b{run}
793 @cindex reset run
794 Let the target run.
795 @item @b{halt}
796 @cindex reset halt
797 Immediately halt the target (works only with certain configurations).
798 @item @b{init}
799 @cindex reset init
800 Immediately halt the target, and execute the reset script (works only with certain
801 configurations)
802 @item @b{run_and_halt}
803 @cindex reset run_and_halt
804 Let the target run for a certain amount of time, then request a halt.
805 @item @b{run_and_init}
806 @cindex reset run_and_init
807 Let the target run for a certain amount of time, then request a halt. Execute the
808 reset script once the target entered debug mode.
809 @end itemize
810 @end itemize
811
812 @subsection Memory access commands
813 These commands allow accesses of a specific size to the memory system:
814 @itemize @bullet
815 @item @b{mdw} <@var{addr}> [@var{count}]
816 @cindex mdw
817 display memory words
818 @item @b{mdh} <@var{addr}> [@var{count}]
819 @cindex mdh
820 display memory half-words
821 @item @b{mdb} <@var{addr}> [@var{count}]
822 @cindex mdb
823 display memory bytes
824 @item @b{mww} <@var{addr}> <@var{value}>
825 @cindex mww
826 write memory word
827 @item @b{mwh} <@var{addr}> <@var{value}>
828 @cindex mwh
829 write memory half-word
830 @item @b{mwb} <@var{addr}> <@var{value}>
831 @cindex mwb
832 write memory byte
833
834 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
835 @cindex load_image
836 Load image <@var{file}> to target memory at <@var{address}>
837 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
838 @cindex dump_image
839 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
840 (binary) <@var{file}>.
841 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
842 @cindex verify_image
843 Verify <@var{file}> to target memory starting at <@var{address}>.
844 This will first attempt using a crc checksum, if this fails it will try a binary compare.
845 @end itemize
846
847 @subsection Flash commands
848 @cindex Flash commands
849 @itemize @bullet
850 @item @b{flash banks}
851 @cindex flash banks
852 List configured flash banks
853 @item @b{flash info} <@var{num}>
854 @cindex flash info
855 Print info about flash bank <@option{num}>
856 @item @b{flash probe} <@var{num}>
857 @cindex flash probe
858 Identify the flash, or validate the parameters of the configured flash. Operation
859 depends on the flash type.
860 @item @b{flash erase_check} <@var{num}>
861 @cindex flash erase_check
862 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
863 updates the erase state information displayed by @option{flash info}. That means you have
864 to issue an @option{erase_check} command after erasing or programming the device to get
865 updated information.
866 @item @b{flash protect_check} <@var{num}>
867 @cindex flash protect_check
868 Check protection state of sectors in flash bank <num>.
869 @option{flash erase_sector} using the same syntax.
870 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
871 @cindex flash erase_sector
872 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
873 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
874 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
875 the CFI driver).
876 @item @b{flash erase_address} <@var{address}> <@var{length}>
877 @cindex flash erase_address
878 Erase sectors starting at <@var{address}> for <@var{length}> number of bytes
879 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
880 @cindex flash write_bank
881 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
882 <@option{offset}> bytes from the beginning of the bank.
883 @item @b{flash write_image} <@var{file}> [@var{offset}] [@var{type}]
884 @cindex flash write_image
885 Write the image <@var{file}> to the current target's flash bank(s). A relocation
886 [@var{offset}] can be specified and the file [@var{type}] can be specified
887 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
888 (ELF file) or @option{s19} (Motorola s19).
889 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
890 @cindex flash protect
891 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
892 <@var{last}> of @option{flash bank} <@var{num}>.
893 @item @b{flash auto_erase} <@var{on}|@var{off}>
894 @cindex flash auto_erase
895 Enable (@option{on}) to erase flash banks prior to writing using the flash @option{write_image} command
896 only. Default is (@option{off}), flash banks have to be erased using @option{flash erase} command.
897 @end itemize
898
899 @page
900 @section Target Specific Commands
901 @cindex Target Specific Commands
902
903 @subsection AT91SAM7 specific commands
904 @cindex AT91SAM7 specific commands
905 The flash configuration is deduced from the chip identification register. The flash
906 controller handles erases automatically on a page (128/265 byte) basis so erase is
907 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
908 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
909 that can be erased separatly.Only an EraseAll command is supported by the controller
910 for each flash plane and this is called with
911 @itemize @bullet
912 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
913 bulk erase flash planes first_plane to last_plane.
914 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
915 @cindex at91sam7 gpnvm
916 set or clear a gpnvm bit for the processor
917 @end itemize
918
919 @subsection STR9 specific commands
920 @cindex STR9 specific commands
921 These are flash specific commands when using the str9xpec driver.
922 @itemize @bullet
923 @item @b{str9xpec enable_turbo} <@var{num}>
924 @cindex str9xpec enable_turbo
925 enable turbo mode, simply this will remove the str9 from the chain and talk
926 directly to the embedded flash controller.
927 @item @b{str9xpec disable_turbo} <@var{num}>
928 @cindex str9xpec disable_turbo
929 restore the str9 into jtag chain.
930 @item @b{str9xpec lock} <@var{num}>
931 @cindex str9xpec lock
932 lock str9 device. The str9 will only respond to an unlock command that will
933 erase the device.
934 @item @b{str9xpec unlock} <@var{num}>
935 @cindex str9xpec unlock
936 unlock str9 device.
937 @item @b{str9xpec options_read} <@var{num}>
938 @cindex str9xpec options_read
939 read str9 option bytes.
