- add --enable-release to docs
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD.
55 * Developers:: OpenOCD developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * TCL scripting API:: Tcl scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target library:: Target library
76 * FAQ:: Frequently Asked Questions
77 * TCL Crash Course:: TCL Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main index.
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) complient taps on your target board.
96
97 @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
98 Based, Parallel Port Based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
102 ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB Protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
125
126 @node Building
127 @chapter Building
128 @cindex building OpenOCD
129
130 @section Pre-Built Tools
131 If you are interested in getting actual work done rather than building
132 OpenOCD, then check if your interface supplier provides binaries for
133 you. Chances are that that binary is from some SVN version that is more
134 stable than SVN trunk where bleeding edge development takes place.
135
136 @section Packagers Please Read!
137
138 If you are a @b{PACKAGER} of OpenOCD if you
139
140 @enumerate
141 @item @b{Sell dongles} and include pre-built binaries
142 @item @b{Supply tools} ie: A complete development solution
143 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
144 @item @b{Build packages} ie: RPM files, or DEB files for a Linux Distro
145 @end enumerate
146
147 As a @b{PACKAGER} - you are at the top of the food chain. You solve
148 problems for downstream users. What you fix or solve - solves hundreds
149 if not thousands of user questions. If something does not work for you
150 please let us know. That said, would also like you to follow a few
151 suggestions:
152
153 @enumerate
154 @item @b{Always build with Printer Ports Enabled}
155 @item @b{Try where possible to use LIBFTDI + LIBUSB} You cover more bases
156 @end enumerate
157
158 It is your decision..
159
160 @itemize @bullet
161 @item @b{Why YES to LIBFTDI + LIBUSB}
162 @itemize @bullet
163 @item @b{LESS} work - libusb perhaps already there
164 @item @b{LESS} work - identical code multiple platforms
165 @item @b{MORE} dongles are supported
166 @item @b{MORE} platforms are supported
167 @item @b{MORE} complete solution
168 @end itemize
169 @item @b{Why not LIBFTDI + LIBUSB} (ie: ftd2xx instead)
170 @itemize @bullet
171 @item @b{LESS} Some say it is slower.
172 @item @b{LESS} complex to distribute (external dependencies)
173 @end itemize
174 @end itemize
175
176 @section Building From Source
177
178 You can download the current SVN version with SVN client of your choice from the
179 following repositories:
180
181 (@uref{svn://svn.berlios.de/openocd/trunk})
182
183 or
184
185 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
186
187 Using the SVN command line client, you can use the following command to fetch the
188 latest version (make sure there is no (non-svn) directory called "openocd" in the
189 current directory):
190
191 @example
192 svn checkout svn://svn.berlios.de/openocd/trunk openocd
193 @end example
194
195 Building OpenOCD requires a recent version of the GNU autotools.
196 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
197 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
198 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
199 paths, resulting in obscure dependency errors (This is an observation I've gathered
200 from the logs of one user - correct me if I'm wrong).
201
202 You further need the appropriate driver files, if you want to build support for
203 a FTDI FT2232 based interface:
204 @itemize @bullet
205 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
206 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
207 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
208 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
209 @end itemize
210
211 libftdi is supported under windows. Do not use versions earlier then 0.14.
212
213 In general, the D2XX driver provides superior performance (several times as fast),
214 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
215 a kernel module, only a user space library.
216
217 To build OpenOCD (on both Linux and Cygwin), use the following commands:
218 @example
219 ./bootstrap
220 @end example
221 Bootstrap generates the configure script, and prepares building on your system.
222 @example
223 ./configure [options, see below]
224 @end example
225 Configure generates the Makefiles used to build OpenOCD.
226 @example
227 make
228 make install
229 @end example
230 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
231
232 The configure script takes several options, specifying which JTAG interfaces
233 should be included:
234
235 @itemize @bullet
236 @item
237 @option{--enable-parport} - Bit bang pc printer ports.
238 @item
239 @option{--enable-parport_ppdev} - Parallel Port [see below]
240 @item
241 @option{--enable-parport_giveio} - Parallel Port [see below]
242 @item
243 @option{--enable-amtjtagaccel} - Parallel Port [Amontec, see below]
244 @item
245 @option{--enable-ft2232_ftd2xx} - Numerous USB Type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
246 @item
247 @option{--enable-ft2232_libftdi} - An open source (free) alternate to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin)
248 @item
249 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
250 @item
251 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only equal of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
252 @item
253 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static, specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. Shared is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
254 @item
255 @option{--enable-gw16012}
256 @item
257 @option{--enable-usbprog}
258 @item
259 @option{--enable-presto_libftdi}
260 @item
261 @option{--enable-presto_ftd2xx}
262 @item
263 @option{--enable-jlink} - From SEGGER
264 @item
265 @option{--enable-vsllink}
266 @item
267 @option{--enable-rlink} - Raisonance.com dongle.
268 @end itemize
269
270 @section Parallel Port Dongles
271
272 If you want to access the parallel port using the PPDEV interface you have to specify
273 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
274 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
275 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
276
277 @section FT2232C Based USB Dongles
278
279 There are 2 methods of using the FTD2232, either (1) using the
280 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
281 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
282
283 The FTDICHIP drivers come as either a (win32) ZIP file, or a (linux)
284 TAR.GZ file. You must unpack them ``some where'' convient. As of this
285 writing (12/26/2008) FTDICHIP does not supply means to install these
286 files ``in an appropriate place'' As a result, there are two
287 ``./configure'' options that help.
288
289 Below is an example build process:
290
291 1) Check out the latest version of ``openocd'' from SVN.
292
293 2) Download & Unpack either the Windows or Linux FTD2xx Drivers
294 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
295
296 @example
297 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
298 /home/duane/libftd2xx0.4.16 => the Linux TAR file contents.
299 @end example
300
301 3) Configure with these options:
302
303 @example
304 Cygwin FTCICHIP solution
305 ./configure --prefix=/home/duane/mytools \
306 --enable-ft2232_ftd2xx \
307 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
308
309 Linux FTDICHIP solution
310 ./configure --prefix=/home/duane/mytools \
311 --enable-ft2232_ftd2xx \
312 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
313
314 Cygwin/Linux LIBFTDI solution
315 Assumes:
316 1a) For Windows: The windows port of LIBUSB is in place.
317 1b) For Linux: libusb has been built and is inplace.
318
319 2) And libftdi has been built and installed
320 Note: libftdi - relies upon libusb.
321
322 ./configure --prefix=/home/duane/mytools \
323 --enable-ft2232_libftdi
324
325 @end example
326
327 4) Then just type ``make'', and perhaps ``make install''.
328
329
330 @section Miscellaneous configure options
331
332 @itemize @bullet
333 @item
334 @option{--enable-gccwarnings} - enable extra gcc warnings during build.
335 Default is enabled.
336 @item
337 @option{--enable-release} - enable building of a openocd release, generally
338 this is for developers. It simply omits the svn version string when the
339 openocd @option{-v} is executed.
340 @end itemize
341
342 @node JTAG Hardware Dongles
343 @chapter JTAG Hardware Dongles
344 @cindex dongles
345 @cindex ftdi
346 @cindex wiggler
347 @cindex zy1000
348 @cindex printer port
349 @cindex usb adapter
350 @cindex rtck
351
352 Defined: @b{dongle}: A small device that plugins into a computer and serves as
353 an adapter .... [snip]
354
355 In the OpenOCD case, this generally refers to @b{a small adapater} one
356 attaches to your computer via USB or the Parallel Printer Port. The
357 execption being the Zylin ZY1000 which is a small box you attach via
358 an ethernet cable.
359
360
361 @section Choosing a Dongle
362
363 There are three things you should keep in mind when choosing a dongle.
364
365 @enumerate
366 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
367 @item @b{Connection} Printer Ports - Does your computer have one?
368 @item @b{Connection} Is that long printer bit-bang cable practical?
369 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
370 @end enumerate
371
372 @section Stand alone Systems
373
374 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
375 dongle, but a standalone box.
376
377 @section USB FT2232 Based
378
379 There are many USB jtag dongles on the market, many of them are based
380 on a chip from ``Future Technology Devices International'' (FTDI)
381 known as the FTDI FT2232.
382
383 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
384
385 As of 28/Nov/2008, the following are supported:
386
387 @itemize @bullet
388 @item @b{usbjtag}
389 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
390 @item @b{jtagkey}
391 @* See: @url{http://www.amontec.com/jtagkey.shtml}
392 @item @b{oocdlink}
393 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
394 @item @b{signalyzer}
395 @* See: @url{http://www.signalyzer.com}
396 @item @b{evb_lm3s811}
397 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
398 @item @b{olimex-jtag}
399 @* See: @url{http://www.olimex.com}
400 @item @b{flyswatter}
401 @* See: @url{http://www.tincantools.com}
402 @item @b{turtelizer2}
403 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
404 @item @b{comstick}
405 @* Link: @url{http://www.hitex.com/index.php?id=383}
406 @item @b{stm32stick}
407 @* Link @url{http://www.hitex.com/stm32-stick}
408 @item @b{axm0432_jtag}
409 @* Axiom AXM-0432 Link @url{http://www.axman.com}
410 @end itemize
411
412 @section USB JLINK based
413 There are several OEM versions of the Segger @b{JLINK} adapter. It is
414 an example of a micro controller based JTAG adapter, it uses an
415 AT91SAM764 internally.
416
417 @itemize @bullet
418 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
419 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
420 @item @b{SEGGER JLINK}
421 @* Link: @url{http://www.segger.com/jlink.html}
422 @item @b{IAR J-Link}
423 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
424 @end itemize
425
426 @section USB RLINK based
427 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
428
429 @itemize @bullet
430 @item @b{Raisonance RLink}
431 @* Link: @url{http://www.raisonance.com/products/RLink.php}
432 @item @b{STM32 Primer}
433 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
434 @item @b{STM32 Primer2}
435 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
436 @end itemize
437
438 @section USB Other
439 @itemize @bullet
440 @item @b{USBprog}
441 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
442
443 @item @b{USB - Presto}
444 @* Link: @url{http://tools.asix.net/prg_presto.htm}
445
446 @item @b{Versaloon-Link}
447 @* Link: @url{http://www.simonqian.com/en/Versaloon}
448 @end itemize
449
450 @section IBM PC Parallel Printer Port Based
451
452 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
453 and the MacGraigor Wiggler. There are many clones and variations of
454 these on the market.
455
456 @itemize @bullet
457
458 @item @b{Wiggler} - There are many clones of this.
459 @* Link: @url{http://www.macraigor.com/wiggler.htm}
460
461 @item @b{DLC5} - From XILINX - There are many clones of this
462 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
463 produced, PDF schematics are easily found and it is easy to make.
464
465 @item @b{Amontec - JTAG Accelerator}
466 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
467
468 @item @b{GW16402}
469 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
470
471 @item @b{Wiggler2}
472 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
473
474 @item @b{Wiggler_ntrst_inverted}
475 @* Yet another variation - See the source code, src/jtag/parport.c
476
477 @item @b{old_amt_wiggler}
478 @* Unknown - probably not on the market today
479
480 @item @b{arm-jtag}
481 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
482
483 @item @b{chameleon}
484 @* Link: @url{http://www.amontec.com/chameleon.shtml}
485
486 @item @b{Triton}
487 @* Unknown.
488
489 @item @b{Lattice}
490 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
491
492 @item @b{flashlink}
493 @* From ST Microsystems, link:
494 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
495 Title: FlashLINK JTAG programing cable for PSD and uPSD
496
497 @end itemize
498
499 @section Other...
500 @itemize @bullet
501
502 @item @b{ep93xx}
503 @* An EP93xx based linux machine using the GPIO pins directly.
504
505 @item @b{at91rm9200}
506 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
507
508 @end itemize
509
510 @node Running
511 @chapter Running
512 @cindex running OpenOCD
513 @cindex --configfile
514 @cindex --debug_level
515 @cindex --logfile
516 @cindex --search
517
518 The @option{--help} option shows:
519 @verbatim
520 bash$ openocd --help
521
522 --help | -h display this help
523 --version | -v display OpenOCD version
524 --file | -f use configuration file <name>
525 --search | -s dir to search for config files and scripts
526 --debug | -d set debug level <0-3>
527 --log_output | -l redirect log output to file <name>
528 --command | -c run <command>
529 --pipe | -p use pipes when talking to gdb
530 @end verbatim
531
532 By default OpenOCD reads the file configuration file ``openocd.cfg''
533 in the current directory. To specify a different (or multiple)
534 configuration file, you can use the ``-f'' option. For example:
535
536 @example
537 openocd -f config1.cfg -f config2.cfg -f config3.cfg
538 @end example
539
540 Once started, OpenOCD runs as a daemon, waiting for connections from
541 clients (Telnet, GDB, Other).
542
543 If you are having problems, you can enable internal debug messages via
544 the ``-d'' option.
545
546 Also it is possible to interleave commands w/config scripts using the
547 @option{-c} command line switch.
548
549 To enable debug output (when reporting problems or working on OpenOCD
550 itself), use the @option{-d} command line switch. This sets the
551 @option{debug_level} to "3", outputting the most information,
552 including debug messages. The default setting is "2", outputting only
553 informational messages, warnings and errors. You can also change this
554 setting from within a telnet or gdb session using @option{debug_level
555 <n>} @xref{debug_level}.
556
557 You can redirect all output from the daemon to a file using the
558 @option{-l <logfile>} switch.
559
560 Search paths for config/script files can be added to OpenOCD by using
561 the @option{-s <search>} switch. The current directory and the OpenOCD
562 target library is in the search path by default.
563
564 For details on the @option{-p} option. @xref{Connecting to GDB}.
565
566 Note! OpenOCD will launch the GDB & telnet server even if it can not
567 establish a connection with the target. In general, it is possible for
568 the JTAG controller to be unresponsive until the target is set up
569 correctly via e.g. GDB monitor commands in a GDB init script.
570
571 @node Simple Configuration Files
572 @chapter Simple Configuration Files
573 @cindex configuration
574
575 @section Outline
576 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
577
578 @enumerate
579 @item A small openocd.cfg file which ``sources'' other configuration files
580 @item A monolithic openocd.cfg file
581 @item Many -f filename options on the command line
582 @item Your Mixed Solution
583 @end enumerate
584
585 @section Small configuration file method
586
587 This is the prefered method, it is simple and is works well for many
588 people. The developers of OpenOCD would encourage you to use this
589 method. If you create a new configuration please email new
590 configurations to the development list.
