- fix target_examine declaration
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (OpenOCD)
27 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About OpenOCD.
46 * Developers:: OpenOCD developers
47 * Building:: Building OpenOCD
48 * Running:: Running OpenOCD
49 * Configuration:: OpenOCD Configuration.
50 * Target library:: Target library
51 * Commands:: OpenOCD Commands
52 * Sample Scripts:: Sample Target Scripts
53 * GDB and OpenOCD:: Using GDB and OpenOCD
54 * TCL and OpenOCD:: Using TCL and OpenOCD
55 * TCL scripting API:: Tcl scripting API
56 * Upgrading:: Deprecated/Removed Commands
57 * FAQ:: Frequently Asked Questions
58 * License:: GNU Free Documentation License
59 * Index:: Main index.
60 @end menu
61
62 @node About
63 @unnumbered About
64 @cindex about
65
66 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
67 and boundary-scan testing for embedded target devices. The targets are interfaced
68 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
69 connection types in the future.
70
71 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
72 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
73 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
74 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
75
76 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
77 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
78 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
79
80 @node Developers
81 @chapter Developers
82 @cindex developers
83
84 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
85 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
86 Others interested in improving the state of free and open debug and testing technology
87 are welcome to participate.
88
89 Other developers have contributed support for additional targets and flashes as well
90 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
91
92 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
93
94 @node Building
95 @chapter Building
96 @cindex building OpenOCD
97
98 You can download the current SVN version with SVN client of your choice from the
99 following repositories:
100
101 (@uref{svn://svn.berlios.de/openocd/trunk})
102
103 or
104
105 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
106
107 Using the SVN command line client, you can use the following command to fetch the
108 latest version (make sure there is no (non-svn) directory called "openocd" in the
109 current directory):
110
111 @smallexample
112 svn checkout svn://svn.berlios.de/openocd/trunk openocd
113 @end smallexample
114
115 Building OpenOCD requires a recent version of the GNU autotools.
116 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
117 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
118 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
119 paths, resulting in obscure dependency errors (This is an observation I've gathered
120 from the logs of one user - correct me if I'm wrong).
121
122 You further need the appropriate driver files, if you want to build support for
123 a FTDI FT2232 based interface:
124 @itemize @bullet
125 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
126 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
127 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
128 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
129 @end itemize
130
131 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
132 see contrib/libftdi for more details.
133
134 In general, the D2XX driver provides superior performance (several times as fast),
135 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
136 a kernel module, only a user space library.
137
138 To build OpenOCD (on both Linux and Cygwin), use the following commands:
139 @smallexample
140 ./bootstrap
141 @end smallexample
142 Bootstrap generates the configure script, and prepares building on your system.
143 @smallexample
144 ./configure
145 @end smallexample
146 Configure generates the Makefiles used to build OpenOCD.
147 @smallexample
148 make
149 @end smallexample
150 Make builds OpenOCD, and places the final executable in ./src/.
151
152 The configure script takes several options, specifying which JTAG interfaces
153 should be included:
154
155 @itemize @bullet
156 @item
157 @option{--enable-parport}
158 @item
159 @option{--enable-parport_ppdev}
160 @item
161 @option{--enable-parport_giveio}
162 @item
163 @option{--enable-amtjtagaccel}
164 @item
165 @option{--enable-ft2232_ftd2xx}
166 @footnote{Using the latest D2XX drivers from FTDI and following their installation
167 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
168 build properly.}
169 @item
170 @option{--enable-ft2232_libftdi}
171 @item
172 @option{--with-ftd2xx=/path/to/d2xx/}
173 @item
174 @option{--enable-gw16012}
175 @item
176 @option{--enable-usbprog}
177 @item
178 @option{--enable-presto_libftdi}
179 @item
180 @option{--enable-presto_ftd2xx}
181 @item
182 @option{--enable-jlink}
183 @end itemize
184
185 If you want to access the parallel port using the PPDEV interface you have to specify
186 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
187 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
188 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
189
190 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
191 absolute path containing no spaces.
192
193 Linux users should copy the various parts of the D2XX package to the appropriate
194 locations, i.e. /usr/include, /usr/lib.
195
196 Miscellaneous configure options
197
198 @itemize @bullet
199 @item
200 @option{--enable-gccwarnings} - enable extra gcc warnings during build
201 @end itemize
202
203 @node Running
204 @chapter Running
205 @cindex running OpenOCD
206 @cindex --configfile
207 @cindex --debug_level
208 @cindex --logfile
209 @cindex --search
210 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
211 Run with @option{--help} or @option{-h} to view the available command line switches.
212
213 It reads its configuration by default from the file openocd.cfg located in the current
214 working directory. This may be overwritten with the @option{-f <configfile>} command line
215 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
216 are executed in order.
217
218 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
219
220 To enable debug output (when reporting problems or working on OpenOCD itself), use
221 the @option{-d} command line switch. This sets the debug_level to "3", outputting
222 the most information, including debug messages. The default setting is "2", outputting
223 only informational messages, warnings and errors. You can also change this setting
224 from within a telnet or gdb session (@option{debug_level <n>}).
225
226 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
227
228 Search paths for config/script files can be added to OpenOCD by using
229 the @option{-s <search>} switch. The current directory and the OpenOCD target library
230 is in the search path by default.
231
232 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
233 with the target. In general, it is possible for the JTAG controller to be unresponsive until
234 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
235
236 @node Configuration
237 @chapter Configuration
238 @cindex configuration
239 OpenOCD runs as a daemon, and reads it current configuration
240 by default from the file openocd.cfg in the current directory. A different configuration
241 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
242
243 The configuration file is used to specify on which ports the daemon listens for new
244 connections, the JTAG interface used to connect to the target, the layout of the JTAG
245 chain, the targets that should be debugged, and connected flashes.