940 @item @b{str9xpec options_write} <@var{num}>
941 @cindex str9xpec options_write
942 write str9 option bytes.
943 @end itemize
944
945 @subsection STR9 configuration
946 @cindex STR9 configuration
947 @itemize @bullet
948 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
949 <@var{BBADR}> <@var{NBBADR}>
950 @cindex str9x flash_config
951 Configure str9 flash controller.
952 @smallexample
953 eg. str9x flash_config 0 4 2 0 0x80000
954 This will setup
955 BBSR - Boot Bank Size register
956 NBBSR - Non Boot Bank Size register
957 BBADR - Boot Bank Start Address register
958 NBBADR - Boot Bank Start Address register
959 @end smallexample
960 @end itemize
961
962 @subsection STR9 option byte configuration
963 @cindex STR9 option byte configuration
964 @itemize @bullet
965 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
966 @cindex str9xpec options_cmap
967 configure str9 boot bank.
968 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
969 @cindex str9xpec options_lvdthd
970 configure str9 lvd threshold.
971 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
972 @cindex str9xpec options_lvdsel
973 configure str9 lvd source.
974 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
975 @cindex str9xpec options_lvdwarn
976 configure str9 lvd reset warning source.
977 @end itemize
978
979 @subsection STM32x specific commands
980 @cindex STM32x specific commands
981
982 These are flash specific commands when using the stm32x driver.
983 @itemize @bullet
984 @item @b{stm32x lock} <@var{num}>
985 @cindex stm32x lock
986 lock stm32 device.
987 @item @b{stm32x unlock} <@var{num}>
988 @cindex stm32x unlock
989 unlock stm32 device.
990 @item @b{stm32x options_read} <@var{num}>
991 @cindex stm32x options_read
992 read stm32 option bytes.
993 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
994 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
995 @cindex stm32x options_write
996 write stm32 option bytes.
997 @item @b{stm32x mass_erase} <@var{num}>
998 @cindex stm32x mass_erase
999 mass erase flash memory.
1000 @end itemize
1001
1002 @page
1003 @section Architecture Specific Commands
1004 @cindex Architecture Specific Commands
1005
1006 @subsection ARMV4/5 specific commands
1007 @cindex ARMV4/5 specific commands
1008
1009 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1010 or Intel XScale (XScale isn't supported yet).
1011 @itemize @bullet
1012 @item @b{armv4_5 reg}
1013 @cindex armv4_5 reg
1014 Display a list of all banked core registers, fetching the current value from every
1015 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1016 register value.
1017 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1018 @cindex armv4_5 core_mode
1019 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1020 The target is resumed in the currently set @option{core_mode}.
1021 @end itemize
1022
1023 @subsection ARM7/9 specific commands
1024 @cindex ARM7/9 specific commands
1025
1026 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1027 ARM920t or ARM926EJ-S.
1028 @itemize @bullet
1029 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1030 @cindex arm7_9 sw_bkpts
1031 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1032 one of the watchpoint registers to implement software breakpoints. Disabling
1033 SW Bkpts frees that register again.
1034 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1035 @cindex arm7_9 force_hw_bkpts
1036 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1037 breakpoints are turned into hardware breakpoints.
1038 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1039 @cindex arm7_9 dbgrq
1040 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1041 safe for all but ARM7TDMI--S cores (like Philips LPC).
1042 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1043 @cindex arm7_9 fast_memory_access
1044 Allow the OpenOCD to read and write memory without checking completion of
1045 the operation. This provides a huge speed increase, especially with USB JTAG
1046 cables (FT2232), but might be unsafe if used with targets running at a very low
1047 speed, like the 32kHz startup clock of an AT91RM9200.
1048 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1049 @cindex arm7_9 dcc_downloads
1050 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1051 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1052 unsafe, especially with targets running at a very low speed. This command was introduced
1053 with OpenOCD rev. 60.
1054 @end itemize
1055
1056 @subsection ARM720T specific commands
1057 @cindex ARM720T specific commands
1058
1059 @itemize @bullet
1060 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1061 @cindex arm720t cp15
1062 display/modify cp15 register <@option{num}> [@option{value}].
1063 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1064 @cindex arm720t md<bhw>_phys
1065 Display memory at physical address addr.
1066 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1067 @cindex arm720t mw<bhw>_phys
1068 Write memory at physical address addr.
1069 @item @b{arm720t virt2phys} <@var{va}>
1070 @cindex arm720t virt2phys
1071 Translate a virtual address to a physical address.
1072 @end itemize
1073
1074 @subsection ARM9TDMI specific commands
1075 @cindex ARM9TDMI specific commands
1076
1077 @itemize @bullet
1078 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1079 @cindex arm9tdmi vector_catch
1080 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1081 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1082 @option{irq} @option{fiq}.
1083
1084 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1085 @end itemize
1086
1087 @subsection ARM966E specific commands
1088 @cindex ARM966E specific commands
1089
1090 @itemize @bullet
1091 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1092 @cindex arm966e cp15
1093 display/modify cp15 register <@option{num}> [@option{value}].
1094 @end itemize
1095
1096 @subsection ARM920T specific commands
1097 @cindex ARM920T specific commands
1098
1099 @itemize @bullet
1100 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1101 @cindex arm920t cp15
1102 display/modify cp15 register <@option{num}> [@option{value}].