591
592 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
593
594 @example
595 source [find interface/signalyzer.cfg]
596
597 # Change the default telnet port...
598 telnet_port 4444
599 # GDB connects here
600 gdb_port 3333
601 # GDB can also flash my flash!
602 gdb_memory_map enable
603 gdb_flash_program enable
604
605 source [find target/sam7x256.cfg]
606 @end example
607
608 There are many example configuration scripts you can work with. You
609 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
610 should find:
611
612 @enumerate
613 @item @b{board} - eval board level configurations
614 @item @b{interface} - specific dongle configurations
615 @item @b{target} - the target chips
616 @item @b{tcl} - helper scripts
617 @item @b{xscale} - things specific to the xscale.
618 @end enumerate
619
620 Look first in the ``boards'' area, then the ``targets'' area. Often a board
621 configuration is a good example to work from.
622
623 @section Many -f filename options
624 Some believe this is a wonderful solution, others find it painful.
625
626 You can use a series of ``-f filename'' options on the command line,
627 OpenOCD will read each filename in sequence, for example:
628
629 @example
630 openocd -f file1.cfg -f file2.cfg -f file2.cfg
631 @end example
632
633 You can also intermix various commands with the ``-c'' command line
634 option.
635
636 @section Monolithic file
637 The ``Monolithic File'' dispenses with all ``source'' statements and
638 puts everything in one self contained (monolithic) file. This is not
639 encouraged.
640
641 Please try to ``source'' various files or use the multiple -f
642 technique.
643
644 @section Advice for you
645 Often, one uses a ``mixed approach''. Where possible, please try to
646 ``source'' common things, and if needed cut/paste parts of the
647 standard distribution configuration files as needed.
648
649 @b{REMEMBER:} The ``important parts'' of your configuration file are:
650
651 @enumerate
652 @item @b{Interface} - Defines the dongle
653 @item @b{Taps} - Defines the JTAG Taps
654 @item @b{GDB Targets} - What GDB talks to
655 @item @b{Flash Programing} - Very Helpful
656 @end enumerate
657
658 Some key things you should look at and understand are:
659
660 @enumerate
661 @item The RESET configuration of your debug environment as a hole
662 @item Is there a ``work area'' that OpenOCD can use?
663 @* For ARM - work areas mean up to 10x faster downloads.
664 @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
665 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
666 @end enumerate
667
668
669
670 @node Config File Guidelines
671 @chapter Config File Guidelines
672
673 This section/chapter is aimed at developers and integrators of
674 OpenOCD. These are guidelines for creating new boards and new target
675 configurations as of 28/Nov/2008.
676
677 However, you the user of OpenOCD should be some what familiar with
678 this section as it should help explain some of the internals of what
679 you might be looking at.
680
681 The user should find under @t{$(INSTALLDIR)/lib/openocd} the
682 following directories:
683
684 @itemize @bullet
685 @item @b{interface}
686 @*Think JTAG Dongle. Files that configure the jtag dongle go here.
687 @item @b{board}
688 @* Thing Circuit Board, PWA, PCB, they go by many names. Board files
689 contain initialization items that are specific to a board - for
690 example: The SDRAM initialization sequence for the board, or the type
691 of external flash and what address it is found at. Any initialization
692 sequence to enable that external flash or sdram should be found in the
693 board file. Boards may also contain multiple targets, ie: Two cpus, or
694 a CPU and an FPGA or CPLD.
695 @item @b{target}
696 @* Think CHIP. The ``target'' directory represents a jtag tap (or
697 chip) OpenOCD should control, not a board. Two common types of targets
698 are ARM chips and FPGA or CPLD chips.
699 @end itemize
700
701 @b{If needed...} The user in their ``openocd.cfg'' file or the board
702 file might override a specific feature in any of the above files by
703 setting a variable or two before sourcing the target file. Or adding
704 various commands specific to their situation.
705
706 @section Interface Config Files
707
708 The user should be able to source one of these files via a command like this:
709
710 @example
711 source [find interface/FOOBAR.cfg]
712 Or:
713 openocd -f interface/FOOBAR.cfg
714 @end example
715
716 A preconfigured interface file should exist for every interface in use
717 today, that said, perhaps some interfaces have only been used by the
718 sole developer who created it.
719
720 @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
721 tcl_platform(platform), it should be called jim_platform (because it
722 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
723 ``cygwin'' or ``mingw''
724
725 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
726
727 @section Board Config Files
728
729 @b{Note: BOARD directory NEW as of 28/nov/2008}
730
731 The user should be able to source one of these files via a command like this:
732
733 @example
734 source [find board/FOOBAR.cfg]
735 Or:
736 openocd -f board/FOOBAR.cfg
737 @end example
738
739
740 The board file should contain one or more @t{source [find
741 target/FOO.cfg]} statements along with any board specific things.
742
743 In summery the board files should contain (if present)
744
745 @enumerate
746 @item External flash configuration (ie: the flash on CS0)
747 @item SDRAM configuration (size, speed, etc)
748 @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
749 @item Multiple TARGET source statements
750 @item All things that are not ``inside a chip''
751 @item Things inside a chip go in a 'target' file
752 @end enumerate
753
754 @section Target Config Files
755
756 The user should be able to source one of these files via a command like this:
757
758 @example
759 source [find target/FOOBAR.cfg]
760 Or:
761 openocd -f target/FOOBAR.cfg
762 @end example
763
764 In summery the target files should contain
765
766 @enumerate
767 @item Set Defaults
768 @item Create Taps
769 @item Reset Configuration
770 @item Work Areas
771 @item CPU/Chip/CPU-Core Specific features
772 @item OnChip Flash
773 @end enumerate
774
775 @subsection Important variable names
776
777 By default, the end user should never need to set these
778 variables. However, if the user needs to override a setting they only
779 need to set the variable in a simple way.
780
781 @itemize @bullet
782 @item @b{CHIPNAME}
783 @* This gives a name to the overall chip, and is used as part of the
784 tap identifier dotted name.
785 @item @b{ENDIAN}
786 @* By default little - unless the chip or board is not normally used that way.
787 @item @b{CPUTAPID}
788 @* When OpenOCD examines the JTAG chain, it will attempt to identify
789 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
790 to verify the tap id number verses configuration file and may issue an
791 error or warning like this. The hope is this will help pin point
792 problem OpenOCD configurations.
793
794 @example
795 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
796 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
797 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
798 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
799 @end example
800
801 @item @b{_TARGETNAME}
802 @* By convention, this variable is created by the target configuration
803 script. The board configuration file may make use of this variable to
804 configure things like a ``reset init'' script, or other things
805 specific to that board and that target.
806
807 If the chip has 2 targets, use the names @b{_TARGETNAME0},
808 @b{_TARGETNAME1}, ... etc.
809
810 @b{Remember:} The ``board file'' may include multiple targets.
811
812 At no time should the name ``target0'' (the default target name if
813 none was specified) be used. The name ``target0'' is a hard coded name
814 - the next target on the board will be some other number.
815
816 The user (or board file) should reasonably be able to:
817
818 @example
819 source [find target/FOO.cfg]
820 $_TARGETNAME configure ... FOO specific parameters
821
822 source [find target/BAR.cfg]
823 $_TARGETNAME configure ... BAR specific parameters
824 @end example
825
826 @end itemize
827
828 @subsection TCL Variables Guide Line
829 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
830
831 Thus the rule we follow in OpenOCD is this: Variables that begin with
832 a leading underscore are temporal in nature, and can be modified and
833 used at will within a ?TARGET? configuration file
834
835 @b{EXAMPLE:} The user should be able to do this:
836
837 @example
838 # Board has 3 chips,
839 # PXA270 #1 network side, big endian
840 # PXA270 #2 video side, little endian
841 # Xilinx Glue logic
842 set CHIPNAME network
843 set ENDIAN big
844 source [find target/pxa270.cfg]
845 # variable: _TARGETNAME = network.cpu
846 # other commands can refer to the "network.cpu" tap.
847 $_TARGETNAME configure .... params for this cpu..
848
849 set ENDIAN little
850 set CHIPNAME video
851 source [find target/pxa270.cfg]
852 # variable: _TARGETNAME = video.cpu
853 # other commands can refer to the "video.cpu" tap.
854 $_TARGETNAME configure .... params for this cpu..
855
856 unset ENDIAN
857 set CHIPNAME xilinx
858 source [find target/spartan3.cfg]
859
860 # Since $_TARGETNAME is temporal..
861 # these names still work!
862 network.cpu configure ... params
863 video.cpu configure ... params
864
865 @end example
866
867 @subsection Default Value Boiler Plate Code
868
869 All target configuration files should start with this (or a modified form)
870
871 @example
872 # SIMPLE example
873 if @{ [info exists CHIPNAME] @} @{
874 set _CHIPNAME $CHIPNAME
875 @} else @{
876 set _CHIPNAME sam7x256
877 @}
878
879 if @{ [info exists ENDIAN] @} @{
880 set _ENDIAN $ENDIAN
881 @} else @{
882 set _ENDIAN little
883 @}
884
885 if @{ [info exists CPUTAPID ] @} @{
886 set _CPUTAPID $CPUTAPID
887 @} else @{
888 set _CPUTAPID 0x3f0f0f0f
889 @}
890
891 @end example
892
893 @subsection Creating Taps
894 After the ``defaults'' are choosen, [see above], the taps are created.
895
896 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
897
898 @example
899 # for an ARM7TDMI.
900 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
901 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
902 @end example
903
904 @b{COMPLEX example:}
905
906 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
907
908 @enumerate
909 @item @b{Unform tap names} - See: Tap Naming Convention
910 @item @b{_TARGETNAME} is created at the end where used.
911 @end enumerate
912
913 @example
914 if @{ [info exists FLASHTAPID ] @} @{
915 set _FLASHTAPID $FLASHTAPID
916 @} else @{
917 set _FLASHTAPID 0x25966041
918 @}
919 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
920
921 if @{ [info exists CPUTAPID ] @} @{
922 set _CPUTAPID $CPUTAPID
923 @} else @{
924 set _CPUTAPID 0x25966041
925 @}
926 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
927
928
929 if @{ [info exists BSTAPID ] @} @{
930 set _BSTAPID $BSTAPID
931 @} else @{
932 set _BSTAPID 0x1457f041
933 @}
934 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
935
936 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
937 @end example
938
939 @b{Tap Naming Convention}
940
941 See the command ``jtag newtap'' for detail, but in breif the names you should use are:
942
943 @itemize @bullet
944 @item @b{tap}
945 @item @b{cpu}
946 @item @b{flash}
947 @item @b{bs}
948 @item @b{jrc}
949 @item @b{unknownN} - it happens :-(
950 @end itemize
951
952 @subsection Reset Configuration
953
954 Some chips have specific ways the TRST and SRST signals are
955 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
956 @b{BOARD SPECIFIC} they go in the board file.
957
958 @subsection Work Areas
959
960 Work areas are small RAM areas used by OpenOCD to speed up downloads,
961 and to download small snippits of code to program flash chips.
962
963 If the chip includes an form of ``on-chip-ram'' - and many do - define
964 a reasonable work area and use the ``backup'' option.
965
966 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
967 inaccessable if/when the application code enables or disables the MMU.
968
969 @subsection ARM Core Specific Hacks
970
971 If the chip has a DCC, enable it. If the chip is an arm9 with some
972 special high speed download - enable it.
973
974 If the chip has an ARM ``vector catch'' feature - by defeault enable
975 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
976 user is really writing a handler for those situations - they can
977 easily disable it. Experiance has shown the ``vector catch'' is
978 helpful - for common programing errors.
979
980 If present, the MMU, the MPU and the CACHE should be disabled.
981
982 @subsection Internal Flash Configuration
983
984 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
985
986 @b{Never ever} in the ``target configuration file'' define any type of
987 flash that is external to the chip. (For example the BOOT flash on
988 Chip Select 0). The BOOT flash information goes in a board file - not
989 the TARGET (chip) file.
990
991 Examples:
992 @itemize @bullet
993 @item at91sam7x256 - has 256K flash YES enable it.
994 @item str912 - has flash internal YES enable it.
995 @item imx27 - uses boot flash on CS0 - it goes in the board file.
996 @item pxa270 - again - CS0 flash - it goes in the board file.
997 @end itemize
998
999 @node About JIM-Tcl
1000 @chapter About JIM-Tcl
1001 @cindex JIM Tcl
1002 @cindex tcl
1003
1004 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1005 learn more about JIM here: @url{http://jim.berlios.de}
1006
1007 @itemize @bullet
1008 @item @b{JIM vrs TCL}
1009 @* JIM-TCL is a stripped down version of the well known Tcl language,
1010 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1011 fewer features. JIM-Tcl is a single .C file and a single .H file and
1012 impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
1013 4.2MEG zip file containing 1540 files.
1014
1015 @item @b{Missing Features}
1016 @* Our practice has been: Add/clone the Real TCL feature if/when
1017 needed. We welcome JIM Tcl improvements, not bloat.
1018
1019 @item @b{Scripts}
1020 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1021 command interpretor today (28/nov/2008) is a mixture of (newer)
1022 JIM-Tcl commands, and (older) the orginal command interpretor.
1023
1024 @item @b{Commands}
1025 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1026 can type a Tcl for() loop, set variables, etc.
1027
1028 @item @b{Historical Note}
1029 @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
1030
1031 @item @b{Need a Crash Course In TCL?}
1032 @* See: @xref{TCL Crash Course}.
1033 @end itemize
1034
1035
1036 @node Daemon Configuration
1037 @chapter Daemon Configuration
1038 The commands here are commonly found in the openocd.cfg file and are
1039 used to specify what TCP/IP ports are used, and how GDB should be
1040 supported.
1041 @section init
1042 @cindex init
1043 This command terminates the configuration stage and
1044 enters the normal command mode. This can be useful to add commands to
1045 the startup scripts and commands such as resetting the target,
1046 programming flash, etc. To reset the CPU upon startup, add "init" and
1047 "reset" at the end of the config script or at the end of the OpenOCD
1048 command line using the @option{-c} command line switch.
1049
1050 If this command does not appear in any startup/configuration file
1051 OpenOCD executes the command for you after processing all
1052 configuration files and/or command line options.
1053
1054 @b{NOTE:} This command normally occurs at or near the end of your
1055 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1056 targets ready. For example: If your openocd.cfg file needs to
1057 read/write memory on your target - the init command must occur before
1058 the memory read/write commands.