246
247 @section Daemon configuration
248
249 @itemize @bullet
250 @item @b{init} This command terminates the configuration stage and enters the normal
251 command mode. This can be useful to add commands to the startup scripts and commands
252 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
253 add "init" and "reset" at the end of the config script or at the end of the
254 OpenOCD command line using the @option{-c} command line switch.
255 @cindex init
256 @item @b{telnet_port} <@var{number}>
257 @cindex telnet_port
258 Port on which to listen for incoming telnet connections
259 @item @b{gdb_port} <@var{number}>
260 @cindex gdb_port
261 First port on which to listen for incoming GDB connections. The GDB port for the
262 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
263 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
264 @cindex gdb_detach
265 Configures what OpenOCD will do when gdb detaches from the daeman.
266 Default behaviour is <@var{resume}>
267 @item @b{gdb_memory_map} <@var{enable|disable}>
268 @cindex gdb_memory_map
269 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
270 requested. gdb will then know when to set hardware breakpoints, and program flash
271 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
272 for flash programming to work.
273 Default behaviour is <@var{enable}>
274 @item @b{gdb_flash_program} <@var{enable|disable}>
275 @cindex gdb_flash_program
276 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
277 vFlash packet is received.
278 Default behaviour is <@var{enable}>
279 at item @b{tcl_port} <@var{number}>
280 at cindex tcl_port
281 Port on which to listen for incoming TCL syntax. This port is intended as
282 a simplified RPC connection that can be used by clients to issue commands
283 and get the output from the TCL engine.
284 @end itemize
285
286 @section JTAG interface configuration
287
288 @itemize @bullet
289 @item @b{interface} <@var{name}>
290 @cindex interface
291 Use the interface driver <@var{name}> to connect to the target. Currently supported
292 interfaces are
293 @itemize @minus
294 @item @b{parport}
295 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
296 @end itemize
297 @itemize @minus
298 @item @b{amt_jtagaccel}
299 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
300 mode parallel port
301 @end itemize
302 @itemize @minus
303 @item @b{ft2232}
304 FTDI FT2232 based devices using either the open-source libftdi or the binary only
305 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
306 platform. The libftdi uses libusb, and should be portable to all systems that provide
307 libusb.
308 @end itemize
309 @itemize @minus
310 @item @b{ep93xx}
311 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
312 @end itemize
313 @itemize @minus
314 @item @b{presto}
315 ASIX PRESTO USB JTAG programmer.
316 @end itemize
317 @itemize @minus
318 @item @b{usbprog}
319 usbprog is a freely programmable USB adapter.
320 @end itemize
321 @itemize @minus
322 @item @b{gw16012}
323 Gateworks GW16012 JTAG programmer.
324 @end itemize
325 @itemize @minus
326 @item @b{jlink}
327 Segger jlink usb adapter
328 @end itemize
329 @end itemize
330
331 @itemize @bullet
332 @item @b{jtag_speed} <@var{reset speed}>
333 @cindex jtag_speed
334 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
335 speed. The actual effect of this option depends on the JTAG interface used.
336
337 The speed used during reset can be adjusted using setting jtag_speed during
338 pre_reset and post_reset events.
339 @itemize @minus
340
341 @item wiggler: maximum speed / @var{number}
342 @item ft2232: 6MHz / (@var{number}+1)
343 @item amt jtagaccel: 8 / 2**@var{number}
344 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
345 @end itemize
346
347 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
348 especially true for synthesized cores (-S).
349
350 @item @b{jtag_khz} <@var{reset speed kHz}>
351 @cindex jtag_khz
352 Same as jtag_speed, except that the speed is specified in maximum kHz. If
353 the device can not support the rate asked for, or can not translate from
354 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
355 is not supported, then an error is reported.
356
357 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
358 @cindex reset_config
359 The configuration of the reset signals available on the JTAG interface AND the target.
360 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
361 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
362 @option{srst_only} or @option{trst_and_srst}.
363
364 [@var{combination}] is an optional value specifying broken reset signal implementations.
365 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
366 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
367 that the system is reset together with the test logic (only hypothetical, I haven't
368 seen hardware with such a bug, and can be worked around).
369 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
370 The default behaviour if no option given is @option{separate}.
371
372 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
373 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
374 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
375 (default) and @option{srst_push_pull} for the system reset. These values only affect
376 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
377
378 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
379 @cindex jtag_device
380 Describes the devices that form the JTAG daisy chain, with the first device being
381 the one closest to TDO. The parameters are the length of the instruction register
382 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
383 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
384 The IDCODE instruction will in future be used to query devices for their JTAG
385 identification code. This line is the same for all ARM7 and ARM9 devices.
386 Other devices, like CPLDs, require different parameters. An example configuration
387 line for a Xilinx XC9500 CPLD would look like this:
388 @smallexample
389 jtag_device 8 0x01 0x0e3 0xfe
390 @end smallexample
391 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
392 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
393 The IDCODE instruction is 0xfe.
394
395 @item @b{jtag_nsrst_delay} <@var{ms}>
396 @cindex jtag_nsrst_delay
397 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
398 starting new JTAG operations.
399 @item @b{jtag_ntrst_delay} <@var{ms}>
400 @cindex jtag_ntrst_delay
401 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
402 starting new JTAG operations.
403
404 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
405 or on-chip features) keep a reset line asserted for some time after the external reset
406 got deasserted.
407 @end itemize
408
409 @section parport options
410
411 @itemize @bullet
412 @item @b{parport_port} <@var{number}>
413 @cindex parport_port
414 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
415 the @file{/dev/parport} device
416
417 When using PPDEV to access the parallel port, use the number of the parallel port:
418 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
419 you may encounter a problem.