1103 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1104 @cindex arm920t cp15i
1105 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1106 @item @b{arm920t cache_info}
1107 @cindex arm920t cache_info
1108 Print information about the caches found. This allows you to see if your target
1109 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1110 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1111 @cindex arm920t md<bhw>_phys
1112 Display memory at physical address addr.
1113 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1114 @cindex arm920t mw<bhw>_phys
1115 Write memory at physical address addr.
1116 @item @b{arm920t read_cache} <@var{filename}>
1117 @cindex arm920t read_cache
1118 Dump the content of ICache and DCache to a file.
1119 @item @b{arm920t read_mmu} <@var{filename}>
1120 @cindex arm920t read_mmu
1121 Dump the content of the ITLB and DTLB to a file.
1122 @item @b{arm920t virt2phys} <@var{va}>
1123 @cindex arm920t virt2phys
1124 Translate a virtual address to a physical address.
1125 @end itemize
1126
1127 @subsection ARM926EJS specific commands
1128 @cindex ARM926EJS specific commands
1129
1130 @itemize @bullet
1131 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1132 @cindex arm926ejs cp15
1133 display/modify cp15 register <@option{num}> [@option{value}].
1134 @item @b{arm926ejs cache_info}
1135 @cindex arm926ejs cache_info
1136 Print information about the caches found.
1137 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1138 @cindex arm926ejs md<bhw>_phys
1139 Display memory at physical address addr.
1140 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1141 @cindex arm926ejs mw<bhw>_phys
1142 Write memory at physical address addr.
1143 @item @b{arm926ejs virt2phys} <@var{va}>
1144 @cindex arm926ejs virt2phys
1145 Translate a virtual address to a physical address.
1146 @end itemize
1147
1148 @page
1149 @section Debug commands
1150 @cindex Debug commands
1151 The following commands give direct access to the core, and are most likely
1152 only useful while debugging the OpenOCD.
1153 @itemize @bullet
1154 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1155 @cindex arm7_9 write_xpsr
1156 Immediately write either the current program status register (CPSR) or the saved
1157 program status register (SPSR), without changing the register cache (as displayed
1158 by the @option{reg} and @option{armv4_5 reg} commands).
1159 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1160 <@var{0=cpsr},@var{1=spsr}>
1161 @cindex arm7_9 write_xpsr_im8
1162 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1163 operation (similar to @option{write_xpsr}).
1164 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1165 @cindex arm7_9 write_core_reg
1166 Write a core register, without changing the register cache (as displayed by the
1167 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1168 encoding of the [M4:M0] bits of the PSR.
1169 @end itemize
1170
1171 @page
1172 @section JTAG commands
1173 @cindex JTAG commands
1174 @itemize @bullet
1175 @item @b{scan_chain}
1176 @cindex scan_chain
1177 Print current scan chain configuration.
1178 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1179 @cindex jtag_reset
1180 Toggle reset lines.
1181 @item @b{endstate} <@var{tap_state}>
1182 @cindex endstate
1183 Finish JTAG operations in <@var{tap_state}>.
1184 @item @b{runtest} <@var{num_cycles}>
1185 @cindex runtest
1186 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1187 @item @b{statemove} [@var{tap_state}]
1188 @cindex statemove
1189 Move to current endstate or [@var{tap_state}]
1190 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1191 @cindex irscan
1192 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1193 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1194 @cindex drscan
1195 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1196 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1197 @cindex verify_ircapture
1198 Verify value captured during Capture-IR. Default is enabled.
1199 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1200 @cindex var
1201 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1202 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1203 @cindex field
1204 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1205 @end itemize
1206
1207 @page
1208 @section Target Requests
1209 @cindex Target Requests
1210 Openocd can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1211 See libdcc in the contrib dir for more details.
1212 @itemize @bullet
1213 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1214 @cindex target_request debugmsgs
1215 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1216 @end itemize
1217
1218 @node Sample Scripts
1219 @chapter Sample Scripts
1220 @cindex scripts
1221
1222 This page will collect some script examples for different CPUs.
1223
1224 The configuration script can be divided in the following section:
1225 @itemize @bullet
1226 @item daemon configuration
1227 @item interface
1228 @item jtag scan chain
1229 @item target configuration
1230 @item flash configuration
1231 @end itemize
1232
1233 Detailed information about each section can be found at OpenOCD configuration
1234
1235 @section OMAP5912 Flash Debug
1236 @cindex OMAP5912 Flash Debug
1237 The following two scripts were used with a wiggler PP and and a TI OMAP5912
1238 dual core processor - (@uref{http://www.ti.com}), on a OMAP5912 OSK board
1239 - (@uref{http://www.spectrumdigital.com}).