1059
1060 @section TCP/IP Ports
1061 @itemize @bullet
1062 @item @b{telnet_port} <@var{number}>
1063 @cindex telnet_port
1064 @*Intended for a human. Port on which to listen for incoming telnet connections.
1065
1066 @item @b{tcl_port} <@var{number}>
1067 @cindex tcl_port
1068 @*Intended as a machine interface. Port on which to listen for
1069 incoming TCL syntax. This port is intended as a simplified RPC
1070 connection that can be used by clients to issue commands and get the
1071 output from the TCL engine.
1072
1073 @item @b{gdb_port} <@var{number}>
1074 @cindex gdb_port
1075 @*First port on which to listen for incoming GDB connections. The GDB port for the
1076 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1077 @end itemize
1078
1079 @section GDB Items
1080 @itemize @bullet
1081 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
1082 @cindex gdb_breakpoint_override
1083 @anchor{gdb_breakpoint_override}
1084 @*Force breakpoint type for gdb 'break' commands.
1085 The raison d'etre for this option is to support GDB GUI's without
1086 a hard/soft breakpoint concept where the default OpenOCD and
1087 GDB behaviour is not sufficient. Note that GDB will use hardware
1088 breakpoints if the memory map has been set up for flash regions.
1089
1090 This option replaces older arm7_9 target commands that addressed
1091 the same issue.
1092
1093 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1094 @cindex gdb_detach
1095 @*Configures what OpenOCD will do when gdb detaches from the daeman.
1096 Default behaviour is <@var{resume}>
1097
1098 @item @b{gdb_memory_map} <@var{enable|disable}>
1099 @cindex gdb_memory_map
1100 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
1101 requested. gdb will then know when to set hardware breakpoints, and program flash
1102 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
1103 for flash programming to work.
1104 Default behaviour is <@var{enable}>
1105 @xref{gdb_flash_program}.
1106
1107 @item @b{gdb_flash_program} <@var{enable|disable}>
1108 @cindex gdb_flash_program
1109 @anchor{gdb_flash_program}
1110 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1111 vFlash packet is received.
1112 Default behaviour is <@var{enable}>
1113 @comment END GDB Items
1114 @end itemize
1115
1116 @node Interface - Dongle Configuration
1117 @chapter Interface - Dongle Configuration
1118 Interface commands are normally found in an interface configuration
1119 file which is sourced by your openocd.cfg file. These commands tell
1120 OpenOCD what type of JTAG dongle you have and how to talk to it.
1121 @section Simple Complete Interface Examples
1122 @b{A Turtelizer FT2232 Based JTAG Dongle}
1123 @verbatim
1124 #interface
1125 interface ft2232
1126 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1127 ft2232_layout turtelizer2
1128 ft2232_vid_pid 0x0403 0xbdc8
1129 @end verbatim
1130 @b{A SEGGER Jlink}
1131 @verbatim
1132 # jlink interface
1133 interface jlink
1134 @end verbatim
1135 @b{A Raisonance RLink}
1136 @verbatim
1137 # rlink interface
1138 interface rlink
1139 @end verbatim
1140 @b{Parallel Port}
1141 @verbatim
1142 interface parport
1143 parport_port 0xc8b8
1144 parport_cable wiggler
1145 jtag_speed 0
1146 @end verbatim
1147 @section Interface Conmmand
1148
1149 The interface command tells OpenOCD what type of jtag dongle you are
1150 using. Depending upon the type of dongle, you may need to have one or
1151 more additional commands.
1152
1153 @itemize @bullet
1154
1155 @item @b{interface} <@var{name}>
1156 @cindex interface
1157 @*Use the interface driver <@var{name}> to connect to the
1158 target. Currently supported interfaces are
1159
1160 @itemize @minus
1161
1162 @item @b{parport}
1163 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1164
1165 @item @b{amt_jtagaccel}
1166 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1167 mode parallel port
1168
1169 @item @b{ft2232}
1170 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1171 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1172 platform. The libftdi uses libusb, and should be portable to all systems that provide
1173 libusb.
1174
1175 @item @b{ep93xx}
1176 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1177
1178 @item @b{presto}
1179 @* ASIX PRESTO USB JTAG programmer.
1180
1181 @item @b{usbprog}
1182 @* usbprog is a freely programmable USB adapter.
1183
1184 @item @b{gw16012}
1185 @* Gateworks GW16012 JTAG programmer.
1186
1187 @item @b{jlink}
1188 @* Segger jlink usb adapter
1189
1190 @item @b{rlink}
1191 @* Raisonance RLink usb adapter
1192
1193 @item @b{vsllink}
1194 @* vsllink is part of Versaloon which is a versatile USB programmer.
1195 @comment - End parameters
1196 @end itemize
1197 @comment - End Interface
1198 @end itemize
1199 @subsection parport options
1200
1201 @itemize @bullet
1202 @item @b{parport_port} <@var{number}>
1203 @cindex parport_port
1204 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1205 the @file{/dev/parport} device
1206
1207 When using PPDEV to access the parallel port, use the number of the parallel port:
1208 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1209 you may encounter a problem.
1210 @item @b{parport_cable} <@var{name}>
1211 @cindex parport_cable
1212 @*The layout of the parallel port cable used to connect to the target.
1213 Currently supported cables are
1214 @itemize @minus
1215 @item @b{wiggler}
1216 @cindex wiggler
1217 The original Wiggler layout, also supported by several clones, such
1218 as the Olimex ARM-JTAG
1219 @item @b{wiggler2}
1220 @cindex wiggler2
1221 Same as original wiggler except an led is fitted on D5.
1222 @item @b{wiggler_ntrst_inverted}
1223 @cindex wiggler_ntrst_inverted
1224 Same as original wiggler except TRST is inverted.
1225 @item @b{old_amt_wiggler}
1226 @cindex old_amt_wiggler
1227 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1228 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1229 @item @b{chameleon}
1230 @cindex chameleon
1231 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1232 program the Chameleon itself, not a connected target.
1233 @item @b{dlc5}
1234 @cindex dlc5
1235 The Xilinx Parallel cable III.
1236 @item @b{triton}
1237 @cindex triton
1238 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1239 This is also the layout used by the HollyGates design
1240 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1241 @item @b{flashlink}
1242 @cindex flashlink
1243 The ST Parallel cable.
1244 @item @b{arm-jtag}
1245 @cindex arm-jtag
1246 Same as original wiggler except SRST and TRST connections reversed and
1247 TRST is also inverted.
1248 @item @b{altium}
1249 @cindex altium
1250 Altium Universal JTAG cable.
1251 @end itemize
1252 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1253 @cindex parport_write_on_exit
1254 @*This will configure the parallel driver to write a known value to the parallel
1255 interface on exiting OpenOCD
1256 @end itemize
1257
1258 @subsection amt_jtagaccel options
1259 @itemize @bullet
1260 @item @b{parport_port} <@var{number}>
1261 @cindex parport_port
1262 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1263 @file{/dev/parport} device
1264 @end itemize
1265 @subsection ft2232 options
1266
1267 @itemize @bullet
1268 @item @b{ft2232_device_desc} <@var{description}>
1269 @cindex ft2232_device_desc
1270 @*The USB device description of the FTDI FT2232 device. If not
1271 specified, the FTDI default value is used. This setting is only valid
1272 if compiled with FTD2XX support.
1273
1274 @b{TODO:} Confirm the following: On windows the name needs to end with
1275 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1276 this be added and when must it not be added? Why can't the code in the
1277 interface or in OpenOCD automatically add this if needed? -- Duane.
1278
1279 @item @b{ft2232_serial} <@var{serial-number}>
1280 @cindex ft2232_serial
1281 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1282 values are used.
1283 @item @b{ft2232_layout} <@var{name}>
1284 @cindex ft2232_layout
1285 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1286 signals. Valid layouts are
1287 @itemize @minus
1288 @item @b{usbjtag}
1289 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1290 @item @b{jtagkey}
1291 Amontec JTAGkey and JTAGkey-tiny
1292 @item @b{signalyzer}
1293 Signalyzer
1294 @item @b{olimex-jtag}
1295 Olimex ARM-USB-OCD
1296 @item @b{m5960}
1297 American Microsystems M5960
1298 @item @b{evb_lm3s811}
1299 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1300 SRST signals on external connector
1301 @item @b{comstick}
1302 Hitex STR9 comstick
1303 @item @b{stm32stick}
1304 Hitex STM32 Performance Stick
1305 @item @b{flyswatter}
1306 Tin Can Tools Flyswatter
1307 @item @b{turtelizer2}
1308 egnite Software turtelizer2
1309 @item @b{oocdlink}
1310 OOCDLink
1311 @item @b{axm0432_jtag}
1312 Axiom AXM-0432
1313 @end itemize
1314
1315 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1316 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1317 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
1318 @example
1319 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1320 @end example
1321 @item @b{ft2232_latency} <@var{ms}>
1322 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
1323 ft2232_read() fails to return the expected number of bytes. This can be caused by
1324 USB communication delays and has proved hard to reproduce and debug. Setting the
1325 FT2232 latency timer to a larger value increases delays for short USB packages but it
1326 also reduces the risk of timeouts before receiving the expected number of bytes.
1327 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1328 @end itemize
1329
1330 @subsection ep93xx options
1331 @cindex ep93xx options
1332 Currently, there are no options available for the ep93xx interface.
1333
1334 @section JTAG Speed
1335 @itemize @bullet
1336 @item @b{jtag_khz} <@var{reset speed kHz}>
1337 @cindex jtag_khz
1338
1339 It is debatable if this command belongs here - or in a board
1340 configuration file. In fact, in some situations the jtag speed is
1341 changed during the target initialization process (ie: (1) slow at
1342 reset, (2) program the cpu clocks, (3) run fast)
1343
1344 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1345
1346 Not all interfaces support ``rtck''. If the interface device can not
1347 support the rate asked for, or can not translate from kHz to
1348 jtag_speed, then an error is returned.
1349
1350 Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
1351 especially true for synthesized cores (-S). Also see RTCK.
1352
1353 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1354 please use the command: 'jtag_rclk FREQ'. This TCL proc (in
1355 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1356 the specified frequency.
1357
1358 @example
1359 # Fall back to 3mhz if RCLK is not supported
1360 jtag_rclk 3000
1361 @end example
1362
1363 @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
1364 @cindex jtag_speed
1365 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1366 speed. The actual effect of this option depends on the JTAG interface used.
1367
1368 The speed used during reset can be adjusted using setting jtag_speed during
1369 pre_reset and post_reset events.
1370 @itemize @minus
1371
1372 @item wiggler: maximum speed / @var{number}
1373 @item ft2232: 6MHz / (@var{number}+1)
1374 @item amt jtagaccel: 8 / 2**@var{number}
1375 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1376 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1377 @comment end speed list.
1378 @end itemize
1379
1380 @comment END command list
1381 @end itemize
1382
1383 @node Reset Configuration
1384 @chapter Reset Configuration
1385 @cindex reset configuration
1386
1387 Every system configuration may require a different reset
1388 configuration. This can also be quite confusing. Please see the
1389 various board files for example.
1390
1391 @section jtag_nsrst_delay <@var{ms}>
1392 @cindex jtag_nsrst_delay
1393 @*How long (in milliseconds) OpenOCD should wait after deasserting
1394 nSRST before starting new JTAG operations.
1395
1396 @section jtag_ntrst_delay <@var{ms}>
1397 @cindex jtag_ntrst_delay
1398 @*Same @b{jtag_nsrst_delay}, but for nTRST
1399
1400 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1401 big resistor/capacitor, reset supervisor, or on-chip features). This
1402 keeps the signal asserted for some time after the external reset got
1403 deasserted.
1404
1405 @section reset_config
1406
1407 @b{Note:} To maintainer types and integrators. Where exactly the
1408 ``reset configuration'' goes is a good question. It touches several
1409 things at once. In the end, if you have a board file - the board file
1410 should define it and assume 100% that the DONGLE supports
1411 anything. However, that does not mean the target should not also make
1412 not of something the silicon vendor has done inside the
1413 chip. @i{Grr.... nothing is every pretty.}
1414
1415 @* @b{Problems:}
1416 @enumerate
1417 @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
1418 @item Every board is also slightly different; some boards tie TRST and SRST together.
1419 @item Every chip is slightly different; some chips internally tie the two signals together.
1420 @item Some may not impliment all of the signals the same way.
1421 @item Some signals might be push-pull, others open-drain/collector.
1422 @end enumerate
1423 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1424 reset the TAP via TRST and send commands through the JTAG tap to halt
1425 the CPU at the reset vector before the 1st instruction is executed,
1426 and finally release the SRST signal.
1427 @*Depending upon your board vendor, your chip vendor, etc, these
1428 signals may have slightly different names.
1429
1430 OpenOCD defines these signals in these terms:
1431 @itemize @bullet
1432 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1433 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1434 @end itemize
1435
1436 The Command:
1437
1438 @itemize @bullet
1439 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1440 @cindex reset_config
1441 @* The @t{reset_config} command tells OpenOCD the reset configuration
1442 of your combination of Dongle, Board, and Chips.
1443 If the JTAG interface provides SRST, but the target doesn't connect
1444 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1445 be @option{none}, @option{trst_only}, @option{srst_only} or
1446 @option{trst_and_srst}.
1447
1448 [@var{combination}] is an optional value specifying broken reset
1449 signal implementations. @option{srst_pulls_trst} states that the
1450 testlogic is reset together with the reset of the system (e.g. Philips
1451 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1452 the system is reset together with the test logic (only hypothetical, I
1453 haven't seen hardware with such a bug, and can be worked around).
1454 @option{combined} imples both @option{srst_pulls_trst} and
1455 @option{trst_pulls_srst}. The default behaviour if no option given is
1456 @option{separate}.
1457
1458 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1459 driver type of the reset lines to be specified. Possible values are
1460 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1461 test reset signal, and @option{srst_open_drain} (default) and
1462 @option{srst_push_pull} for the system reset. These values only affect
1463 JTAG interfaces with support for different drivers, like the Amontec
1464 JTAGkey and JTAGAccelerator.
1465
1466 @comment - end command
1467 @end itemize
1468
1469
1470
1471 @node Tap Creation
1472 @chapter Tap Creation
1473 @cindex tap creation
1474 @cindex tap configuration
1475
1476 In order for OpenOCD to control a target, a JTAG tap must be
1477 defined/created.
1478
1479 Commands to create taps are normally found in a configuration file and
1480 are not normally typed by a human.