420 @item @b{parport_cable} <@var{name}>
421 @cindex parport_cable
422 The layout of the parallel port cable used to connect to the target.
423 Currently supported cables are
424 @itemize @minus
425 @item @b{wiggler}
426 @cindex wiggler
427 The original Wiggler layout, also supported by several clones, such
428 as the Olimex ARM-JTAG
429 @item @b{old_amt_wiggler}
430 @cindex old_amt_wiggler
431 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
432 version available from the website uses the original Wiggler layout ('@var{wiggler}')
433 @item @b{chameleon}
434 @cindex chameleon
435 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
436 @item @b{dlc5}
437 @cindex dlc5
438 The Xilinx Parallel cable III.
439 @item @b{triton}
440 @cindex triton
441 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
442 This is also the layout used by the HollyGates design
443 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
444 @item @b{flashlink}
445 @cindex flashlink
446 The ST Parallel cable.
447 @end itemize
448 @item @b{parport_write_on_exit} <@var{on|off}>
449 @cindex parport_write_on_exit
450 This will configure the parallel driver to write a known value to the parallel
451 interface on exiting OpenOCD
452 @end itemize
453
454 @section amt_jtagaccel options
455 @itemize @bullet
456 @item @b{parport_port} <@var{number}>
457 @cindex parport_port
458 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
459 @file{/dev/parport} device
460 @end itemize
461 @section ft2232 options
462
463 @itemize @bullet
464 @item @b{ft2232_device_desc} <@var{description}>
465 @cindex ft2232_device_desc
466 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
467 default value is used. This setting is only valid if compiled with FTD2XX support.
468 @item @b{ft2232_layout} <@var{name}>
469 @cindex ft2232_layout
470 The layout of the FT2232 GPIO signals used to control output-enables and reset
471 signals. Valid layouts are
472 @itemize @minus
473 @item @b{usbjtag}
474 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
475 @item @b{jtagkey}
476 Amontec JTAGkey and JTAGkey-tiny
477 @item @b{signalyzer}
478 Signalyzer
479 @item @b{olimex-jtag}
480 Olimex ARM-USB-OCD
481 @item @b{m5960}
482 American Microsystems M5960
483 @item @b{evb_lm3s811}
484 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
485 SRST signals on external connector
486 @item @b{comstick}
487 Hitex STR9 comstick
488 @item @b{stm32stick}
489 Hitex STM32 Performance Stick
490 @item @b{flyswatter}
491 Tin Can Tools Flyswatter
492 @item @b{turtelizer2}
493 egnite Software turtelizer2
494 @item @b{oocdlink}
495 OOCDLink
496 @end itemize
497
498 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
499 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
500 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
501 @smallexample
502 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
503 @end smallexample
504 @item @b{ft2232_latency} <@var{ms}>
505 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
506 ft2232_read() fails to return the expected number of bytes. This can be caused by
507 USB communication delays and has proved hard to reproduce and debug. Setting the
508 FT2232 latency timer to a larger value increases delays for short USB packages but it
509 also reduces the risk of timeouts before receiving the expected number of bytes.
510 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
511 @end itemize
512
513 @section ep93xx options
514 @cindex ep93xx options
515 Currently, there are no options available for the ep93xx interface.
516
517 @page
518 @section Target configuration
519
520 @itemize @bullet
521 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
522 <@var{variant}>
523 @cindex target
524 Defines a target that should be debugged. Currently supported types are:
525 @itemize @minus
526 @item @b{arm7tdmi}
527 @item @b{arm720t}
528 @item @b{arm9tdmi}
529 @item @b{arm920t}
530 @item @b{arm922t}
531 @item @b{arm926ejs}
532 @item @b{arm966e}
533 @item @b{cortex_m3}
534 @item @b{feroceon}
535 @item @b{xscale}
536 @end itemize
537
538 If you want to use a target board that is not on this list, see Adding a new
539 target board
540
541 Endianess may be @option{little} or @option{big}.
542
543 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
544 @cindex target_script
545 Event is one of the following:
546 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
547 @option{pre_resume} or @option{gdb_program_config}.
548 @option{post_reset} and @option{reset} will produce the same results.
549
550 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
551 <@var{backup}|@var{nobackup}>
552 @cindex working_area
553 Specifies a working area for the debugger to use. This may be used to speed-up
554 downloads to target memory and flash operations, or to perform otherwise unavailable
555 operations (some coprocessor operations on ARM7/9 systems, for example). The last
556 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
557 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
558 @end itemize
559
560 @subsection arm7tdmi options
561 @cindex arm7tdmi options
562 target arm7tdmi <@var{endianess}> <@var{jtag#}>
563 The arm7tdmi target definition requires at least one additional argument, specifying
564 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
565 The optional [@var{variant}] parameter has been removed in recent versions.
566 The correct feature set is determined at runtime.
567
568 @subsection arm720t options
569 @cindex arm720t options
570 ARM720t options are similar to ARM7TDMI options.
571
572 @subsection arm9tdmi options
573 @cindex arm9tdmi options
574 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
575 @option{arm920t}, @option{arm922t} and @option{arm940t}.
576 This enables the hardware single-stepping support found on these cores.
577
578 @subsection arm920t options
579 @cindex arm920t options
580 ARM920t options are similar to ARM9TDMI options.
581
582 @subsection arm966e options
583 @cindex arm966e options
584 ARM966e options are similar to ARM9TDMI options.
585
586 @subsection cortex_m3 options
587 @cindex cortex_m3 options
588 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
589 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
590 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
591 be detected and the normal reset behaviour used.
592
593 @subsection xscale options
594 @cindex xscale options
595 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
596 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
597
598 @section Flash configuration
599 @cindex Flash configuration
600
601 @itemize @bullet
602 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
603 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
604 @cindex flash bank
605 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
606 and <@var{bus_width}> bytes using the selected flash <driver>.
607 @end itemize
608
609 @subsection lpc2000 options
610 @cindex lpc2000 options
611
612 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
613 <@var{clock}> [@var{calc_checksum}]
614 LPC flashes don't require the chip and bus width to be specified. Additional
615 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
616 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
617 of the target this flash belongs to (first is 0), the frequency at which the core
618 is currently running (in kHz - must be an integral number), and the optional keyword
619 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
620 vector table.
621
622 @subsection cfi options
623 @cindex cfi options
624
625 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
626 <@var{target#}>
627 CFI flashes require the number of the target they're connected to as an additional
628 argument. The CFI driver makes use of a working area (specified for the target)
629 to significantly speed up operation.
630
631 @var{chip_width} and @var{bus_width} are specified in bytes.