1240 @subsection Openocd config
1241 @smallexample
1242 #daemon configuration
1243 telnet_port 4444
1244 gdb_port 3333
1245
1246 #interface
1247 interface parport
1248 parport_port 0x378
1249 parport_cable wiggler
1250 jtag_speed 0
1251
1252 #use combined on interfaces or targets that can't set TRST/SRST separately
1253 reset_config trst_and_srst
1254
1255 #jtag scan chain
1256 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1257 jtag_device 38 0x0 0x0 0x0
1258 jtag_device 4 0x1 0x0 0xe
1259 jtag_device 8 0x0 0x0 0x0
1260
1261 #target configuration
1262 daemon_startup reset
1263
1264 #target <type> <endianness> <reset mode> <chainpos> <variant>
1265 target arm926ejs little run_and_init 1 arm926ejs
1266 target_script 0 reset omap5912_osk.init
1267 run_and_halt_time 0 30
1268
1269 # omap5912 lcd frame buffer as working area
1270 working_area 0 0x20000000 0x3e800 nobackup
1271
1272 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1273 flash bank cfi 0x00000000 0x1000000 2 2 0
1274 @end smallexample
1275
1276 @subsection Openocd init
1277 @smallexample
1278 #
1279 # halt target
1280 #
1281 poll
1282 sleep 1
1283 halt
1284 wait_halt
1285 #
1286 # disable wdt
1287 #
1288 mww 0xfffec808 0x000000f5
1289 mww 0xfffec808 0x000000a0
1290
1291 mww 0xfffeb048 0x0000aaaa
1292 sleep 500
1293 mww 0xfffeb048 0x00005555
1294 sleep 500
1295 #
1296 # detect flash
1297 #
1298 flash probe 0
1299
1300 @end smallexample
1301
1302 @section STR71x Script
1303 @cindex STR71x Script
1304 The following script was used with an Amontec JTAGkey and a STR710 / STR711 CPU:
1305 @smallexample
1306 #daemon configuration
1307 telnet_port 4444
1308 gdb_port 3333
1309
1310 #interface
1311 interface ft2232
1312 ft2232_device_desc "Amontec JTAGkey A"
1313 ft2232_layout jtagkey
1314 ft2232_vid_pid 0x0403 0xcff8
1315 jtag_speed 0
1316
1317 #use combined on interfaces or targets that can't set TRST/SRST separately
1318 reset_config trst_and_srst srst_pulls_trst
1319
1320 #jtag scan chain
1321 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1322 jtag_device 4 0x1 0xf 0xe
1323
1324 #target configuration
1325 daemon_startup reset
1326
1327 #target <type> <startup mode>
1328 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1329 target arm7tdmi little run_and_halt 0 arm7tdmi
1330 run_and_halt_time 0 30
1331
1332 working_area 0 0x2000C000 0x4000 nobackup
1333
1334 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1335 flash bank str7x 0x40000000 0x00040000 0 0 0 STR71x
1336 @end smallexample
1337
1338 @section STR750 Script
1339 @cindex STR750 Script
1340 The following script was used with an Amontec JTAGkey and a STR750 CPU:
1341 @smallexample
1342 #daemon configuration
1343 telnet_port 4444
1344 gdb_port 3333
1345
1346 #interface
1347 interface ft2232
1348 ft2232_device_desc "Amontec JTAGkey A"
1349 ft2232_layout jtagkey
1350 ft2232_vid_pid 0x0403 0xcff8
1351 jtag_speed 19
1352
1353 #use combined on interfaces or targets that can't set TRST/SRST separately
1354 #reset_config trst_and_srst srst_pulls_trst
1355 reset_config trst_and_srst srst_pulls_trst
1356
1357 #jtag scan chain
1358 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1359 jtag_device 4 0x1 0xf 0xe
1360
1361 #jtag nTRST and nSRST delay
1362 jtag_nsrst_delay 500
1363 jtag_ntrst_delay 500
1364
1365 #target configuration
1366 daemon_startup reset
1367
1368 #target <type> <startup mode>
1369 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1370 target arm7tdmi little run_and_halt 0 arm7tdmi
1371 run_and_halt_time 0 30
1372
1373 working_area 0 0x40000000 0x4000 nobackup
1374
1375 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1376 flash bank str7x 0x20000000 0x000040000 0 0 0 STR75x
1377 @end smallexample
1378
1379 @section STR912 Script
1380 @cindex STR912 Script
1381 The following script was used with an Amontec JTAGkey and a STR912 CPU:
1382 @smallexample
1383 #daemon configuration
1384 telnet_port 4444
1385 gdb_port 3333
1386
1387 #interface
1388 interface ft2232
1389 ft2232_device_desc "Amontec JTAGkey A"
1390 ft2232_layout jtagkey
1391 jtag_speed 1
1392
1393 #use combined on interfaces or targets that can't set TRST/SRST separately
1394 reset_config trst_and_srst
1395
1396 #jtag scan chain
1397 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1398 jtag_device 8 0x1 0x1 0xfe
1399 jtag_device 4 0x1 0xf 0xe
1400 jtag_device 5 0x1 0x1 0x1e
1401
1402 #target configuration
1403 daemon_startup reset
1404
1405 #target <type> <startup mode>
1406 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1407 target arm966e little reset_halt 1 arm966e
1408 run_and_halt_time 0 30
1409
1410 working_area 0 0x50000000 16384 nobackup
1411
1412 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1413 flash bank str9x 0x00000000 0x00080000 0 0 0
1414 @end smallexample
1415
1416 @section STR912 comstick
1417 @cindex STR912 comstick Script
1418 The following script was used with a Hitex STR9 Comstick:
1419 @smallexample
1420 #daemon configuration
1421 telnet_port 4444
1422 gdb_port 3333
1423
1424 #interface
1425 interface ft2232
1426 ft2232_device_desc "STR9-comStick A"
1427 ft2232_layout comstick
1428 jtag_speed 1
1429
1430 jtag_nsrst_delay 100
1431 jtag_ntrst_delay 100
1432
1433 #use combined on interfaces or targets that can't set TRST/SRST separately
1434 reset_config trst_and_srst
1435
1436 #jtag scan chain