1481
1482 When a tap is created a @b{dotted.name} is created for the tap. Other
1483 commands use that dotted.name to manipulate or refer to the tap.
1484
1485 Tap Uses:
1486 @itemize @bullet
1487 @item @b{Debug Target} A tap can be used by a GDB debug target
1488 @item @b{Flash Programing} Some chips program the flash via JTAG
1489 @item @b{Boundry Scan} Some chips support boundry scan.
1490 @end itemize
1491
1492
1493 @section jtag newtap
1494 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1495 @cindex jtag_device
1496 @cindex jtag newtap
1497 @cindex tap
1498 @cindex tap order
1499 @cindex tap geometry
1500
1501 @comment START options
1502 @itemize @bullet
1503 @item @b{CHIPNAME}
1504 @* is a symbolic name of the chip.
1505 @item @b{TAPNAME}
1506 @* is a symbol name of a tap present on the chip.
1507 @item @b{Required configparams}
1508 @* Every tap has 3 required configparams, and several ``optional
1509 parameters'', the required parameters are:
1510 @comment START REQUIRED
1511 @itemize @bullet
1512 @item @b{-irlen NUMBER} - the length in bits of the instruction register
1513 @item @b{-ircapture NUMBER} - the ID code capture command.
1514 @item @b{-irmask NUMBER} - the corresponding mask for the ir register.
1515 @comment END REQUIRED
1516 @end itemize
1517 An example of a FOOBAR Tap
1518 @example
1519 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1520 @end example
1521 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1522 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1523 [6,4,2,0] are checked.
1524
1525 @item @b{Optional configparams}
1526 @comment START Optional
1527 @itemize @bullet
1528 @item @b{-expected-id NUMBER}
1529 @* By default it is zero. If non-zero represents the
1530 expected tap ID used when the Jtag Chain is examined. See below.
1531 @item @b{-disable}
1532 @item @b{-enable}
1533 @* By default not specified the tap is enabled. Some chips have a
1534 jtag route controller (JRC) that is used to enable and/or disable
1535 specific jtag taps. You can later enable or disable any JTAG tap via
1536 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1537 DOTTED.NAME}
1538 @comment END Optional
1539 @end itemize
1540
1541 @comment END OPTIONS
1542 @end itemize
1543 @b{Notes:}
1544 @comment START NOTES
1545 @itemize @bullet
1546 @item @b{Technically}
1547 @* newtap is a sub command of the ``jtag'' command
1548 @item @b{Big Picture Background}
1549 @*GDB Talks to OpenOCD using the GDB protocol via
1550 tcpip. OpenOCD then uses the JTAG interface (the dongle) to
1551 control the JTAG chain on your board. Your board has one or more chips
1552 in a @i{daisy chain configuration}. Each chip may have one or more
1553 jtag taps. GDB ends up talking via OpenOCD to one of the taps.
1554 @item @b{NAME Rules}
1555 @*Names follow ``C'' symbol name rules (start with alpha ...)
1556 @item @b{TAPNAME - Conventions}
1557 @itemize @bullet
1558 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1559 @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1560 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1561 @item @b{bs} - for boundary scan if this is a seperate tap.
1562 @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
1563 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1564 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1565 @item @b{When in doubt} - use the chip makers name in their data sheet.
1566 @end itemize
1567 @item @b{DOTTED.NAME}
1568 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1569 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1570 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1571 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1572 numerous other places to refer to various taps.
1573 @item @b{ORDER}
1574 @* The order this command appears via the config files is
1575 important.
1576 @item @b{Multi Tap Example}
1577 @* This example is based on the ST Microsystems STR912. See the ST
1578 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1579 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
1580
1581 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1582 @*@b{checked: 28/nov/2008}
1583
1584 The diagram shows the TDO pin connects to the flash tap, flash TDI
1585 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1586 tap which then connects to the TDI pin.
1587
1588 @example
1589 # The order is...
1590 # create tap: 'str912.flash'
1591 jtag newtap str912 flash ... params ...
1592 # create tap: 'str912.cpu'
1593 jtag newtap str912 cpu ... params ...
1594 # create tap: 'str912.bs'
1595 jtag newtap str912 bs ... params ...
1596 @end example
1597
1598 @item @b{Note: Deprecated} - Index Numbers
1599 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1600 feature is still present, however its use is highly discouraged and
1601 should not be counted upon.
1602 @item @b{Multiple chips}
1603 @* If your board has multiple chips, you should be
1604 able to @b{source} two configuration files, in the proper order, and
1605 have the taps created in the proper order.
1606 @comment END NOTES
1607 @end itemize
1608 @comment at command level
1609 @comment DOCUMENT old command
1610 @section jtag_device - REMOVED
1611 @example
1612 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1613 @end example
1614 @cindex jtag_device
1615
1616 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1617 by the ``jtag newtap'' command. The documentation remains here so that
1618 one can easily convert the old syntax to the new syntax. About the old
1619 syntax: The old syntax is positional, ie: The 3rd parameter is the
1620 ``irmask''. The new syntax requires named prefixes, and supports
1621 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1622 @b{jtag newtap} command for details.
1623 @example
1624 OLD: jtag_device 8 0x01 0xe3 0xfe
1625 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1626 @end example
1627
1628 @section Enable/Disable Taps
1629 @b{Note:} These commands are intended to be used as a machine/script
1630 interface. Humans might find the ``scan_chain'' command more helpful
1631 when querying the state of the JTAG taps.
1632
1633 @b{By default, all taps are enabled}
1634
1635 @itemize @bullet
1636 @item @b{jtag tapenable} @var{DOTTED.NAME}
1637 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1638 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1639 @end itemize
1640 @cindex tap enable
1641 @cindex tap disable
1642 @cindex JRC
1643 @cindex route controller
1644
1645 These commands are used when your target has a JTAG Route controller
1646 that effectively adds or removes a tap from the jtag chain in a
1647 non-standard way.
1648
1649 The ``standard way'' to remove a tap would be to place the tap in
1650 bypass mode. But with the advent of modern chips, this is not always a
1651 good solution. Some taps operate slowly, others operate fast, and
1652 there are other JTAG clock syncronization problems one must face. To
1653 solve that problem, the JTAG Route controller was introduced. Rather
1654 then ``bypass'' the tap, the tap is completely removed from the
1655 circuit and skipped.
1656
1657
1658 From OpenOCD's view point, a JTAG TAP is in one of 3 states:
1659
1660 @itemize @bullet
1661 @item @b{Enabled - Not In ByPass} and has a variable bit length
1662 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1663 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1664 @end itemize
1665
1666 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1667 @b{Historical note:} this feature was added 28/nov/2008
1668
1669 @b{jtag tapisenabled DOTTED.NAME}
1670
1671 This command returns 1 if the named tap is currently enabled, 0 if not.
1672 This command exists so that scripts that manipulate a JRC (like the
1673 Omap3530 has) can determine if OpenOCD thinks a tap is presently
1674 enabled, or disabled.
1675
1676 @page
1677 @node Target Configuration
1678 @chapter Target Configuration
1679
1680 This chapter discusses how to create a GDB Debug Target. Before
1681 creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
1682
1683 @section targets [NAME]
1684 @b{Note:} This command name is PLURAL - not singular.
1685
1686 With NO parameter, this plural @b{targets} command lists all known
1687 targets in a human friendly form.
1688
1689 With a parameter, this pural @b{targets} command sets the current
1690 target to the given name. (ie: If there are multiple debug targets)
1691
1692 Example:
1693 @verbatim
1694 (gdb) mon targets
1695 CmdName Type Endian ChainPos State
1696 -- ---------- ---------- ---------- -------- ----------
1697 0: target0 arm7tdmi little 0 halted
1698 @end verbatim
1699
1700 @section target COMMANDS
1701 @b{Note:} This command name is SINGULAR - not plural. It is used to
1702 manipulate specific targets, to create targets and other things.
1703
1704 Once a target is created, a TARGETNAME (object) command is created;
1705 see below for details.
1706
1707 The TARGET command accepts these sub-commands:
1708 @itemize @bullet
1709 @item @b{create} .. parameters ..
1710 @* creates a new target, See below for details.
1711 @item @b{types}
1712 @* Lists all supported target types (perhaps some are not yet in this document).
1713 @item @b{names}
1714 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1715 @verbatim
1716 foreach t [target names] {
1717 puts [format "Target: %s\n" $t]
1718 }
1719 @end verbatim
1720 @item @b{current}
1721 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1722 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1723 @item @b{number} @b{NUMBER}
1724 @* Internally OpenOCD maintains a list of targets - in numerical index
1725 (0..N-1) this command returns the name of the target at index N.
1726 Example usage:
1727 @verbatim
1728 set thename [target number $x]
1729 puts [format "Target %d is: %s\n" $x $thename]
1730 @end verbatim
1731 @item @b{count}
1732 @* Returns the number of targets known to OpenOCD (see number above)
1733 Example:
1734 @verbatim
1735 set c [target count]
1736 for { set x 0 } { $x < $c } { incr x } {
1737 # Assuming you have created this function
1738 print_target_details $x
1739 }
1740 @end verbatim
1741
1742 @end itemize
1743
1744 @section TARGETNAME (object) commands
1745 @b{Use:} Once a target is created, an ``object name'' that represents the
1746 target is created. By convention, the target name is identical to the
1747 tap name. In a multiple target system, one can preceed many common
1748 commands with a specific target name and effect only that target.
1749 @example
1750 str912.cpu mww 0x1234 0x42
1751 omap3530.cpu mww 0x5555 123
1752 @end example
1753
1754 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1755 good example is a on screen button, once a button is created a button
1756 has a name (a path in TK terms) and that name is useable as a 1st
1757 class command. For example in TK, one can create a button and later
1758 configure it like this:
1759
1760 @example
1761 # Create
1762 button .foobar -background red -command @{ foo @}
1763 # Modify
1764 .foobar configure -foreground blue
1765 # Query
1766 set x [.foobar cget -background]
1767 # Report
1768 puts [format "The button is %s" $x]
1769 @end example
1770
1771 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1772 button. Commands avaialble as a ``target object'' are:
1773
1774 @comment START targetobj commands.
1775 @itemize @bullet
1776 @item @b{configure} - configure the target; see Target Config/Cget Options below
1777 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1778 @item @b{curstate} - current target state (running, halt, etc)
1779 @item @b{eventlist}
1780 @* Intended for a human to see/read the currently configure target events.
1781 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1782 @comment start memory
1783 @itemize @bullet
1784 @item @b{mww} ...
1785 @item @b{mwh} ...
1786 @item @b{mwb} ...
1787 @item @b{mdw} ...
1788 @item @b{mdh} ...
1789 @item @b{mdb} ...
1790 @comment end memory
1791 @end itemize
1792 @item @b{Memory To Array, Array To Memory}
1793 @* These are aimed at a machine interface to memory
1794 @itemize @bullet
1795 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1796 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1797 @* Where:
1798 @* @b{ARRAYNAME} is the name of an array variable
1799 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1800 @* @b{ADDRESS} is the target memory address
1801 @* @b{COUNT} is the number of elements to process
1802 @end itemize
1803 @item @b{Used during ``reset''}
1804 @* These commands are used internally by the OpenOCD scripts to deal
1805 with odd reset situations and are not documented here.
1806 @itemize @bullet
1807 @item @b{arp_examine}
1808 @item @b{arp_poll}
1809 @item @b{arp_reset}
1810 @item @b{arp_halt}
1811 @item @b{arp_waitstate}
1812 @end itemize
1813 @item @b{invoke-event} @b{EVENT-NAME}
1814 @* Invokes the specific event manually for the target
1815 @end itemize
1816
1817 @section Target Events
1818 At various times, certain things can happen, or you want them to happen.
1819
1820 Examples:
1821 @itemize @bullet
1822 @item What should happen when GDB connects? Should your target reset?
1823 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1824 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1825 @end itemize
1826
1827 All of the above items are handled by target events.
1828
1829 To specify an event action, either during target creation, or later
1830 via ``$_TARGETNAME configure'' see this example.
1831
1832 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1833 target event name, and BODY is a tcl procedure or string of commands
1834 to execute.
1835
1836 The programmers model is the ``-command'' option used in Tcl/Tk
1837 buttons and events. Below are two identical examples, the first
1838 creates and invokes small procedure. The second inlines the procedure.
1839
1840 @example
1841 proc my_attach_proc @{ @} @{
1842 puts "RESET...."
1843 reset halt
1844 @}
1845 mychip.cpu configure -event gdb-attach my_attach_proc
1846 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1847 @end example
1848
1849 @section Current Events
1850 The following events are available:
1851 @itemize @bullet
1852 @item @b{debug-halted}
1853 @* The target has halted for debug reasons (ie: breakpoint)
1854 @item @b{debug-resumed}
1855 @* The target has resumed (ie: gdb said run)
1856 @item @b{early-halted}
1857 @* Occurs early in the halt process
1858 @item @b{examine-end}
1859 @* Currently not used (goal: when JTAG examine completes)
1860 @item @b{examine-start}
1861 @* Currently not used (goal: when JTAG examine starts)
1862 @item @b{gdb-attach}
1863 @* When GDB connects
1864 @item @b{gdb-detach}
1865 @* When GDB disconnects
1866 @item @b{gdb-end}
1867 @* When the taret has halted and GDB is not doing anything (see early halt)
1868 @item @b{gdb-flash-erase-start}
1869 @* Before the GDB flash process tries to erase the flash
1870 @item @b{gdb-flash-erase-end}
1871 @* After the GDB flash process has finished erasing the flash
1872 @item @b{gdb-flash-write-start}
1873 @* Before GDB writes to the flash
1874 @item @b{gdb-flash-write-end}
1875 @* After GDB writes to the flash
1876 @item @b{gdb-start}
1877 @* Before the taret steps, gdb is trying to start/resume the tarfget
1878 @item @b{halted}
1879 @* The target has halted
1880 @item @b{old-gdb_program_config}
1881 @* DO NOT USE THIS: Used internally
1882 @item @b{old-pre_resume}
1883 @* DO NOT USE THIS: Used internally
1884 @item @b{reset-assert-pre}
1885 @* Before reset is asserted on the tap.
1886 @item @b{reset-assert-post}
1887 @* Reset is now asserted on the tap.
1888 @item @b{reset-deassert-pre}
1889 @* Reset is about to be released on the tap
1890 @item @b{reset-deassert-post}
1891 @* Reset has been released on the tap
1892 @item @b{reset-end}
1893 @* Currently not used.