632
633 @subsection at91sam7 options
634 @cindex at91sam7 options
635
636 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
637 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
638 reading the chip-id and type.
639
640 @subsection str7 options
641 @cindex str7 options
642
643 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
644 variant can be either STR71x, STR73x or STR75x.
645
646 @subsection str9 options
647 @cindex str9 options
648
649 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
650 The str9 needs the flash controller to be configured prior to Flash programming, eg.
651 @smallexample
652 str9x flash_config 0 4 2 0 0x80000
653 @end smallexample
654 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
655
656 @subsection str9 options (str9xpec driver)
657
658 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
659 Before using the flash commands the turbo mode will need enabling using str9xpec
660 @option{enable_turbo} <@var{num>.}
661
662 Only use this driver for locking/unlocking the device or configuring the option bytes.
663 Use the standard str9 driver for programming.
664
665 @subsection stellaris (LM3Sxxx) options
666 @cindex stellaris (LM3Sxxx) options
667
668 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
669 stellaris flash plugin only require the @var{target#}.
670
671 @subsection stm32x options
672 @cindex stm32x options
673
674 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
675 stm32x flash plugin only require the @var{target#}.
676
677 @node Target library
678 @chapter Target library
679 @cindex Target library
680
681 OpenOCD comes with a target configuration script library. These scripts can be
682 used as-is or serve as a starting point.
683
684 The target library is published together with the openocd executable and
685 the path to the target library is in the OpenOCD script search path.
686 Similarly there are example scripts for configuring the JTAG interface.
687
688 The command line below uses the example parport configuration scripts
689 that ship with OpenOCD, then configures the str710.cfg target and
690 finally issues the init and reset command. The communication speed
691 is set to 10kHz for reset and 8MHz for post reset.
692
693
694 @smallexample
695 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
696 @end smallexample
697
698
699 To list the target scripts available:
700
701 @smallexample
702 $ ls /usr/local/lib/openocd/target
703
704 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
705 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
706 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
707 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
708 @end smallexample
709
710
711 @node Commands
712 @chapter Commands
713 @cindex commands
714
715 OpenOCD allows user interaction through a GDB server (default: port 3333),
716 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
717 is available from both the telnet interface and a GDB session. To issue commands to the
718 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
719 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
720 GDB session.
721
722 The TCL interface is used as a simplified RPC mechanism that feeds all the
723 input into the TCL interpreter and returns the output from the evaluation of
724 the commands.
725
726 @section Daemon
727
728 @itemize @bullet
729 @item @b{sleep} <@var{msec}>
730 @cindex sleep
731 Wait for n milliseconds before resuming. Useful in connection with script files
732 (@var{script} command and @var{target_script} configuration).
733
734 @item @b{shutdown}
735 @cindex shutdown
736 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
737
738 @item @b{debug_level} [@var{n}]
739 @cindex debug_level
740 Display or adjust debug level to n<0-3>
741
742 @item @b{fast} [@var{enable/disable}]
743 @cindex fast
744 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
745 downloads and fast memory access will work if the JTAG interface isn't too fast and
746 the core doesn't run at a too low frequency. Note that this option only changes the default
747 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
748 individually.
749
750 The target specific "dangerous" optimisation tweaking options may come and go
751 as more robust and user friendly ways are found to ensure maximum throughput
752 and robustness with a minimum of configuration.
753
754 Typically the "fast enable" is specified first on the command line:
755
756 @smallexample
757 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
758 @end smallexample
759
760 @item @b{log_output} <@var{file}>
761 @cindex log_output
762 Redirect logging to <file> (default: stderr)
763
764 @item @b{script} <@var{file}>
765 @cindex script
766 Execute commands from <file>
767
768 @end itemize
769
770 @subsection Target state handling
771 @itemize @bullet
772 @item @b{poll} [@option{on}|@option{off}]
773 @cindex poll
774 Poll the target for its current state. If the target is in debug mode, architecture
775 specific information about the current state is printed. An optional parameter
776 allows continuous polling to be enabled and disabled.
777
778 @item @b{halt} [@option{ms}]
779 @cindex halt
780 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
781 Default [@option{ms}] is 5 seconds if no arg given.
782 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
783 will stop OpenOCD from waiting.
784
785 @item @b{wait_halt} [@option{ms}]
786 @cindex wait_halt
787 Wait for the target to enter debug mode. Optional [@option{ms}] is
788 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
789 arg given.
790
791 @item @b{resume} [@var{address}]
792 @cindex resume
793 Resume the target at its current code position, or at an optional address.
794 OpenOCD will wait 5 seconds for the target to resume.
795
796 @item @b{step} [@var{address}]
797 @cindex step
798 Single-step the target at its current code position, or at an optional address.
799
800 @item @b{reset} [@option{run}|@option{halt}|@option{init}]
801 @cindex reset
802 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
803
804 With no arguments a "reset run" is executed
805 @itemize @minus
806 @item @b{run}
807 @cindex reset run
808 Let the target run.
809 @item @b{halt}
810 @cindex reset halt
811 Immediately halt the target (works only with certain configurations).
812 @item @b{init}
813 @cindex reset init
814 Immediately halt the target, and execute the reset script (works only with certain
815 configurations)
816 @end itemize
817 @end itemize
818
819 @subsection Memory access commands
820 These commands allow accesses of a specific size to the memory system:
821 @itemize @bullet
822 @item @b{mdw} <@var{addr}> [@var{count}]
823 @cindex mdw
824 display memory words
825 @item @b{mdh} <@var{addr}> [@var{count}]
826 @cindex mdh
827 display memory half-words
828 @item @b{mdb} <@var{addr}> [@var{count}]
829 @cindex mdb
830 display memory bytes
831 @item @b{mww} <@var{addr}> <@var{value}>
832 @cindex mww
833 write memory word
834 @item @b{mwh} <@var{addr}> <@var{value}>
835 @cindex mwh
836 write memory half-word
837 @item @b{mwb} <@var{addr}> <@var{value}>
838 @cindex mwb
839 write memory byte
840
841 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
842 @cindex load_image
843 Load image <@var{file}> to target memory at <@var{address}>
844 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
845 @cindex dump_image
846 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
847 (binary) <@var{file}>.