1437 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1438 jtag_device 8 0x1 0x1 0xfe
1439 jtag_device 4 0x1 0xf 0xe
1440 jtag_device 5 0x1 0x1 0x1e
1441
1442 #target configuration
1443 daemon_startup reset
1444
1445 #target <type> <startup mode>
1446 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1447 target arm966e little reset_halt 1 arm966e
1448 run_and_halt_time 0 30
1449
1450 working_area 0 0x50000000 16384 nobackup
1451
1452 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1453 flash bank str9x 0x00000000 0x00080000 0 0 0
1454 @end smallexample
1455
1456 @section STM32x Script
1457 @cindex STM32x Script
1458 The following script was used with an Amontec JTAGkey and a STM32x CPU:
1459 @smallexample
1460 #daemon configuration
1461 telnet_port 4444
1462 gdb_port 3333
1463
1464 #interface
1465 interface ft2232
1466 ft2232_device_desc "Amontec JTAGkey A"
1467 ft2232_layout jtagkey
1468 jtag_speed 10
1469
1470 jtag_nsrst_delay 100
1471 jtag_ntrst_delay 100
1472
1473 #use combined on interfaces or targets that can't set TRST/SRST separately
1474 reset_config trst_and_srst
1475
1476 #jtag scan chain
1477 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1478 jtag_device 4 0x1 0xf 0xe
1479 jtag_device 5 0x1 0x1 0x1e
1480
1481 #target configuration
1482 daemon_startup reset
1483
1484 #target <type> <startup mode>
1485 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1486 target cortex_m3 little run_and_halt 0
1487 run_and_halt_time 0 30
1488
1489 working_area 0 0x20000000 16384 nobackup
1490
1491 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1492 flash bank stm32x 0x08000000 0x00020000 0 0 0
1493 @end smallexample
1494
1495 @section STM32x Performance Stick
1496 @cindex STM32x Performance Stick Script
1497 The following script was used with the Hitex STM32 Performance Stick
1498 @smallexample
1499 #daemon configuration
1500 telnet_port 4444
1501 gdb_port 3333
1502
1503 #interface
1504 interface ft2232
1505 ft2232_device_desc "STM32-PerformanceStick A"
1506 ft2232_layout stm32stick
1507 jtag_speed 10
1508
1509 jtag_nsrst_delay 100
1510 jtag_ntrst_delay 100
1511
1512 #use combined on interfaces or targets that can't set TRST/SRST separately
1513 reset_config trst_and_srst
1514
1515 #jtag scan chain
1516 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1517 jtag_device 4 0x1 0xf 0xe
1518 jtag_device 5 0x1 0x1 0x1e
1519 jtag_device 4 0x1 0xf 0xe
1520
1521 #target configuration
1522 daemon_startup reset
1523
1524 #target <type> <startup mode>
1525 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1526 target cortex_m3 little run_and_halt 0
1527 run_and_halt_time 0 30
1528
1529 working_area 0 0x20000000 16384 nobackup
1530
1531 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1532 flash bank stm32x 0x08000000 0x00020000 0 0 0
1533 @end smallexample
1534
1535 @section LPC2129 Script
1536 @cindex LPC2129 Script
1537 The following script was used with an wiggler PP and a LPC-2129 CPU:
1538 @smallexample
1539 #daemon configuration
1540 telnet_port 4444
1541 gdb_port 3333
1542
1543 #interface
1544 interface parport
1545 parport_port 0x378
1546 parport_cable wiggler
1547 jtag_speed 0
1548
1549 #use combined on interfaces or targets that can't set TRST/SRST separately
1550 reset_config trst_and_srst srst_pulls_trst
1551
1552 #jtag scan chain
1553 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1554 jtag_device 4 0x1 0xf 0xe
1555
1556 #target configuration
1557 daemon_startup reset
1558
1559 #target <type> <startup mode>
1560 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1561 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1562 run_and_halt_time 0 30
1563
1564 working_area 0 0x40000000 0x4000 nobackup
1565
1566 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1567 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1568 @end smallexample
1569
1570 @section LPC2148 Script
1571 @cindex LPC2148 Script
1572 The following script was used with an Amontec JTAGkey and a LPC2148 CPU:
1573 @smallexample
1574 #daemon configuration
1575 telnet_port 4444
1576 gdb_port 3333
1577
1578 #interface
1579 interface ft2232
1580 ft2232_device_desc "Amontec JTAGkey A"
1581 ft2232_layout jtagkey
1582 ft2232_vid_pid 0x0403 0xcff8
1583 jtag_speed 3
1584
1585 #use combined on interfaces or targets that can't set TRST/SRST separately
1586 reset_config trst_and_srst srst_pulls_trst
1587
1588 #jtag scan chain
1589 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1590 jtag_device 4 0x1 0xf 0xe
1591
1592 #target configuration
1593 daemon_startup reset
1594
1595 #target <type> <startup mode>
1596 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1597 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1598 run_and_halt_time 0 30
1599
1600 working_area 0 0x40000000 0x8000 nobackup
1601
1602 #flash configuration
1603 flash bank lpc2000 0x0 0x7d000 0 0 0 lpc2000_v1 14765 calc_checksum
1604 @end smallexample
1605
1606 @section LPC2294 Script
1607 @cindex LPC2294 Script
1608 The following script was used with an Amontec JTAGkey and a LPC2294 CPU:
1609 @smallexample
1610 #daemon configuration
1611 telnet_port 4444
1612 gdb_port 3333
1613
1614 #interface
1615 interface ft2232
1616 ft2232_device_desc "Amontec JTAGkey A"
1617 ft2232_layout jtagkey
1618 ft2232_vid_pid 0x0403 0xcff8
1619 jtag_speed 3
1620
1621 #use combined on interfaces or targets that can't set TRST/SRST separately