1894 @item @b{reset-halt-post}
1895 @* Currently not usd
1896 @item @b{reset-halt-pre}
1897 @* Currently not used
1898 @item @b{reset-init}
1899 @* Currently not used
1900 @item @b{reset-start}
1901 @* Currently not used
1902 @item @b{reset-wait-pos}
1903 @* Currently not used
1904 @item @b{reset-wait-pre}
1905 @* Currently not used
1906 @item @b{resume-start}
1907 @* Before any target is resumed
1908 @item @b{resume-end}
1909 @* After all targets have resumed
1910 @item @b{resume-ok}
1911 @* Success
1912 @item @b{resumed}
1913 @* Target has resumed
1914 @item @b{tap-enable}
1915 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
1916 @example
1917 jtag configure DOTTED.NAME -event tap-enable @{
1918 puts "Enabling CPU"
1919 ...
1920 @}
1921 @end example
1922 @item @b{tap-disable}
1923 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
1924 @example
1925 jtag configure DOTTED.NAME -event tap-disable @{
1926 puts "Disabling CPU"
1927 ...
1928 @}
1929 @end example
1930 @end itemize
1931
1932
1933 @section target create
1934 @cindex target
1935 @cindex target creation
1936
1937 @example
1938 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1939 @end example
1940 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1941 @comment START params
1942 @itemize @bullet
1943 @item @b{NAME}
1944 @* Is the name of the debug target. By convention it should be the tap
1945 DOTTED.NAME, this name is also used to create the target object
1946 command.
1947 @item @b{TYPE}
1948 @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
1949 @comment START types
1950 @itemize @minus
1951 @item @b{arm7tdmi}
1952 @item @b{arm720t}
1953 @item @b{arm9tdmi}
1954 @item @b{arm920t}
1955 @item @b{arm922t}
1956 @item @b{arm926ejs}
1957 @item @b{arm966e}
1958 @item @b{cortex_m3}
1959 @item @b{feroceon}
1960 @item @b{xscale}
1961 @item @b{arm11}
1962 @item @b{mips_m4k}
1963 @comment end TYPES
1964 @end itemize
1965 @item @b{PARAMS}
1966 @*PARAMs are various target configure parameters, the following are mandatory
1967 at configuration:
1968 @comment START mandatory
1969 @itemize @bullet
1970 @item @b{-endian big|little}
1971 @item @b{-chain-position DOTTED.NAME}
1972 @comment end MANDATORY
1973 @end itemize
1974 @comment END params
1975 @end itemize
1976
1977 @section Target Config/Cget Options
1978 These options can be specified when the target is created, or later
1979 via the configure option or to query the target via cget.
1980 @itemize @bullet
1981 @item @b{-type} - returns the target type
1982 @item @b{-event NAME BODY} see Target events
1983 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
1984 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
1985 @item @b{-work-area-size [ADDRESS]} specify/set the work area
1986 @item @b{-work-area-backup [0|1]} does the work area get backed up
1987 @item @b{-endian [big|little]}
1988 @item @b{-variant [NAME]} some chips have varients OpenOCD needs to know about
1989 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
1990 @end itemize
1991 Example:
1992 @example
1993 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
1994 set name [target number $x]
1995 set y [$name cget -endian]
1996 set z [$name cget -type]
1997 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
1998 @}
1999 @end example
2000
2001 @section Target Varients
2002 @itemize @bullet
2003 @item @b{arm7tdmi}
2004 @* Unknown (please write me)
2005 @item @b{arm720t}
2006 @* Unknown (please write me) (simular to arm7tdmi)
2007 @item @b{arm9tdmi}
2008 @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
2009 This enables the hardware single-stepping support found on these
2010 cores.
2011 @item @b{arm920t}
2012 @* None.
2013 @item @b{arm966e}
2014 @* None (this is also used as the ARM946)
2015 @item @b{cortex_m3}
2016 @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
2017 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2018 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2019 be detected and the normal reset behaviour used.
2020 @item @b{xscale}
2021 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2022 @item @b{arm11}
2023 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2024 @item @b{mips_m4k}
2025 @* Use variant @option{ejtag_srst} when debugging targets that do not
2026 provide a functional SRST line on the EJTAG connector. This causes
2027 OpenOCD to instead use an EJTAG software reset command to reset the
2028 processor. You still need to enable @option{srst} on the reset
2029 configuration command to enable OpenOCD hardware reset functionality.
2030 @comment END varients
2031 @end itemize
2032 @section working_area - Command Removed
2033 @cindex working_area
2034 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2035 @* This documentation remains because there are existing scripts that
2036 still use this that need to be converted.
2037 @example
2038 working_area target# address size backup| [virtualaddress]
2039 @end example
2040 @* The target# is a the 0 based target numerical index.
2041
2042 This command specifies a working area for the debugger to use. This
2043 may be used to speed-up downloads to target memory and flash
2044 operations, or to perform otherwise unavailable operations (some
2045 coprocessor operations on ARM7/9 systems, for example). The last
2046 parameter decides whether the memory should be preserved
2047 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
2048 possible, use a working_area that doesn't need to be backed up, as
2049 performing a backup slows down operation.
2050
2051 @node Flash Configuration
2052 @chapter Flash Programing
2053 @cindex Flash Configuration
2054
2055 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2056 flash that a micro may boot from. Perhaps you the reader would like to
2057 contribute support for this.
2058
2059 Flash Steps:
2060 @enumerate
2061 @item Configure via the command @b{flash bank}
2062 @* Normally this is done in a configuration file.
2063 @item Operate on the flash via @b{flash SOMECOMMAND}
2064 @* Often commands to manipulate the flash are typed by a human, or run
2065 via a script in some automated way. For example: To program the boot
2066 flash on your board.
2067 @item GDB Flashing
2068 @* Flashing via GDB requires the flash be configured via ``flash
2069 bank'', and the GDB flash features be enabled. See the Daemon
2070 configuration section for more details.
2071 @end enumerate
2072
2073 @section Flash commands
2074 @cindex Flash commands
2075 @subsection flash banks
2076 @b{flash banks}
2077 @cindex flash banks
2078 @*List configured flash banks
2079 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2080 @subsection flash info
2081 @b{flash info} <@var{num}>
2082 @cindex flash info
2083 @*Print info about flash bank <@option{num}>
2084 @subsection flash probe
2085 @b{flash probe} <@var{num}>
2086 @cindex flash probe
2087 @*Identify the flash, or validate the parameters of the configured flash. Operation
2088 depends on the flash type.
2089 @subsection flash erase_check
2090 @b{flash erase_check} <@var{num}>
2091 @cindex flash erase_check
2092 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2093 updates the erase state information displayed by @option{flash info}. That means you have
2094 to issue an @option{erase_check} command after erasing or programming the device to get
2095 updated information.
2096 @subsection flash protect_check
2097 @b{flash protect_check} <@var{num}>
2098 @cindex flash protect_check
2099 @*Check protection state of sectors in flash bank <num>.
2100 @option{flash erase_sector} using the same syntax.
2101 @subsection flash erase_sector
2102 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2103 @cindex flash erase_sector
2104 @anchor{flash erase_sector}
2105 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2106 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2107 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2108 the CFI driver).
2109 @subsection flash erase_address
2110 @b{flash erase_address} <@var{address}> <@var{length}>
2111 @cindex flash erase_address
2112 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2113 @subsection flash write_bank
2114 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2115 @cindex flash write_bank
2116 @anchor{flash write_bank}
2117 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2118 <@option{offset}> bytes from the beginning of the bank.
2119 @subsection flash write_image
2120 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2121 @cindex flash write_image
2122 @anchor{flash write_image}
2123 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2124 [@var{offset}] can be specified and the file [@var{type}] can be specified
2125 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2126 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2127 if the @option{erase} parameter is given.
2128 @subsection flash protect
2129 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2130 @cindex flash protect
2131 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2132 <@var{last}> of @option{flash bank} <@var{num}>.
2133
2134 @subsection mFlash commands
2135 @cindex mFlash commands
2136 @itemize @bullet
2137 @item @b{mflash probe}
2138 @cindex mflash probe
2139 Probe mflash.
2140 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2141 @cindex mflash write
2142 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2143 <@var{offset}> bytes from the beginning of the bank.
2144 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2145 @cindex mflash dump
2146 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2147 to a <@var{file}>.
2148 @end itemize
2149
2150 @section flash bank command
2151 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2152
2153 @example
2154 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2155 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2156 @end example
2157 @cindex flash bank
2158 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2159 and <@var{bus_width}> bytes using the selected flash <driver>.
2160
2161 @subsection External Flash - cfi options
2162 @cindex cfi options
2163 CFI flash are external flash chips - often they are connected to a
2164 specific chip select on the micro. By default at hard reset most
2165 micros have the ablity to ``boot'' from some flash chip - typically
2166 attached to the chips CS0 pin.
2167
2168 For other chip selects: OpenOCD does not know how to configure, or
2169 access a specific chip select. Instead you the human might need to via
2170 other commands (like: mww) configure additional chip selects, or
2171 perhaps configure a GPIO pin that controls the ``write protect'' pin
2172 on the FLASH chip.
2173
2174 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2175 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2176 @*CFI flashes require the number of the target they're connected to as an additional
2177 argument. The CFI driver makes use of a working area (specified for the target)
2178 to significantly speed up operation.
2179
2180 @var{chip_width} and @var{bus_width} are specified in bytes.
2181
2182 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
2183
2184 @var{x16_as_x8} ???
2185
2186 @subsection Internal Flash (Micro Controllers)
2187 @subsubsection lpc2000 options
2188 @cindex lpc2000 options
2189
2190 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2191 <@var{clock}> [@var{calc_checksum}]
2192 @*LPC flashes don't require the chip and bus width to be specified. Additional
2193 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2194 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2195 of the target this flash belongs to (first is 0), the frequency at which the core
2196 is currently running (in kHz - must be an integral number), and the optional keyword
2197 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2198 vector table.
2199
2200
2201 @subsubsection at91sam7 options
2202 @cindex at91sam7 options
2203
2204 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2205 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2206 reading the chip-id and type.
2207
2208 @subsubsection str7 options
2209 @cindex str7 options
2210
2211 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2212 @*variant can be either STR71x, STR73x or STR75x.
2213
2214 @subsubsection str9 options
2215 @cindex str9 options
2216
2217 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2218 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
2219 @example
2220 str9x flash_config 0 4 2 0 0x80000
2221 @end example
2222 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2223
2224 @subsubsection str9 options (str9xpec driver)
2225
2226 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2227 @*Before using the flash commands the turbo mode will need enabling using str9xpec
2228 @option{enable_turbo} <@var{num>.}
2229
2230 Only use this driver for locking/unlocking the device or configuring the option bytes.
2231 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2232
2233 @subsubsection stellaris (LM3Sxxx) options
2234 @cindex stellaris (LM3Sxxx) options
2235
2236 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2237 @*stellaris flash plugin only require the @var{target#}.
2238
2239 @subsubsection stm32x options
2240 @cindex stm32x options
2241
2242 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2243 @*stm32x flash plugin only require the @var{target#}.
2244
2245 @subsubsection aduc702x options
2246 @cindex aduc702x options
2247
2248 @b{flash bank aduc702x} 0 0 0 0 <@var{target#}>
2249 @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target#} argument (all devices in this family have the same memory layout).
2250
2251 @subsection mFlash configuration
2252 @cindex mFlash configuration
2253 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2254 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2255 @cindex mflash bank
2256 @*Configures a mflash for <@var{soc}> host bank at
2257 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2258 order. Pin number format is dependent on host GPIO calling convention.
2259 If WP or DPD pin was not used, write -1. Currently, mflash bank
2260 support s3c2440 and pxa270.
2261
2262 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2263 @example
2264 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2265 @end example
2266 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2267 @example
2268 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2269 @end example
2270
2271 @section Micro Controller Specific Flash Commands
2272
2273 @subsection AT91SAM7 specific commands
2274 @cindex AT91SAM7 specific commands
2275 The flash configuration is deduced from the chip identification register. The flash
2276 controller handles erases automatically on a page (128/265 byte) basis so erase is
2277 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2278 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2279 that can be erased separatly. Only an EraseAll command is supported by the controller
2280 for each flash plane and this is called with
2281 @itemize @bullet
2282 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2283 @*bulk erase flash planes first_plane to last_plane.
2284 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2285 @cindex at91sam7 gpnvm
2286 @*set or clear a gpnvm bit for the processor
2287 @end itemize
2288
2289 @subsection STR9 specific commands
2290 @cindex STR9 specific commands
2291 @anchor{STR9 specific commands}
2292 These are flash specific commands when using the str9xpec driver.
2293 @itemize @bullet
2294 @item @b{str9xpec enable_turbo} <@var{num}>
2295 @cindex str9xpec enable_turbo
2296 @*enable turbo mode, simply this will remove the str9 from the chain and talk
2297 directly to the embedded flash controller.
2298 @item @b{str9xpec disable_turbo} <@var{num}>
2299 @cindex str9xpec disable_turbo
2300 @*restore the str9 into jtag chain.
2301 @item @b{str9xpec lock} <@var{num}>
2302 @cindex str9xpec lock
2303 @*lock str9 device. The str9 will only respond to an unlock command that will
2304 erase the device.
2305 @item @b{str9xpec unlock} <@var{num}>
2306 @cindex str9xpec unlock
2307 @*unlock str9 device.
2308 @item @b{str9xpec options_read} <@var{num}>
2309 @cindex str9xpec options_read
2310 @*read str9 option bytes.
2311 @item @b{str9xpec options_write} <@var{num}>
2312 @cindex str9xpec options_write
2313 @*write str9 option bytes.
2314 @end itemize
2315
2316 Note: Before using the str9xpec driver here is some background info to help
2317 you better understand how the drivers works. OpenOCD has two flash drivers for
2318 the str9.
2319 @enumerate
2320 @item
2321 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2322 flash programming as it is faster than the @option{str9xpec} driver.
2323 @item
2324 Direct programming @option{str9xpec} using the flash controller, this is
2325 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2326 core does not need to be running to program using this flash driver. Typical use
2327 for this driver is locking/unlocking the target and programming the option bytes.
2328 @end enumerate
2329
2330 Before we run any cmds using the @option{str9xpec} driver we must first disable
2331 the str9 core. This example assumes the @option{str9xpec} driver has been
2332 configured for flash bank 0.