848 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
849 @cindex verify_image
850 Verify <@var{file}> against target memory starting at <@var{address}>.
851 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
852 @end itemize
853
854 @subsection Flash commands
855 @cindex Flash commands
856 @itemize @bullet
857 @item @b{flash banks}
858 @cindex flash banks
859 List configured flash banks
860 @item @b{flash info} <@var{num}>
861 @cindex flash info
862 Print info about flash bank <@option{num}>
863 @item @b{flash probe} <@var{num}>
864 @cindex flash probe
865 Identify the flash, or validate the parameters of the configured flash. Operation
866 depends on the flash type.
867 @item @b{flash erase_check} <@var{num}>
868 @cindex flash erase_check
869 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
870 updates the erase state information displayed by @option{flash info}. That means you have
871 to issue an @option{erase_check} command after erasing or programming the device to get
872 updated information.
873 @item @b{flash protect_check} <@var{num}>
874 @cindex flash protect_check
875 Check protection state of sectors in flash bank <num>.
876 @option{flash erase_sector} using the same syntax.
877 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
878 @cindex flash erase_sector
879 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
880 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
881 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
882 the CFI driver).
883 @item @b{flash erase_address} <@var{address}> <@var{length}>
884 @cindex flash erase_address
885 Erase sectors starting at <@var{address}> for <@var{length}> bytes
886 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
887 @cindex flash write_bank
888 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
889 <@option{offset}> bytes from the beginning of the bank.
890 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
891 @cindex flash write_image
892 Write the image <@var{file}> to the current target's flash bank(s). A relocation
893 [@var{offset}] can be specified and the file [@var{type}] can be specified
894 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
895 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
896 if the @option{erase} parameter is given.
897 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
898 @cindex flash protect
899 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
900 <@var{last}> of @option{flash bank} <@var{num}>.
901 @end itemize
902
903 @page
904 @section Target Specific Commands
905 @cindex Target Specific Commands
906
907 @subsection AT91SAM7 specific commands
908 @cindex AT91SAM7 specific commands
909 The flash configuration is deduced from the chip identification register. The flash
910 controller handles erases automatically on a page (128/265 byte) basis so erase is
911 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
912 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
913 that can be erased separatly. Only an EraseAll command is supported by the controller
914 for each flash plane and this is called with
915 @itemize @bullet
916 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
917 bulk erase flash planes first_plane to last_plane.
918 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
919 @cindex at91sam7 gpnvm
920 set or clear a gpnvm bit for the processor
921 @end itemize
922
923 @subsection STR9 specific commands
924 @cindex STR9 specific commands
925 These are flash specific commands when using the str9xpec driver.
926 @itemize @bullet
927 @item @b{str9xpec enable_turbo} <@var{num}>
928 @cindex str9xpec enable_turbo
929 enable turbo mode, simply this will remove the str9 from the chain and talk
930 directly to the embedded flash controller.
931 @item @b{str9xpec disable_turbo} <@var{num}>
932 @cindex str9xpec disable_turbo
933 restore the str9 into jtag chain.
934 @item @b{str9xpec lock} <@var{num}>
935 @cindex str9xpec lock
936 lock str9 device. The str9 will only respond to an unlock command that will
937 erase the device.
938 @item @b{str9xpec unlock} <@var{num}>
939 @cindex str9xpec unlock
940 unlock str9 device.
941 @item @b{str9xpec options_read} <@var{num}>
942 @cindex str9xpec options_read
943 read str9 option bytes.
944 @item @b{str9xpec options_write} <@var{num}>
945 @cindex str9xpec options_write
946 write str9 option bytes.
947 @end itemize
948
949 @subsection STR9 configuration
950 @cindex STR9 configuration
951 @itemize @bullet
952 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
953 <@var{BBADR}> <@var{NBBADR}>
954 @cindex str9x flash_config
955 Configure str9 flash controller.
956 @smallexample
957 eg. str9x flash_config 0 4 2 0 0x80000
958 This will setup
959 BBSR - Boot Bank Size register
960 NBBSR - Non Boot Bank Size register
961 BBADR - Boot Bank Start Address register
962 NBBADR - Boot Bank Start Address register
963 @end smallexample
964 @end itemize
965
966 @subsection STR9 option byte configuration
967 @cindex STR9 option byte configuration
968 @itemize @bullet
969 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
970 @cindex str9xpec options_cmap
971 configure str9 boot bank.
972 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
973 @cindex str9xpec options_lvdthd
974 configure str9 lvd threshold.
975 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
976 @cindex str9xpec options_lvdsel
977 configure str9 lvd source.
978 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
979 @cindex str9xpec options_lvdwarn
980 configure str9 lvd reset warning source.
981 @end itemize
982
983 @subsection STM32x specific commands
984 @cindex STM32x specific commands
985
986 These are flash specific commands when using the stm32x driver.
987 @itemize @bullet
988 @item @b{stm32x lock} <@var{num}>
989 @cindex stm32x lock
990 lock stm32 device.
991 @item @b{stm32x unlock} <@var{num}>
992 @cindex stm32x unlock
993 unlock stm32 device.
994 @item @b{stm32x options_read} <@var{num}>
995 @cindex stm32x options_read
996 read stm32 option bytes.
997 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
998 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
999 @cindex stm32x options_write
1000 write stm32 option bytes.
1001 @item @b{stm32x mass_erase} <@var{num}>
1002 @cindex stm32x mass_erase
1003 mass erase flash memory.
1004 @end itemize
1005
1006 @subsection Stellaris specific commands
1007 @cindex Stellaris specific commands
1008
1009 These are flash specific commands when using the Stellaris driver.
1010 @itemize @bullet
1011 @item @b{stellaris mass_erase} <@var{num}>
1012 @cindex stellaris mass_erase
1013 mass erase flash memory.