1622 reset_config trst_and_srst srst_pulls_trst
1623
1624 #jtag scan chain
1625 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1626 jtag_device 4 0x1 0xf 0xe
1627
1628 #target configuration
1629 daemon_startup reset
1630
1631 #target <type> <startup mode>
1632 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1633 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1634 run_and_halt_time 0 30
1635
1636 working_area 0 0x40000000 0x4000 nobackup
1637
1638 #flash configuration
1639 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1640 @end smallexample
1641
1642 @section AT91R40008 Script
1643 @cindex AT91R40008 Script
1644 The following script was used with an Amontec JTAGkey and a AT91R40008 CPU:
1645 @smallexample
1646 #daemon configuration
1647 telnet_port 4444
1648 gdb_port 3333
1649
1650 #interface
1651 interface ft2232
1652 ft2232_device_desc "Amontec JTAGkey A"
1653 ft2232_layout jtagkey
1654 ft2232_vid_pid 0x0403 0xcff8
1655 jtag_speed 0
1656 jtag_nsrst_delay 200
1657 jtag_ntrst_delay 200
1658
1659 #use combined on interfaces or targets that can't set TRST/SRST separately
1660 reset_config srst_only srst_pulls_trst
1661
1662 #jtag scan chain
1663 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1664 jtag_device 4 0x1 0xf 0xe
1665
1666 #target configuration
1667 daemon_startup reset
1668
1669 #target <type> <startup mode>
1670 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1671 target arm7tdmi little run_and_halt 0 arm7tdmi
1672 run_and_halt_time 0 30
1673 @end smallexample
1674
1675 @section AT91SAM7s Script
1676 @cindex AT91SAM7s Script
1677 The following script was used with an Olimex ARM-JTAG-OCD and a AT91SAM7S64 CPU:
1678 @smallexample
1679 #daemon configuration
1680 telnet_port 4444
1681 gdb_port 3333
1682
1683 #interface
1684 interface ft2232
1685 ft2232_device_desc "Olimex OpenOCD JTAG A"
1686 ft2232_layout olimex-jtag
1687 ft2232_vid_pid 0x15BA 0x0003
1688 jtag_speed 0
1689 jtag_nsrst_delay 200
1690 jtag_ntrst_delay 200
1691
1692 #use combined on interfaces or targets that can't set TRST/SRST separately
1693 reset_config srst_only srst_pulls_trst
1694
1695 #jtag scan chain
1696 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1697 jtag_device 4 0x1 0xf 0xe
1698
1699 #target configuration
1700 daemon_startup reset
1701
1702 #target <type> <startup mode>
1703 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1704 target arm7tdmi little run_and_halt 0 arm7tdmi
1705 run_and_halt_time 0 30
1706
1707 # flash-options AT91
1708 working_area 0 0x00200000 0x4000 nobackup
1709 flash bank at91sam7 0 0 0 0 0
1710
1711 # Information:
1712 # erase command (telnet-interface) for complete flash:
1713 # flash erase <num> 0 numlockbits-1 (can be seen from output of flash info 0)
1714 # SAM7S64 with 16 lockbits and bank 0: flash erase 0 0 15
1715 # set/clear NVM-Bits:
1716 # at91sam7 gpnvm <num> <bit> <set|clear>
1717 # disable locking from SAM-BA:
1718 # flash protect 0 0 1 off
1719 @end smallexample
1720
1721 @section XSCALE IXP42x Script
1722 @cindex XSCALE IXP42x Script
1723 The following script was used with an Amontec JTAGkey-Tiny and a xscale ixp42x CPU:
1724 @smallexample
1725 #daemon configuration
1726 telnet_port 4444
1727 gdb_port 3333
1728
1729 #interface
1730 interface ft2232
1731 ft2232_device_desc "Amontec JTAGkey A"
1732 ft2232_layout jtagkey
1733 ft2232_vid_pid 0x0403 0xcff8
1734 jtag_speed 0
1735 jtag_nsrst_delay 200
1736 jtag_ntrst_delay 200
1737
1738 #use combined on interfaces or targets that can't set TRST/SRST separately
1739 reset_config srst_only srst_pulls_trst
1740
1741 #jtag scan chain
1742 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1743 jtag_device 7 0x1 0x7f 0x7e
1744
1745 #target configuration
1746 daemon_startup reset
1747
1748 #target <type> <startup mode>
1749 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1750 target xscale big run_and_halt 0 IXP42x
1751 run_and_halt_time 0 30
1752 @end smallexample
1753
1754 @section Cirrus Logic EP9301 Script
1755 @cindex Cirrus Logic EP9301 Script
1756 The following script was used with FT2232 based JTAG interfaces and a
1757 Cirrus Logic EP9301 processor on an Olimex CS-E9301 board.
1758 @smallexample
1759 #daemon configuration
1760 telnet_port 4444
1761 gdb_port 3333
1762
1763 #interface
1764 interface ft2232
1765
1766 #Olimex ARM-USB-OCD
1767 #ft2232_device_desc "Olimex OpenOCD JTAG"
1768 #ft2232_layout olimex-jtag
1769 #ft2232_vid_pid 0x15ba 0x0003
1770
1771 #Amontec JTAGkey (and JTAGkey-Tiny)
1772 #Serial is only necessary if more than one JTAGkey is connected
1773 ft2232_device_desc "Amontec JTAGkey A"
1774 #ft2232_serial AMTJKV31
1775 #ft2232_serial T1P3S2W8
1776 ft2232_layout jtagkey
1777 ft2232_vid_pid 0x0403 0xcff8
1778
1779 #wiggler/parallel port interface
1780 #interface parport
1781 #parport_port 0x378
1782 #parport_cable wiggler
1783 #jtag_speed 0
1784 jtag_speed 1
1785 reset_config trst_and_srst
1786
1787 #jtag scan chain
1788 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1789 jtag_device 4 0x1 0xf 0xe
1790
1791 jtag_nsrst_delay 100
1792 jtag_ntrst_delay 100
1793
1794 #target configuration
1795 daemon_startup attach
1796
1797 #target <type> <endianess> <reset mode>
1798 target arm920t little reset_halt 0
1799 working_area 0 0x80014000 0x1000 backup
1800
1801 #flash configuration
1802 #flash bank <driver> <base> <size> <chip_width> <bus_width> [driver_options ...]