2333 @example
2334 # assert srst, we do not want core running
2335 # while accessing str9xpec flash driver
2336 jtag_reset 0 1
2337 # turn off target polling
2338 poll off
2339 # disable str9 core
2340 str9xpec enable_turbo 0
2341 # read option bytes
2342 str9xpec options_read 0
2343 # re-enable str9 core
2344 str9xpec disable_turbo 0
2345 poll on
2346 reset halt
2347 @end example
2348 The above example will read the str9 option bytes.
2349 When performing a unlock remember that you will not be able to halt the str9 - it
2350 has been locked. Halting the core is not required for the @option{str9xpec} driver
2351 as mentioned above, just issue the cmds above manually or from a telnet prompt.
2352
2353 @subsection STR9 configuration
2354 @cindex STR9 configuration
2355 @itemize @bullet
2356 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2357 <@var{BBADR}> <@var{NBBADR}>
2358 @cindex str9x flash_config
2359 @*Configure str9 flash controller.
2360 @example
2361 eg. str9x flash_config 0 4 2 0 0x80000
2362 This will setup
2363 BBSR - Boot Bank Size register
2364 NBBSR - Non Boot Bank Size register
2365 BBADR - Boot Bank Start Address register
2366 NBBADR - Boot Bank Start Address register
2367 @end example
2368 @end itemize
2369
2370 @subsection STR9 option byte configuration
2371 @cindex STR9 option byte configuration
2372 @itemize @bullet
2373 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2374 @cindex str9xpec options_cmap
2375 @*configure str9 boot bank.
2376 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2377 @cindex str9xpec options_lvdthd
2378 @*configure str9 lvd threshold.
2379 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2380 @cindex str9xpec options_lvdsel
2381 @*configure str9 lvd source.
2382 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2383 @cindex str9xpec options_lvdwarn
2384 @*configure str9 lvd reset warning source.
2385 @end itemize
2386
2387 @subsection STM32x specific commands
2388 @cindex STM32x specific commands
2389
2390 These are flash specific commands when using the stm32x driver.
2391 @itemize @bullet
2392 @item @b{stm32x lock} <@var{num}>
2393 @cindex stm32x lock
2394 @*lock stm32 device.
2395 @item @b{stm32x unlock} <@var{num}>
2396 @cindex stm32x unlock
2397 @*unlock stm32 device.
2398 @item @b{stm32x options_read} <@var{num}>
2399 @cindex stm32x options_read
2400 @*read stm32 option bytes.
2401 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2402 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2403 @cindex stm32x options_write
2404 @*write stm32 option bytes.
2405 @item @b{stm32x mass_erase} <@var{num}>
2406 @cindex stm32x mass_erase
2407 @*mass erase flash memory.
2408 @end itemize
2409
2410 @subsection Stellaris specific commands
2411 @cindex Stellaris specific commands
2412
2413 These are flash specific commands when using the Stellaris driver.
2414 @itemize @bullet
2415 @item @b{stellaris mass_erase} <@var{num}>
2416 @cindex stellaris mass_erase
2417 @*mass erase flash memory.
2418 @end itemize
2419
2420
2421 @node General Commands
2422 @chapter General Commands
2423 @cindex commands
2424
2425 The commands documented in this chapter here are common commands that
2426 you a human may want to type and see the output of. Configuration type
2427 commands are documented elsewhere.
2428
2429 Intent:
2430 @itemize @bullet
2431 @item @b{Source Of Commands}
2432 @* OpenOCD commands can occur in a configuration script (discussed
2433 elsewhere) or typed manually by a human or supplied programatically,
2434 or via one of several Tcp/Ip Ports.
2435
2436 @item @b{From the human}
2437 @* A human should interact with the Telnet interface (default port: 4444,
2438 or via GDB, default port 3333)
2439
2440 To issue commands from within a GDB session, use the @option{monitor}
2441 command, e.g. use @option{monitor poll} to issue the @option{poll}
2442 command. All output is relayed through the GDB session.
2443
2444 @item @b{Machine Interface}
2445 The TCL interface intent is to be a machine interface. The default TCL
2446 port is 5555.
2447 @end itemize
2448
2449
2450 @section Daemon Commands
2451
2452 @subsection sleep [@var{msec}]
2453 @cindex sleep
2454 @*Wait for n milliseconds before resuming. Useful in connection with script files
2455 (@var{script} command and @var{target_script} configuration).
2456
2457 @subsection shutdown
2458 @cindex shutdown
2459 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
2460
2461 @subsection debug_level [@var{n}]
2462 @cindex debug_level
2463 @anchor{debug_level}
2464 @*Display or adjust debug level to n<0-3>
2465
2466 @subsection fast [@var{enable|disable}]
2467 @cindex fast
2468 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2469 downloads and fast memory access will work if the JTAG interface isn't too fast and
2470 the core doesn't run at a too low frequency. Note that this option only changes the default
2471 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2472 individually.
2473
2474 The target specific "dangerous" optimisation tweaking options may come and go
2475 as more robust and user friendly ways are found to ensure maximum throughput
2476 and robustness with a minimum of configuration.
2477
2478 Typically the "fast enable" is specified first on the command line:
2479
2480 @example
2481 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2482 @end example
2483
2484 @subsection log_output <@var{file}>
2485 @cindex log_output
2486 @*Redirect logging to <file> (default: stderr)
2487
2488 @subsection script <@var{file}>
2489 @cindex script
2490 @*Execute commands from <file>
2491 Also see: ``source [find FILENAME]''
2492
2493 @section Target state handling
2494 @subsection power <@var{on}|@var{off}>
2495 @cindex reg
2496 @*Turn power switch to target on/off.
2497 No arguments: print status.
2498 Not all interfaces support this.
2499
2500 @subsection reg [@option{#}|@option{name}] [value]
2501 @cindex reg
2502 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2503 No arguments: list all available registers for the current target.
2504 Number or name argument: display a register
2505 Number or name and value arguments: set register value
2506
2507 @subsection poll [@option{on}|@option{off}]
2508 @cindex poll
2509 @*Poll the target for its current state. If the target is in debug mode, architecture
2510 specific information about the current state is printed. An optional parameter
2511 allows continuous polling to be enabled and disabled.
2512
2513 @subsection halt [@option{ms}]
2514 @cindex halt
2515 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2516 Default [@option{ms}] is 5 seconds if no arg given.
2517 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2518 will stop OpenOCD from waiting.
2519
2520 @subsection wait_halt [@option{ms}]
2521 @cindex wait_halt
2522 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2523 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2524 arg given.
2525
2526 @subsection resume [@var{address}]
2527 @cindex resume
2528 @*Resume the target at its current code position, or at an optional address.
2529 OpenOCD will wait 5 seconds for the target to resume.
2530
2531 @subsection step [@var{address}]
2532 @cindex step
2533 @*Single-step the target at its current code position, or at an optional address.
2534
2535 @subsection reset [@option{run}|@option{halt}|@option{init}]
2536 @cindex reset
2537 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2538
2539 With no arguments a "reset run" is executed
2540 @itemize @minus
2541 @item @b{run}
2542 @cindex reset run
2543 @*Let the target run.
2544 @item @b{halt}
2545 @cindex reset halt
2546 @*Immediately halt the target (works only with certain configurations).
2547 @item @b{init}
2548 @cindex reset init
2549 @*Immediately halt the target, and execute the reset script (works only with certain
2550 configurations)
2551 @end itemize
2552
2553 @subsection soft_reset_halt
2554 @cindex reset
2555 @*Requesting target halt and executing a soft reset. This often used
2556 when a target cannot be reset and halted. The target, after reset is
2557 released begins to execute code. OpenOCD attempts to stop the CPU and
2558 then sets the Program counter back at the reset vector. Unfortunatlly
2559 that code that was executed may have left hardware in an unknown
2560 state.
2561
2562
2563 @section Memory access commands
2564 @subsection meminfo
2565 display available ram memory.
2566 @subsection Memory Peek/Poke type commands
2567 These commands allow accesses of a specific size to the memory
2568 system. Often these are used to configure the current target in some
2569 special way. For example - one may need to write certian values to the
2570 SDRAM controller to enable SDRAM.
2571
2572 @enumerate
2573 @item To change the current target see the ``targets'' (plural) command
2574 @item In system level scripts these commands are depricated, please use the TARGET object versions.
2575 @end enumerate
2576
2577 @itemize @bullet
2578 @item @b{mdw} <@var{addr}> [@var{count}]
2579 @cindex mdw
2580 @*display memory words (32bit)
2581 @item @b{mdh} <@var{addr}> [@var{count}]
2582 @cindex mdh
2583 @*display memory half-words (16bit)
2584 @item @b{mdb} <@var{addr}> [@var{count}]
2585 @cindex mdb
2586 @*display memory bytes (8bit)
2587 @item @b{mww} <@var{addr}> <@var{value}>
2588 @cindex mww
2589 @*write memory word (32bit)
2590 @item @b{mwh} <@var{addr}> <@var{value}>
2591 @cindex mwh
2592 @*write memory half-word (16bit)
2593 @item @b{mwb} <@var{addr}> <@var{value}>
2594 @cindex mwb
2595 @*write memory byte (8bit)
2596 @end itemize
2597
2598 @section Image Loading Commands
2599 @subsection load_image
2600 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2601 @cindex load_image
2602 @anchor{load_image}
2603 @*Load image <@var{file}> to target memory at <@var{address}>
2604 @subsection fast_load_image
2605 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2606 @cindex fast_load_image
2607 @anchor{fast_load_image}
2608 @*Normally you should be using @b{load_image} or GDB load. However, for
2609 testing purposes or when IO overhead is significant(OpenOCD running on embedded
2610 host), then storing the image in memory and uploading the image to the target
2611 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2612 Arguments as @b{load_image}, but image is stored in OpenOCD host
2613 memory, i.e. does not affect target. This approach is also useful when profiling
2614 target programming performance as IO and target programming can easily be profiled
2615 seperately.
2616 @subsection fast_load
2617 @b{fast_load}
2618 @cindex fast_image
2619 @anchor{fast_image}
2620 @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
2621 @subsection dump_image
2622 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2623 @cindex dump_image
2624 @anchor{dump_image}
2625 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2626 (binary) <@var{file}>.
2627 @subsection verify_image
2628 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2629 @cindex verify_image
2630 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2631 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
2632
2633
2634 @section Breakpoint commands
2635 @cindex Breakpoint commands
2636 @itemize @bullet
2637 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2638 @cindex bp
2639 @*set breakpoint <address> <length> [hw]
2640 @item @b{rbp} <@var{addr}>
2641 @cindex rbp
2642 @*remove breakpoint <adress>
2643 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2644 @cindex wp
2645 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2646 @item @b{rwp} <@var{addr}>
2647 @cindex rwp
2648 @*remove watchpoint <adress>
2649 @end itemize
2650
2651 @section Misc Commands
2652 @cindex Other Target Commands
2653 @itemize
2654 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2655
2656 Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
2657 @end itemize
2658
2659 @section Target Specific Commands
2660 @cindex Target Specific Commands
2661
2662
2663 @page
2664 @section Architecture Specific Commands
2665 @cindex Architecture Specific Commands
2666
2667 @subsection ARMV4/5 specific commands
2668 @cindex ARMV4/5 specific commands
2669
2670 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2671 or Intel XScale (XScale isn't supported yet).
2672 @itemize @bullet
2673 @item @b{armv4_5 reg}
2674 @cindex armv4_5 reg
2675 @*Display a list of all banked core registers, fetching the current value from every
2676 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2677 register value.
2678 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2679 @cindex armv4_5 core_mode
2680 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2681 The target is resumed in the currently set @option{core_mode}.
2682 @end itemize
2683
2684 @subsection ARM7/9 specific commands
2685 @cindex ARM7/9 specific commands
2686
2687 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2688 ARM920t or ARM926EJ-S.
2689 @itemize @bullet
2690 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2691 @cindex arm7_9 dbgrq
2692 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2693 safe for all but ARM7TDMI--S cores (like Philips LPC).
2694 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2695 @cindex arm7_9 fast_memory_access
2696 @anchor{arm7_9 fast_memory_access}
2697 @*Allow OpenOCD to read and write memory without checking completion of
2698 the operation. This provides a huge speed increase, especially with USB JTAG
2699 cables (FT2232), but might be unsafe if used with targets running at a very low
2700 speed, like the 32kHz startup clock of an AT91RM9200.
2701 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2702 @cindex arm7_9 dcc_downloads
2703 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2704 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2705 unsafe, especially with targets running at a very low speed. This command was introduced
2706 with OpenOCD rev. 60.
2707 @end itemize
2708
2709 @subsection ARM720T specific commands
2710 @cindex ARM720T specific commands
2711
2712 @itemize @bullet
2713 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2714 @cindex arm720t cp15
2715 @*display/modify cp15 register <@option{num}> [@option{value}].
2716 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2717 @cindex arm720t md<bhw>_phys
2718 @*Display memory at physical address addr.
2719 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2720 @cindex arm720t mw<bhw>_phys
2721 @*Write memory at physical address addr.
2722 @item @b{arm720t virt2phys} <@var{va}>
2723 @cindex arm720t virt2phys
2724 @*Translate a virtual address to a physical address.
2725 @end itemize
2726
2727 @subsection ARM9TDMI specific commands
2728 @cindex ARM9TDMI specific commands
2729
2730 @itemize @bullet
2731 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2732 @cindex arm9tdmi vector_catch
2733 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2734 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2735 @option{irq} @option{fiq}.
2736
2737 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
2738 @end itemize
2739
2740 @subsection ARM966E specific commands
2741 @cindex ARM966E specific commands
2742
2743 @itemize @bullet
2744 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2745 @cindex arm966e cp15
2746 @*display/modify cp15 register <@option{num}> [@option{value}].
2747 @end itemize
2748
2749 @subsection ARM920T specific commands
2750 @cindex ARM920T specific commands
2751
2752 @itemize @bullet
2753 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2754 @cindex arm920t cp15
2755 @*display/modify cp15 register <@option{num}> [@option{value}].
2756 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2757 @cindex arm920t cp15i
2758 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2759 @item @b{arm920t cache_info}
2760 @cindex arm920t cache_info
2761 @*Print information about the caches found. This allows you to see if your target
2762 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2763 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2764 @cindex arm920t md<bhw>_phys
2765 @*Display memory at physical address addr.
2766 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2767 @cindex arm920t mw<bhw>_phys
2768 @*Write memory at physical address addr.
2769 @item @b{arm920t read_cache} <@var{filename}>
2770 @cindex arm920t read_cache
2771 @*Dump the content of ICache and DCache to a file.