1014 @end itemize
1015
1016 @page
1017 @section Architecture Specific Commands
1018 @cindex Architecture Specific Commands
1019
1020 @subsection ARMV4/5 specific commands
1021 @cindex ARMV4/5 specific commands
1022
1023 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1024 or Intel XScale (XScale isn't supported yet).
1025 @itemize @bullet
1026 @item @b{armv4_5 reg}
1027 @cindex armv4_5 reg
1028 Display a list of all banked core registers, fetching the current value from every
1029 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1030 register value.
1031 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1032 @cindex armv4_5 core_mode
1033 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1034 The target is resumed in the currently set @option{core_mode}.
1035 @end itemize
1036
1037 @subsection ARM7/9 specific commands
1038 @cindex ARM7/9 specific commands
1039
1040 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1041 ARM920t or ARM926EJ-S.
1042 @itemize @bullet
1043 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1044 @cindex arm7_9 sw_bkpts
1045 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1046 one of the watchpoint registers to implement software breakpoints. Disabling
1047 SW Bkpts frees that register again.
1048 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1049 @cindex arm7_9 force_hw_bkpts
1050 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1051 breakpoints are turned into hardware breakpoints.
1052 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1053 @cindex arm7_9 dbgrq
1054 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1055 safe for all but ARM7TDMI--S cores (like Philips LPC).
1056 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1057 @cindex arm7_9 fast_memory_access
1058 Allow OpenOCD to read and write memory without checking completion of
1059 the operation. This provides a huge speed increase, especially with USB JTAG
1060 cables (FT2232), but might be unsafe if used with targets running at a very low
1061 speed, like the 32kHz startup clock of an AT91RM9200.
1062 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1063 @cindex arm7_9 dcc_downloads
1064 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1065 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1066 unsafe, especially with targets running at a very low speed. This command was introduced
1067 with OpenOCD rev. 60.
1068 @end itemize
1069
1070 @subsection ARM720T specific commands
1071 @cindex ARM720T specific commands
1072
1073 @itemize @bullet
1074 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1075 @cindex arm720t cp15
1076 display/modify cp15 register <@option{num}> [@option{value}].
1077 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1078 @cindex arm720t md<bhw>_phys
1079 Display memory at physical address addr.
1080 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1081 @cindex arm720t mw<bhw>_phys
1082 Write memory at physical address addr.
1083 @item @b{arm720t virt2phys} <@var{va}>
1084 @cindex arm720t virt2phys
1085 Translate a virtual address to a physical address.
1086 @end itemize
1087
1088 @subsection ARM9TDMI specific commands
1089 @cindex ARM9TDMI specific commands
1090
1091 @itemize @bullet
1092 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1093 @cindex arm9tdmi vector_catch
1094 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1095 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1096 @option{irq} @option{fiq}.
1097
1098 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1099 @end itemize
1100
1101 @subsection ARM966E specific commands
1102 @cindex ARM966E specific commands
1103
1104 @itemize @bullet
1105 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1106 @cindex arm966e cp15
1107 display/modify cp15 register <@option{num}> [@option{value}].
1108 @end itemize
1109
1110 @subsection ARM920T specific commands
1111 @cindex ARM920T specific commands
1112
1113 @itemize @bullet
1114 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1115 @cindex arm920t cp15
1116 display/modify cp15 register <@option{num}> [@option{value}].
1117 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1118 @cindex arm920t cp15i
1119 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1120 @item @b{arm920t cache_info}
1121 @cindex arm920t cache_info
1122 Print information about the caches found. This allows you to see if your target
1123 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1124 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1125 @cindex arm920t md<bhw>_phys
1126 Display memory at physical address addr.
1127 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1128 @cindex arm920t mw<bhw>_phys
1129 Write memory at physical address addr.
1130 @item @b{arm920t read_cache} <@var{filename}>
1131 @cindex arm920t read_cache
1132 Dump the content of ICache and DCache to a file.
1133 @item @b{arm920t read_mmu} <@var{filename}>
1134 @cindex arm920t read_mmu
1135 Dump the content of the ITLB and DTLB to a file.
1136 @item @b{arm920t virt2phys} <@var{va}>
1137 @cindex arm920t virt2phys
1138 Translate a virtual address to a physical address.
1139 @end itemize
1140
1141 @subsection ARM926EJS specific commands
1142 @cindex ARM926EJS specific commands
1143
1144 @itemize @bullet
1145 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1146 @cindex arm926ejs cp15
1147 display/modify cp15 register <@option{num}> [@option{value}].
1148 @item @b{arm926ejs cache_info}
1149 @cindex arm926ejs cache_info
1150 Print information about the caches found.
1151 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1152 @cindex arm926ejs md<bhw>_phys
1153 Display memory at physical address addr.
1154 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1155 @cindex arm926ejs mw<bhw>_phys
1156 Write memory at physical address addr.
1157 @item @b{arm926ejs virt2phys} <@var{va}>
1158 @cindex arm926ejs virt2phys
1159 Translate a virtual address to a physical address.
1160 @end itemize
1161
1162 @page
1163 @section Debug commands
1164 @cindex Debug commands
1165 The following commands give direct access to the core, and are most likely
1166 only useful while debugging OpenOCD.
1167 @itemize @bullet
1168 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1169 @cindex arm7_9 write_xpsr
1170 Immediately write either the current program status register (CPSR) or the saved
1171 program status register (SPSR), without changing the register cache (as displayed
1172 by the @option{reg} and @option{armv4_5 reg} commands).
1173 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1174 <@var{0=cpsr},@var{1=spsr}>
1175 @cindex arm7_9 write_xpsr_im8
1176 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1177 operation (similar to @option{write_xpsr}).
1178 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1179 @cindex arm7_9 write_core_reg
1180 Write a core register, without changing the register cache (as displayed by the
1181 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1182 encoding of the [M4:M0] bits of the PSR.