1803 flash bank cfi 0x60000000 0x1000000 2 2 0
1804 @end smallexample
1805
1806 @section Hilscher netX 100 / 500 Script
1807 @cindex Hilscher netX 100 / 500 Script
1808 The following script was used with an Amontec JTAGkey and a Hilscher
1809 netX 500 CPU:
1810 @smallexample
1811 #daemon configuration
1812 telnet_port 4444
1813 gdb_port 3333
1814
1815 #interface
1816 interface ft2232
1817 ft2232_device_desc "Amontec JTAGkey A"
1818 ft2232_layout jtagkey
1819 ft2232_vid_pid 0x0403 0xcff8
1820 jtag_speed 5
1821
1822 #use combined on interfaces or targets that can't set TRST/SRST separately
1823 reset_config trst_and_srst
1824
1825 #jtag scan chain
1826 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1827 jtag_device 4 0x1 0xf 0xe
1828
1829 jtag_nsrst_delay 100
1830 jtag_ntrst_delay 100
1831
1832 #target configuration
1833 daemon_startup reset
1834
1835 #target <type> <endianness> <startup mode> <chainpos> <variant>
1836 target arm926ejs little run_and_halt 0 arm926ejs
1837 run_and_halt_time 0 500
1838 @end smallexample
1839
1840 @section Marvell/Intel PXA270 Script
1841 @cindex Marvell/Intel PXA270 Script
1842 @smallexample
1843 # config for Intel PXA270
1844 # not, as of 2007-06-22, openocd only works with the
1845 # libftd2xx library from ftdi. libftdi does not work.
1846
1847 telnet_port 3333
1848 gdb_port 4444
1849
1850 interface ft2232
1851 ft2232_layout olimex-jtag
1852 ft2232_vid_pid 0x15BA 0x0003
1853 ft2232_device_desc "Olimex OpenOCD JTAG"
1854 jtag_speed 0
1855 # set jtag_nsrst_delay to the delay introduced by your reset circuit
1856 # the rest of the needed delays are built into the openocd program
1857 jtag_nsrst_delay 260
1858 # set the jtag_ntrst_delay to the delay introduced by a reset circuit
1859 # the rest of the needed delays are built into the openocd program
1860 jtag_ntrst_delay 0
1861
1862 #use combined on interfaces or targets that can't set TRST/SRST separately
1863 reset_config trst_and_srst separate
1864
1865 #jtag scan chain
1866 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1867 jtag_device 7 0x1 0x7f 0x7e
1868
1869 #target configuration
1870 daemon_startup reset
1871
1872 target xscale little reset_halt 0 pxa27x
1873
1874 # maps to PXA internal RAM. If you are using a PXA255
1875 # you must initialize SDRAM or leave this option off
1876 working_area 0 0x5c000000 0x10000 nobackup
1877
1878 run_and_halt_time 0 30
1879
1880 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1881 # works for P30 flash
1882 flash bank cfi 0x00000000 0x1000000 2 4 0
1883 @end smallexample
1884
1885 @node GDB and Openocd
1886 @chapter GDB and Openocd
1887 @cindex GDB and Openocd
1888 Openocd complies with the remote gdbserver protocol, and as such can be used
1889 to debug remote targets.
1890
1891 @section Connecting to gdb
1892 @cindex Connecting to gdb
1893 A connection is typically started as follows:
1894 @smallexample
1895 target remote localhost:3333
1896 @end smallexample
1897 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1898
1899 To see a list of available openocd commands type @option{monitor help} on the
1900 gdb commandline.
1901
1902 Openocd supports the gdb @option{qSupported} packet, this enables information
1903 to be sent by the gdb server (openocd) to gdb. Typical information includes
1904 packet size and device memory map.
1905
1906 Previous versions of openocd required the following gdb options to increase
1907 the packet size and speed up gdb communication.
1908 @smallexample
1909 set remote memory-write-packet-size 1024
1910 set remote memory-write-packet-size fixed
1911 set remote memory-read-packet-size 1024
1912 set remote memory-read-packet-size fixed
1913 @end smallexample
1914 This is now handled in the @option{qSupported} PacketSize.
1915
1916 @section Programming using gdb
1917 @cindex Programming using gdb
1918
1919 By default the target memory map is not sent to gdb, this can be enabled by
1920 the following openocd config option:
1921 @smallexample
1922 gdb_memory_map enable
1923 @end smallexample
1924 For this to function correctly a valid flash config must also be configured
1925 in openocd. For speed also configure a valid working area.
1926
1927 Informing gdb of the memory map of the target will enable gdb to protect any
1928 flash area of the target and use hardware breakpoints by default. This means
1929 that the openocd option @option{arm7_9 force_hw_bkpts} is not required when
1930 using a memory map.
1931
1932 To view the configured memory map in gdb, use the gdb command @option{info mem}
1933 All other unasigned addresses within gdb are treated as RAM.
1934
1935 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1936 this can be changed to the old behaviour by using the following gdb command.
1937 @smallexample
1938 set mem inaccessible-by-default off
1939 @end smallexample
1940
1941 If @option{gdb_flash_program enable} is also used, gdb will be able to
1942 program any flash memory using the vFlash interface.
1943
1944 gdb will look at the target memory map when a load command is given, if any
1945 areas to be programmed lie within the target flash area the vFlash packets
1946 will be used.