2772 @item @b{arm920t read_mmu} <@var{filename}>
2773 @cindex arm920t read_mmu
2774 @*Dump the content of the ITLB and DTLB to a file.
2775 @item @b{arm920t virt2phys} <@var{va}>
2776 @cindex arm920t virt2phys
2777 @*Translate a virtual address to a physical address.
2778 @end itemize
2779
2780 @subsection ARM926EJS specific commands
2781 @cindex ARM926EJS specific commands
2782
2783 @itemize @bullet
2784 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2785 @cindex arm926ejs cp15
2786 @*display/modify cp15 register <@option{num}> [@option{value}].
2787 @item @b{arm926ejs cache_info}
2788 @cindex arm926ejs cache_info
2789 @*Print information about the caches found.
2790 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2791 @cindex arm926ejs md<bhw>_phys
2792 @*Display memory at physical address addr.
2793 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2794 @cindex arm926ejs mw<bhw>_phys
2795 @*Write memory at physical address addr.
2796 @item @b{arm926ejs virt2phys} <@var{va}>
2797 @cindex arm926ejs virt2phys
2798 @*Translate a virtual address to a physical address.
2799 @end itemize
2800
2801 @subsection CORTEX_M3 specific commands
2802 @cindex CORTEX_M3 specific commands
2803
2804 @itemize @bullet
2805 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2806 @cindex cortex_m3 maskisr
2807 @*Enable masking (disabling) interrupts during target step/resume.
2808 @end itemize
2809
2810 @page
2811 @section Debug commands
2812 @cindex Debug commands
2813 The following commands give direct access to the core, and are most likely
2814 only useful while debugging OpenOCD.
2815 @itemize @bullet
2816 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2817 @cindex arm7_9 write_xpsr
2818 @*Immediately write either the current program status register (CPSR) or the saved
2819 program status register (SPSR), without changing the register cache (as displayed
2820 by the @option{reg} and @option{armv4_5 reg} commands).
2821 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2822 <@var{0=cpsr},@var{1=spsr}>
2823 @cindex arm7_9 write_xpsr_im8
2824 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2825 operation (similar to @option{write_xpsr}).
2826 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2827 @cindex arm7_9 write_core_reg
2828 @*Write a core register, without changing the register cache (as displayed by the
2829 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2830 encoding of the [M4:M0] bits of the PSR.
2831 @end itemize
2832
2833 @section Target Requests
2834 @cindex Target Requests
2835 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2836 See libdcc in the contrib dir for more details.
2837 @itemize @bullet
2838 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
2839 @cindex target_request debugmsgs
2840 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
2841 @end itemize
2842
2843 @node JTAG Commands
2844 @chapter JTAG Commands
2845 @cindex JTAG commands
2846 Generally most people will not use the bulk of these commands. They
2847 are mostly used by the OpenOCD developers or those who need to
2848 directly manipulate the JTAG taps.
2849
2850 In general these commands control JTAG taps at a very low level. For
2851 example if you need to control a JTAG Route Controller (ie: the
2852 OMAP3530 on the Beagle Board has one) you might use these commands in
2853 a script or an event procedure.
2854 @section Commands
2855 @cindex Commands
2856 @itemize @bullet
2857 @item @b{scan_chain}
2858 @cindex scan_chain
2859 @*Print current scan chain configuration.
2860 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2861 @cindex jtag_reset
2862 @*Toggle reset lines.
2863 @item @b{endstate} <@var{tap_state}>
2864 @cindex endstate
2865 @*Finish JTAG operations in <@var{tap_state}>.
2866 @item @b{runtest} <@var{num_cycles}>
2867 @cindex runtest
2868 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2869 @item @b{statemove} [@var{tap_state}]
2870 @cindex statemove
2871 @*Move to current endstate or [@var{tap_state}]
2872 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2873 @cindex irscan
2874 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2875 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2876 @cindex drscan
2877 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2878 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2879 @cindex verify_ircapture
2880 @*Verify value captured during Capture-IR. Default is enabled.
2881 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2882 @cindex var
2883 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2884 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2885 @cindex field
2886 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2887 @end itemize
2888
2889 @section Tap states
2890 @cindex Tap states
2891 Available tap_states are:
2892 @itemize @bullet
2893 @item @b{RESET}
2894 @cindex RESET
2895 @item @b{IDLE}
2896 @cindex IDLE
2897 @item @b{DRSELECT}
2898 @cindex DRSELECT
2899 @item @b{DRCAPTURE}
2900 @cindex DRCAPTURE
2901 @item @b{DRSHIFT}
2902 @cindex DRSHIFT
2903 @item @b{DREXIT1}
2904 @cindex DREXIT1
2905 @item @b{DRPAUSE}
2906 @cindex DRPAUSE
2907 @item @b{DREXIT2}
2908 @cindex DREXIT2
2909 @item @b{DRUPDATE}
2910 @cindex DRUPDATE
2911 @item @b{IRSELECT}
2912 @cindex IRSELECT
2913 @item @b{IRCAPTURE}
2914 @cindex IRCAPTURE
2915 @item @b{IRSHIFT}
2916 @cindex IRSHIFT
2917 @item @b{IREXIT1}
2918 @cindex IREXIT1
2919 @item @b{IRPAUSE}
2920 @cindex IRPAUSE
2921 @item @b{IREXIT2}
2922 @cindex IREXIT2
2923 @item @b{IRUPDATE}
2924 @cindex IRUPDATE
2925 @end itemize
2926
2927
2928 @node TFTP
2929 @chapter TFTP
2930 @cindex TFTP
2931 If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
2932 be used to access files on PCs(either developer PC or some other PC).
2933
2934 The way this works on the ZY1000 is to prefix a filename by
2935 "/tftp/ip/" and append the tftp path on the tftp
2936 server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2937 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2938 if the file was hosted on the embedded host.
2939
2940 In order to achieve decent performance, you must choose a tftp server
2941 that supports a packet size bigger than the default packet size(512 bytes). There
2942 are numerous tftp servers out there(free and commercial) and you will have to do
2943 a bit of googling to find something that fits your requirements.
2944
2945 @node Sample Scripts
2946 @chapter Sample Scripts
2947 @cindex scripts
2948
2949 This page shows how to use the target library.
2950
2951 The configuration script can be divided in the following section:
2952 @itemize @bullet
2953 @item daemon configuration
2954 @item interface
2955 @item jtag scan chain
2956 @item target configuration
2957 @item flash configuration
2958 @end itemize
2959
2960 Detailed information about each section can be found at OpenOCD configuration.
2961
2962 @section AT91R40008 example
2963 @cindex AT91R40008 example
2964 To start OpenOCD with a target script for the AT91R40008 CPU and reset
2965 the CPU upon startup of the OpenOCD daemon.
2966 @example
2967 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
2968 @end example
2969
2970
2971 @node GDB and OpenOCD
2972 @chapter GDB and OpenOCD
2973 @cindex GDB and OpenOCD
2974 OpenOCD complies with the remote gdbserver protocol, and as such can be used
2975 to debug remote targets.
2976
2977 @section Connecting to GDB
2978 @cindex Connecting to GDB
2979 @anchor{Connecting to GDB}
2980 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
2981 instance 6.3 has a known bug where it produces bogus memory access
2982 errors, which has since been fixed: look up 1836 in
2983 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
2984
2985 @*OpenOCD can communicate with GDB in two ways:
2986 @enumerate
2987 @item
2988 A socket (tcp) connection is typically started as follows:
2989 @example
2990 target remote localhost:3333
2991 @end example
2992 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
2993 @item
2994 A pipe connection is typically started as follows:
2995 @example
2996 target remote | openocd --pipe
2997 @end example
2998 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
2999 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
3000 session.
3001 @end enumerate
3002
3003 @*To see a list of available OpenOCD commands type @option{monitor help} on the
3004 GDB commandline.
3005
3006 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3007 to be sent by the gdb server (OpenOCD) to GDB. Typical information includes
3008 packet size and device memory map.
3009
3010 Previous versions of OpenOCD required the following GDB options to increase
3011 the packet size and speed up GDB communication.
3012 @example
3013 set remote memory-write-packet-size 1024
3014 set remote memory-write-packet-size fixed
3015 set remote memory-read-packet-size 1024
3016 set remote memory-read-packet-size fixed
3017 @end example
3018 This is now handled in the @option{qSupported} PacketSize and should not be required.
3019
3020 @section Programming using GDB
3021 @cindex Programming using GDB
3022
3023 By default the target memory map is sent to GDB, this can be disabled by
3024 the following OpenOCD config option:
3025 @example
3026 gdb_memory_map disable
3027 @end example
3028 For this to function correctly a valid flash config must also be configured
3029 in OpenOCD. For faster performance you should also configure a valid
3030 working area.
3031
3032 Informing GDB of the memory map of the target will enable GDB to protect any
3033 flash area of the target and use hardware breakpoints by default. This means
3034 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3035 using a memory map. @xref{gdb_breakpoint_override}.
3036
3037 To view the configured memory map in GDB, use the gdb command @option{info mem}
3038 All other unasigned addresses within GDB are treated as RAM.
3039
3040 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
3041 this can be changed to the old behaviour by using the following GDB command.
3042 @example
3043 set mem inaccessible-by-default off
3044 @end example
3045
3046 If @option{gdb_flash_program enable} is also used, GDB will be able to
3047 program any flash memory using the vFlash interface.
3048
3049 GDB will look at the target memory map when a load command is given, if any
3050 areas to be programmed lie within the target flash area the vFlash packets
3051 will be used.
3052
3053 If the target needs configuring before GDB programming, an event
3054 script can be executed.
3055 @example
3056 $_TARGETNAME configure -event EVENTNAME BODY
3057 @end example
3058
3059 To verify any flash programming the GDB command @option{compare-sections}
3060 can be used.
3061
3062 @node TCL scripting API
3063 @chapter TCL scripting API
3064 @cindex TCL scripting API
3065 API rules
3066
3067 The commands are stateless. E.g. the telnet command line has a concept
3068 of currently active target, the Tcl API proc's take this sort of state
3069 information as an argument to each proc.
3070
3071 There are three main types of return values: single value, name value
3072 pair list and lists.
3073
3074 Name value pair. The proc 'foo' below returns a name/value pair
3075 list.
3076
3077 @verbatim
3078
3079 > set foo(me) Duane
3080 > set foo(you) Oyvind
3081 > set foo(mouse) Micky
3082 > set foo(duck) Donald
3083
3084 If one does this:
3085
3086 > set foo
3087
3088 The result is:
3089
3090 me Duane you Oyvind mouse Micky duck Donald
3091
3092 Thus, to get the names of the associative array is easy:
3093
3094 foreach { name value } [set foo] {
3095 puts "Name: $name, Value: $value"
3096 }
3097 @end verbatim
3098
3099 Lists returned must be relatively small. Otherwise a range
3100 should be passed in to the proc in question.
3101
3102 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
3103 is the low level API upon which "flash banks" is implemented.
3104
3105 @itemize @bullet
3106 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3107
3108 Read memory and return as a TCL array for script processing
3109 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3110
3111 Convert a TCL array to memory locations and write the values
3112 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3113
3114 Return information about the flash banks
3115 @end itemize
3116
3117 OpenOCD commands can consist of two words, e.g. "flash banks". The
3118 startup.tcl "unknown" proc will translate this into a tcl proc
3119 called "flash_banks".
3120
3121
3122 @node Upgrading
3123 @chapter Deprecated/Removed Commands
3124 @cindex Deprecated/Removed Commands
3125 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3126
3127 @itemize @bullet
3128 @item @b{arm7_9 fast_writes}
3129 @cindex arm7_9 fast_writes
3130 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3131 @item @b{arm7_9 force_hw_bkpts}
3132 @cindex arm7_9 force_hw_bkpts
3133 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3134 for flash if the gdb memory map has been set up(default when flash is declared in
3135 target configuration). @xref{gdb_breakpoint_override}.
3136 @item @b{arm7_9 sw_bkpts}
3137 @cindex arm7_9 sw_bkpts
3138 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3139 @item @b{daemon_startup}
3140 @cindex daemon_startup
3141 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3142 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3143 and @option{target cortex_m3 little reset_halt 0}.
3144 @item @b{dump_binary}
3145 @cindex dump_binary
3146 @*use @option{dump_image} command with same args. @xref{dump_image}.
3147 @item @b{flash erase}
3148 @cindex flash erase
3149 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3150 @item @b{flash write}
3151 @cindex flash write
3152 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3153 @item @b{flash write_binary}
3154 @cindex flash write_binary
3155 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3156 @item @b{flash auto_erase}
3157 @cindex flash auto_erase
3158 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3159 @item @b{load_binary}
3160 @cindex load_binary
3161 @*use @option{load_image} command with same args. @xref{load_image}.
3162 @item @b{run_and_halt_time}
3163 @cindex run_and_halt_time
3164 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3165 following commands:
3166 @smallexample
3167 reset run
3168 sleep 100
3169 halt
3170 @end smallexample
3171 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3172 @cindex target
3173 @*use the create subcommand of @option{target}.
3174 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3175 @cindex target_script
3176 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3177 @item @b{working_area}
3178 @cindex working_area
3179 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3180 @end itemize
3181
3182 @node FAQ
3183 @chapter FAQ
3184 @cindex faq
3185 @enumerate
3186 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3187 @cindex RTCK
3188 @cindex adaptive clocking
3189 @*
3190
3191 In digital circuit design it is often refered to as ``clock
3192 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
3193 operating at some speed, your target is operating at another. The two
3194 clocks are not synchronised, they are ``asynchronous''
3195
3196 In order for the two to work together they must be synchronised. Otherwise
3197 the two systems will get out of sync with each other and nothing will
3198 work. There are 2 basic options.
3199 @enumerate
3200 @item
3201 Use a special circuit.
3202 @item
3203 One clock must be some multiple slower the the other.
3204 @end enumerate
3205
3206 @b{Does this really matter?} For some chips and some situations, this
3207 is a non-issue (ie: A 500MHz ARM926) but for others - for example some
3208 ATMEL SAM7 and SAM9 chips start operation from reset at 32kHz -
3209 program/enable the oscillators and eventually the main clock. It is in
3210 those critical times you must slow the jtag clock to sometimes 1 to
3211 4kHz.
3212
3213 Imagine debugging that 500MHz ARM926 hand held battery powered device
3214 that ``deep sleeps'' at 32kHz between every keystroke. It can be
3215 painful.