1183 @end itemize
1184
1185 @page
1186 @section JTAG commands
1187 @cindex JTAG commands
1188 @itemize @bullet
1189 @item @b{scan_chain}
1190 @cindex scan_chain
1191 Print current scan chain configuration.
1192 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1193 @cindex jtag_reset
1194 Toggle reset lines.
1195 @item @b{endstate} <@var{tap_state}>
1196 @cindex endstate
1197 Finish JTAG operations in <@var{tap_state}>.
1198 @item @b{runtest} <@var{num_cycles}>
1199 @cindex runtest
1200 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1201 @item @b{statemove} [@var{tap_state}]
1202 @cindex statemove
1203 Move to current endstate or [@var{tap_state}]
1204 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1205 @cindex irscan
1206 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1207 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1208 @cindex drscan
1209 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1210 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1211 @cindex verify_ircapture
1212 Verify value captured during Capture-IR. Default is enabled.
1213 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1214 @cindex var
1215 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1216 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1217 @cindex field
1218 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1219 @end itemize
1220
1221 @page
1222 @section Target Requests
1223 @cindex Target Requests
1224 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1225 See libdcc in the contrib dir for more details.
1226 @itemize @bullet
1227 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1228 @cindex target_request debugmsgs
1229 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1230 @end itemize
1231
1232 @node Sample Scripts
1233 @chapter Sample Scripts
1234 @cindex scripts
1235
1236 This page shows how to use the target library.
1237
1238 The configuration script can be divided in the following section:
1239 @itemize @bullet
1240 @item daemon configuration
1241 @item interface
1242 @item jtag scan chain
1243 @item target configuration
1244 @item flash configuration
1245 @end itemize
1246
1247 Detailed information about each section can be found at OpenOCD configuration.
1248
1249 @section AT91R40008 example
1250 @cindex AT91R40008 example
1251 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1252 the CPU upon startup of the OpenOCD daemon.
1253 @smallexample
1254 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1255 @end smallexample
1256
1257
1258 @node GDB and OpenOCD
1259 @chapter GDB and OpenOCD
1260 @cindex GDB and OpenOCD
1261 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1262 to debug remote targets.
1263
1264 @section Connecting to gdb
1265 @cindex Connecting to gdb
1266 A connection is typically started as follows:
1267 @smallexample
1268 target remote localhost:3333
1269 @end smallexample
1270 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1271
1272 To see a list of available OpenOCD commands type @option{monitor help} on the
1273 gdb commandline.
1274
1275 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1276 to be sent by the gdb server (openocd) to gdb. Typical information includes
1277 packet size and device memory map.
1278
1279 Previous versions of OpenOCD required the following gdb options to increase
1280 the packet size and speed up gdb communication.
1281 @smallexample
1282 set remote memory-write-packet-size 1024
1283 set remote memory-write-packet-size fixed
1284 set remote memory-read-packet-size 1024
1285 set remote memory-read-packet-size fixed
1286 @end smallexample
1287 This is now handled in the @option{qSupported} PacketSize.
1288
1289 @section Programming using gdb
1290 @cindex Programming using gdb
1291
1292 By default the target memory map is sent to gdb, this can be disabled by
1293 the following OpenOCD config option:
1294 @smallexample
1295 gdb_memory_map disable
1296 @end smallexample
1297 For this to function correctly a valid flash config must also be configured
1298 in OpenOCD. For faster performance you should also configure a valid
1299 working area.
1300
1301 Informing gdb of the memory map of the target will enable gdb to protect any
1302 flash area of the target and use hardware breakpoints by default. This means
1303 that the OpenOCD option @option{arm7_9 force_hw_bkpts} is not required when
1304 using a memory map.
1305
1306 To view the configured memory map in gdb, use the gdb command @option{info mem}
1307 All other unasigned addresses within gdb are treated as RAM.
1308
1309 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1310 this can be changed to the old behaviour by using the following gdb command.
1311 @smallexample
1312 set mem inaccessible-by-default off
1313 @end smallexample
1314
1315 If @option{gdb_flash_program enable} is also used, gdb will be able to
1316 program any flash memory using the vFlash interface.
1317
1318 gdb will look at the target memory map when a load command is given, if any
1319 areas to be programmed lie within the target flash area the vFlash packets
1320 will be used.
1321
1322 If the target needs configuring before gdb programming, a script can be executed.
1323 @smallexample
1324 target_script 0 gdb_program_config config.script
1325 @end smallexample
1326
1327 To verify any flash programming the gdb command @option{compare-sections}
1328 can be used.
1329
1330 @node TCL and OpenOCD
1331 @chapter TCL and OpenOCD
1332 @cindex TCL and OpenOCD
1333 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1334 support.
1335
1336 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1337
1338 The command and file interfaces are fairly straightforward, while the network
1339 port is geared toward intergration with external clients. A small example
1340 of an external TCL script that can connect to openocd is shown below.
1341
1342 @verbatim
1343 # Simple tcl client to connect to openocd
1344 puts "Use empty line to exit"
1345 set fo [socket 127.0.0.1 6666]
1346 puts -nonewline stdout "> "
1347 flush stdout
1348 while {[gets stdin line] >= 0} {
1349 if {$line eq {}} break
1350 puts $fo $line
1351 flush $fo
1352 gets $fo line
1353 puts $line
1354 puts -nonewline stdout "> "
1355 flush stdout
1356 }
1357 close $fo
1358 @end verbatim
1359
1360 This script can easily be modified to front various GUIs or be a sub
1361 component of a larger framework for control and interaction.
1362
1363
1364 @node TCL scripting API
1365 @chapter TCL scripting API
1366 @cindex TCL scripting API
1367 API rules
1368
1369 The commands are stateless. E.g. the telnet command line has a concept
1370 of currently active target, the Tcl API proc's take this sort of state
1371 information as an argument to each proc.
1372
1373 There are three main types of return values: single value, name value
1374 pair list and lists.
1375
1376 Name value pair. The proc 'foo' below returns a name/value pair
1377 list.
1378
1379 @verbatim
1380
1381 > set foo(me) Duane
1382 > set foo(you) Oyvind
1383 > set foo(mouse) Micky
1384 > set foo(duck) Donald
1385
1386 If one does this:
1387
1388 > set foo
1389
1390 The result is:
1391
1392 me Duane you Oyvind mouse Micky duck Donald
1393
1394 Thus, to get the names of the associative array is easy:
1395
1396 foreach { name value } [set foo] {
1397 puts "Name: $name, Value: $value"
1398 }
1399 @end verbatim
1400
1401 Lists returned must be relatively small. Otherwise a range
1402 should be passed in to the proc in question.