1947
1948 Incase the target needs configuring before gdb programming, a script can be executed.
1949 @smallexample
1950 target_script 0 gdb_program_config config.script
1951 @end smallexample
1952
1953 To verify any flash programming the gdb command @option{compare-sections}
1954 can be used.
1955
1956 @node Upgrading
1957 @chapter Deprecated/Removed Commands
1958 @cindex Deprecated/Removed Commands
1959 Certain openocd commands have been deprecated/removed during the various revisions.
1960
1961 @itemize @bullet
1962 @item @b{load_binary}
1963 @cindex load_binary
1964 use @option{load_image} command with same args
1965 @item @b{dump_binary}
1966 @cindex dump_binary
1967 use @option{dump_image} command with same args
1968 @item @b{flash erase}
1969 @cindex flash erase
1970 use @option{flash erase_sector} command with same args
1971 @item @b{flash write}
1972 @cindex flash write
1973 use @option{flash write_bank} command with same args
1974 @item @b{flash write_binary}
1975 @cindex flash write_binary
1976 use @option{flash write_bank} command with same args
1977 @item @b{arm7_9 fast_writes}
1978 @cindex arm7_9 fast_writes
1979 use @option{arm7_9 fast_memory_access} command with same args
1980 @end itemize
1981
1982 @node FAQ
1983 @chapter FAQ
1984 @cindex faq
1985 @enumerate
1986 @item OpenOCD complains about a missing cygwin1.dll.
1987
1988 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1989 claims to come with all the necessary dlls. When using Cygwin, try launching
1990 the OpenOCD from the Cygwin shell.
1991
1992 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1993 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1994 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1995
1996 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1997 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1998 software breakpoints consume one of the two available hardware breakpoints,
1999 and are therefore disabled by default. If your code is running from RAM, you
2000 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
2001 your code resides in Flash, you can't use software breakpoints, but you can force
2002 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
2003
2004 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
2005 and works sometimes fine.
2006
2007 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
2008 clock at the time you're programming the flash. If you've specified the crystal's
2009 frequency, make sure the PLL is disabled, if you've specified the full core speed
2010 (e.g. 60MHz), make sure the PLL is enabled.
2011
2012 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
2013 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
2014 out while waiting for end of scan, rtck was disabled".
2015
2016 Make sure your PC's parallel port operates in EPP mode. You might have to try several
2017 settings in your PC BIOS (ECP, EPP, and different versions of those).
2018
2019 @item When debugging with the OpenOCD and GDB (plain GDB, Insight, or Eclipse),
2020 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
2021 memory read caused data abort".
2022
2023 The errors are non-fatal, and are the result of GDB trying to trace stack frames
2024 beyond the last valid frame. It might be possible to prevent this by setting up
2025 a proper "initial" stack frame, if you happen to know what exactly has to
2026 be done, feel free to add this here.
2027
2028 @item I get the following message in the OpenOCD console (or log file):
2029 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
2030
2031 This warning doesn't indicate any serious problem, as long as you don't want to
2032 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
2033 trst_and_srst srst_pulls_trst} to tell the OpenOCD that either your board,
2034 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
2035 independently. With this setup, it's not possible to halt the core right out of
2036 reset, everything else should work fine.
2037
2038 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
2039 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
2040 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
2041 quit with an error message. Is there a stability issue with OpenOCD?
2042
2043 No, this is not a stability issue concerning OpenOCD. Most users have solved
2044 this issue by simply using a self-powered USB hub, which they connect their
2045 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
2046 supply stable enough for the Amontec JTAGkey to be operated.
2047
2048 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
2049 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
2050 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
2051 What does that mean and what might be the reason for this?
2052
2053 First of all, the reason might be the USB power supply. Try using a self-powered
2054 hub instead of a direct connection to your computer. Secondly, the error code 4
2055 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
2056 chip ran into some sort of error - this points us to a USB problem.
2057
2058 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
2059 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
2060 What does that mean and what might be the reason for this?
2061
2062 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
2063 has closed the connection to OpenOCD. This might be a GDB issue.
2064
2065 @item In the configuration file in the section where flash device configurations
2066 are described, there is a parameter for specifying the clock frequency for
2067 LPC2000 internal flash devices (e.g.
2068 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
2069 which must be specified in kilohertz. However, I do have a quartz crystal of a
2070 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
2071 Is it possible to specify real numbers for the clock frequency?
2072
2073 No. The clock frequency specified here must be given as an integral number.
2074 However, this clock frequency is used by the In-Application-Programming (IAP)
2075 routines of the LPC2000 family only, which seems to be very tolerant concerning
2076 the given clock frequency, so a slight difference between the specified clock
2077 frequency and the actual clock frequency will not cause any trouble.
2078
2079 @item Do I have to keep a specific order for the commands in the configuration file?
2080
2081 Well, yes and no. Commands can be given in arbitrary order, yet the devices
2082 listed for the JTAG scan chain must be given in the right order (jtag_device),
2083 with the device closest to the TDO-Pin being listed first. In general,
2084 whenever objects of the same type exist which require an index number, then
2085 these objects must be given in the right order (jtag_devices, targets and flash
2086 banks - a target references a jtag_device and a flash bank references a target).
2087
2088 @item Sometimes my debugging session terminates with an error. When I look into the
2089 log file, I can see these error messages: Error: arm7_9_common.c:561
2090 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
2091
2092 TODO.
2093
2094 @end enumerate
2095
2096 @include fdl.texi
2097
2098 @node Index
2099 @unnumbered Index
2100
2101 @printindex cp
2102
2103 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)