1403
1404 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1405 is the low level API upon which "flash banks" is implemented.
1406
1407 OpenOCD commands can consist of two words, e.g. "flash banks". The
1408 startup.tcl "unknown" proc will translate this into a tcl proc
1409 called "flash_banks".
1410
1411
1412 @node Upgrading
1413 @chapter Deprecated/Removed Commands
1414 @cindex Deprecated/Removed Commands
1415 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1416
1417 @itemize @bullet
1418 @item @b{load_binary}
1419 @cindex load_binary
1420 use @option{load_image} command with same args
1421 @item @b{dump_binary}
1422 @cindex dump_binary
1423 use @option{dump_image} command with same args
1424 @item @b{flash erase}
1425 @cindex flash erase
1426 use @option{flash erase_sector} command with same args
1427 @item @b{flash write}
1428 @cindex flash write
1429 use @option{flash write_bank} command with same args
1430 @item @b{flash write_binary}
1431 @cindex flash write_binary
1432 use @option{flash write_bank} command with same args
1433 @item @b{arm7_9 fast_writes}
1434 @cindex arm7_9 fast_writes
1435 use @option{arm7_9 fast_memory_access} command with same args
1436 @item @b{flash auto_erase}
1437 @cindex flash auto_erase
1438 use @option{flash write_image} command passing @option{erase} as the first parameter.
1439 @item @b{daemon_startup}
1440 @cindex daemon_startup
1441 this config option has been removed, simply adding @option{init} and @option{reset halt} to
1442 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
1443 and @option{target cortex_m3 little reset_halt 0}.
1444 @item @b{run_and_halt_time}
1445 @cindex run_and_halt_time
1446 This command has been removed for simpler reset behaviour, it can be simulated with the
1447 following commands:
1448 @smallexample
1449 reset run
1450 sleep 100
1451 halt
1452 @end smallexample
1453 @end itemize
1454
1455 @node FAQ
1456 @chapter FAQ
1457 @cindex faq
1458 @enumerate
1459 @item OpenOCD complains about a missing cygwin1.dll.
1460
1461 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1462 claims to come with all the necessary dlls. When using Cygwin, try launching
1463 OpenOCD from the Cygwin shell.
1464
1465 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1466 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1467 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1468
1469 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1470 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1471 software breakpoints consume one of the two available hardware breakpoints,
1472 and are therefore disabled by default. If your code is running from RAM, you
1473 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1474 your code resides in Flash, you can't use software breakpoints, but you can force
1475 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1476
1477 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1478 and works sometimes fine.
1479
1480 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1481 clock at the time you're programming the flash. If you've specified the crystal's
1482 frequency, make sure the PLL is disabled, if you've specified the full core speed
1483 (e.g. 60MHz), make sure the PLL is enabled.
1484
1485 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1486 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1487 out while waiting for end of scan, rtck was disabled".
1488
1489 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1490 settings in your PC BIOS (ECP, EPP, and different versions of those).
1491
1492 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1493 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1494 memory read caused data abort".
1495
1496 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1497 beyond the last valid frame. It might be possible to prevent this by setting up
1498 a proper "initial" stack frame, if you happen to know what exactly has to
1499 be done, feel free to add this here.
1500
1501 @item I get the following message in the OpenOCD console (or log file):
1502 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1503
1504 This warning doesn't indicate any serious problem, as long as you don't want to
1505 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1506 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1507 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1508 independently. With this setup, it's not possible to halt the core right out of
1509 reset, everything else should work fine.
1510
1511 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1512 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1513 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1514 quit with an error message. Is there a stability issue with OpenOCD?
1515
1516 No, this is not a stability issue concerning OpenOCD. Most users have solved
1517 this issue by simply using a self-powered USB hub, which they connect their
1518 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1519 supply stable enough for the Amontec JTAGkey to be operated.
1520
1521 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1522 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1523 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1524 What does that mean and what might be the reason for this?
1525
1526 First of all, the reason might be the USB power supply. Try using a self-powered
1527 hub instead of a direct connection to your computer. Secondly, the error code 4
1528 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1529 chip ran into some sort of error - this points us to a USB problem.
1530
1531 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1532 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1533 What does that mean and what might be the reason for this?
1534
1535 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1536 has closed the connection to OpenOCD. This might be a GDB issue.
1537
1538 @item In the configuration file in the section where flash device configurations
1539 are described, there is a parameter for specifying the clock frequency for
1540 LPC2000 internal flash devices (e.g.
1541 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1542 which must be specified in kilohertz. However, I do have a quartz crystal of a
1543 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1544 Is it possible to specify real numbers for the clock frequency?
1545
1546 No. The clock frequency specified here must be given as an integral number.
1547 However, this clock frequency is used by the In-Application-Programming (IAP)
1548 routines of the LPC2000 family only, which seems to be very tolerant concerning
1549 the given clock frequency, so a slight difference between the specified clock
1550 frequency and the actual clock frequency will not cause any trouble.
1551
1552 @item Do I have to keep a specific order for the commands in the configuration file?
1553
1554 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1555 listed for the JTAG scan chain must be given in the right order (jtag_device),
1556 with the device closest to the TDO-Pin being listed first. In general,
1557 whenever objects of the same type exist which require an index number, then
1558 these objects must be given in the right order (jtag_devices, targets and flash
1559 banks - a target references a jtag_device and a flash bank references a target).
1560
1561 @item Sometimes my debugging session terminates with an error. When I look into the
1562 log file, I can see these error messages: Error: arm7_9_common.c:561
1563 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1564
1565 TODO.
1566
1567 @end enumerate
1568
1569 @include fdl.texi
1570
1571 @node Index
1572 @unnumbered Index
1573
1574 @printindex cp
1575
1576 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)