3216
3217 @b{Solution #1 - A special circuit}
3218
3219 In order to make use of this your jtag dongle must support the RTCK
3220 feature. Not all dongles support this - keep reading!
3221
3222 The RTCK signal often found in some ARM chips is used to help with
3223 this problem. ARM has a good description of the problem described at
3224 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3225 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
3226 work? / how does adaptive clocking work?''.
3227
3228 The nice thing about adaptive clocking is that ``battery powered hand
3229 held device example'' - the adaptiveness works perfectly all the
3230 time. One can set a break point or halt the system in the deep power
3231 down code, slow step out until the system speeds up.
3232
3233 @b{Solution #2 - Always works - but may be slower}
3234
3235 Often this is a perfectly acceptable solution.
3236
3237 In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3238 the target clock speed. But what is that ``magic division'' it varies
3239 depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
3240 based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
3241 1/12 the clock speed.
3242
3243 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
3244
3245 You can still debug the 'lower power' situations - you just need to
3246 manually adjust the clock speed at every step. While painful and
3247 teadious, it is not always practical.
3248
3249 It is however easy to ``code your way around it'' - ie: Cheat a little
3250 have a special debug mode in your application that does a ``high power
3251 sleep''. If you are careful - 98% of your problems can be debugged
3252 this way.
3253
3254 To set the JTAG frequency use the command:
3255
3256 @example
3257 # Example: 1.234MHz
3258 jtag_khz 1234
3259 @end example
3260
3261
3262 @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
3263
3264 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3265 around Windows filenames.
3266
3267 @example
3268 > echo \a
3269
3270 > echo @{\a@}
3271 \a
3272 > echo "\a"
3273
3274 >
3275 @end example
3276
3277
3278 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3279
3280 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3281 claims to come with all the necessary dlls. When using Cygwin, try launching
3282 OpenOCD from the Cygwin shell.
3283
3284 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3285 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3286 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3287
3288 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3289 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
3290 software breakpoints consume one of the two available hardware breakpoints.
3291
3292 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
3293 and works sometimes fine.
3294
3295 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3296 clock at the time you're programming the flash. If you've specified the crystal's
3297 frequency, make sure the PLL is disabled, if you've specified the full core speed
3298 (e.g. 60MHz), make sure the PLL is enabled.
3299
3300 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3301 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3302 out while waiting for end of scan, rtck was disabled".
3303
3304 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3305 settings in your PC BIOS (ECP, EPP, and different versions of those).
3306
3307 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3308 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3309 memory read caused data abort".
3310
3311 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3312 beyond the last valid frame. It might be possible to prevent this by setting up
3313 a proper "initial" stack frame, if you happen to know what exactly has to
3314 be done, feel free to add this here.
3315
3316 @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
3317 stack before calling main(). What GDB is doing is ``climbing'' the run
3318 time stack by reading various values on the stack using the standard
3319 call frame for the target. GDB keeps going - until one of 2 things
3320 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3321 stackframes have been processed. By pushing ZEROs on the stack, GDB
3322 gracefully stops.
3323
3324 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3325 your C code, do the same, artifically push some zeros on to the stack,
3326 remember to pop them off when the ISR is done.
3327
3328 @b{Also note:} If you have a multi-threaded operating system, they
3329 often do not @b{in the intrest of saving memory} waste these few
3330 bytes. Painful...
3331
3332
3333 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3334 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3335
3336 This warning doesn't indicate any serious problem, as long as you don't want to
3337 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3338 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3339 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3340 independently. With this setup, it's not possible to halt the core right out of
3341 reset, everything else should work fine.
3342
3343 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3344 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3345 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3346 quit with an error message. Is there a stability issue with OpenOCD?
3347
3348 No, this is not a stability issue concerning OpenOCD. Most users have solved
3349 this issue by simply using a self-powered USB hub, which they connect their
3350 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3351 supply stable enough for the Amontec JTAGkey to be operated.
3352
3353 @b{Laptops running on battery have this problem too...}
3354
3355 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3356 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3357 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3358 What does that mean and what might be the reason for this?
3359
3360 First of all, the reason might be the USB power supply. Try using a self-powered
3361 hub instead of a direct connection to your computer. Secondly, the error code 4
3362 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3363 chip ran into some sort of error - this points us to a USB problem.
3364
3365 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3366 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3367 What does that mean and what might be the reason for this?
3368
3369 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3370 has closed the connection to OpenOCD. This might be a GDB issue.
3371
3372 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3373 are described, there is a parameter for specifying the clock frequency
3374 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3375 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3376 specified in kilohertz. However, I do have a quartz crystal of a
3377 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3378 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3379 clock frequency?
3380
3381 No. The clock frequency specified here must be given as an integral number.
3382 However, this clock frequency is used by the In-Application-Programming (IAP)
3383 routines of the LPC2000 family only, which seems to be very tolerant concerning
3384 the given clock frequency, so a slight difference between the specified clock
3385 frequency and the actual clock frequency will not cause any trouble.
3386
3387 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3388
3389 Well, yes and no. Commands can be given in arbitrary order, yet the
3390 devices listed for the JTAG scan chain must be given in the right
3391 order (jtag newdevice), with the device closest to the TDO-Pin being
3392 listed first. In general, whenever objects of the same type exist
3393 which require an index number, then these objects must be given in the
3394 right order (jtag newtap, targets and flash banks - a target
3395 references a jtag newtap and a flash bank references a target).
3396
3397 You can use the ``scan_chain'' command to verify and display the tap order.
3398
3399 @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
3400
3401 Many newer devices have multiple JTAG taps. For example: ST
3402 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3403 ``CortexM3'' tap. Example: The STM32 reference manual, Document ID:
3404 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3405 connected to the Boundary Scan Tap, which then connects to the
3406 CortexM3 Tap, which then connects to the TDO pin.
3407
3408 Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
3409 (2) The Boundary Scan Tap. If your board includes an additional JTAG
3410 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3411 place it before or after the stm32 chip in the chain. For example:
3412
3413 @itemize @bullet
3414 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3415 @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
3416 @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
3417 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3418 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3419 @end itemize
3420
3421 The ``jtag device'' commands would thus be in the order shown below. Note
3422
3423 @itemize @bullet
3424 @item jtag newtap Xilinx tap -irlen ...
3425 @item jtag newtap stm32 cpu -irlen ...
3426 @item jtag newtap stm32 bs -irlen ...
3427 @item # Create the debug target and say where it is
3428 @item target create stm32.cpu -chain-position stm32.cpu ...
3429 @end itemize
3430
3431
3432 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3433 log file, I can see these error messages: Error: arm7_9_common.c:561
3434 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3435
3436 TODO.
3437
3438 @end enumerate
3439
3440 @node TCL Crash Course
3441 @chapter TCL Crash Course
3442 @cindex TCL
3443
3444 Not everyone knows TCL - this is not intended to be a replacement for
3445 learning TCL, the intent of this chapter is to give you some idea of
3446 how the TCL Scripts work.
3447
3448 This chapter is written with two audiences in mind. (1) OpenOCD users
3449 who need to understand a bit more of how JIM-Tcl works so they can do
3450 something useful, and (2) those that want to add a new command to
3451 OpenOCD.
3452
3453 @section TCL Rule #1
3454 There is a famous joke, it goes like this:
3455 @enumerate
3456 @item Rule #1: The wife is always correct
3457 @item Rule #2: If you think otherwise, See Rule #1
3458 @end enumerate
3459
3460 The TCL equal is this:
3461
3462 @enumerate
3463 @item Rule #1: Everything is a string
3464 @item Rule #2: If you think otherwise, See Rule #1
3465 @end enumerate
3466
3467 As in the famous joke, the consequences of Rule #1 are profound. Once
3468 you understand Rule #1, you will understand TCL.
3469
3470 @section TCL Rule #1b
3471 There is a second pair of rules.
3472 @enumerate
3473 @item Rule #1: Control flow does not exist. Only commands
3474 @* For example: the classic FOR loop or IF statement is not a control
3475 flow item, they are commands, there is no such thing as control flow
3476 in TCL.
3477 @item Rule #2: If you think otherwise, See Rule #1
3478 @* Actually what happens is this: There are commands that by
3479 convention, act like control flow key words in other languages. One of
3480 those commands is the word ``for'', another command is ``if''.
3481 @end enumerate
3482
3483 @section Per Rule #1 - All Results are strings
3484 Every TCL command results in a string. The word ``result'' is used
3485 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3486 Everything is a string}
3487
3488 @section TCL Quoting Operators
3489 In life of a TCL script, there are two important periods of time, the
3490 difference is subtle.
3491 @enumerate
3492 @item Parse Time
3493 @item Evaluation Time
3494 @end enumerate
3495
3496 The two key items here are how ``quoted things'' work in TCL. TCL has
3497 three primary quoting constructs, the [square-brackets] the
3498 @{curly-braces@} and ``double-quotes''
3499
3500 By now you should know $VARIABLES always start with a $DOLLAR
3501 sign. BTW, to set a variable, you actually use the command ``set'', as
3502 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3503 = 1'' statement, but without the equal sign.
3504
3505 @itemize @bullet
3506 @item @b{[square-brackets]}
3507 @* @b{[square-brackets]} are command subsitution. It operates much
3508 like Unix Shell `back-ticks`. The result of a [square-bracket]
3509 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3510 string}. These two statments are roughly identical.
3511 @example
3512 # bash example
3513 X=`date`
3514 echo "The Date is: $X"
3515 # TCL example
3516 set X [date]
3517 puts "The Date is: $X"
3518 @end example
3519 @item @b{``double-quoted-things''}
3520 @* @b{``double-quoted-things''} are just simply quoted
3521 text. $VARIABLES and [square-brackets] are expanded in place - the
3522 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3523 is a string}
3524 @example
3525 set x "Dinner"
3526 puts "It is now \"[date]\", $x is in 1 hour"
3527 @end example
3528 @item @b{@{Curly-Braces@}}
3529 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3530 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3531 'single-quote' operators in BASH shell scripts, with the added
3532 feature: @{curly-braces@} nest, single quotes can not. @{@{@{this is
3533 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3534 28/nov/2008, Jim/OpenOCD does not have a date command.
3535 @end itemize
3536
3537 @section Consequences of Rule 1/2/3/4
3538
3539 The consequences of Rule 1 is profound.
3540
3541 @subsection Tokenizing & Execution.
3542
3543 Of course, whitespace, blank lines and #comment lines are handled in
3544 the normal way.
3545
3546 As a script is parsed, each (multi) line in the script file is
3547 tokenized and according to the quoting rules. After tokenizing, that
3548 line is immedatly executed.
3549
3550 Multi line statements end with one or more ``still-open''
3551 @{curly-braces@} which - eventually - a few lines later closes.
3552
3553 @subsection Command Execution
3554
3555 Remember earlier: There is no such thing as ``control flow''
3556 statements in TCL. Instead there are COMMANDS that simpily act like
3557 control flow operators.
3558
3559 Commands are executed like this:
3560
3561 @enumerate
3562 @item Parse the next line into (argc) and (argv[]).
3563 @item Look up (argv[0]) in a table and call its function.
3564 @item Repeat until End Of File.
3565 @end enumerate
3566
3567 It sort of works like this:
3568 @example
3569 for(;;)@{
3570 ReadAndParse( &argc, &argv );
3571
3572 cmdPtr = LookupCommand( argv[0] );
3573
3574 (*cmdPtr->Execute)( argc, argv );
3575 @}
3576 @end example
3577
3578 When the command ``proc'' is parsed (which creates a procedure
3579 function) it gets 3 parameters on the command line. @b{1} the name of
3580 the proc (function), @b{2} the list of parameters, and @b{3} the body
3581 of the function. Not the choice of words: LIST and BODY. The PROC
3582 command stores these items in a table somewhere so it can be found by
3583 ``LookupCommand()''
3584
3585 @subsection The FOR Command
3586
3587 The most interesting command to look at is the FOR command. In TCL,
3588 the FOR command is normally implimented in C. Remember, FOR is a
3589 command just like any other command.
3590
3591 When the ascii text containing the FOR command is parsed, the parser
3592 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3593 are:
3594
3595 @enumerate 0
3596 @item The ascii text 'for'
3597 @item The start text
3598 @item The test expression
3599 @item The next text
3600 @item The body text
3601 @end enumerate
3602
3603 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3604 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3605 Often many of those parameters are in @{curly-braces@} - thus the
3606 variables inside are not expanded or replaced until later.
3607
3608 Remember that every TCL command looks like the classic ``main( argc,
3609 argv )'' function in C. In JimTCL - they actually look like this:
3610
3611 @example
3612 int
3613 MyCommand( Jim_Interp *interp,
3614 int *argc,
3615 Jim_Obj * const *argvs );
3616 @end example
3617
3618 Real TCL is nearly identical. Although the newer versions have
3619 introduced a byte-code parser and intepreter, but at the core, it
3620 still operates in the same basic way.
3621
3622 @subsection FOR Command Implimentation
3623
3624 To understand TCL it is perhaps most helpful to see the FOR
3625 command. Remember, it is a COMMAND not a control flow structure.
3626
3627 In TCL there are two underying C helper functions.
3628
3629 Remember Rule #1 - You are a string.
3630
3631 The @b{first} helper parses and executes commands found in an ascii
3632 string. Commands can be seperated by semi-colons, or newlines. While
3633 parsing, variables are expanded per the quoting rules
3634
3635 The @b{second} helper evaluates an ascii string as a numerical
3636 expression and returns a value.
3637
3638 Here is an example of how the @b{FOR} command could be
3639 implimented. The pseudo code below does not show error handling.
3640 @example
3641 void Execute_AsciiString( void *interp, const char *string );
3642
3643 int Evaluate_AsciiExpression( void *interp, const char *string );
3644
3645 int
3646 MyForCommand( void *interp,
3647 int argc,
3648 char **argv )
3649 @{
3650 if( argc != 5 )@{
3651 SetResult( interp, "WRONG number of parameters");
3652 return ERROR;
3653 @}
3654
3655 // argv[0] = the ascii string just like C
3656
3657 // Execute the start statement.
3658 Execute_AsciiString( interp, argv[1] );
3659
3660 // Top of loop test
3661 for(;;)@{
3662 i = Evaluate_AsciiExpression(interp, argv[2]);
3663 if( i == 0 )
3664 break;
3665
3666 // Execute the body
3667 Execute_AsciiString( interp, argv[3] );
3668
3669 // Execute the LOOP part
3670 Execute_AsciiString( interp, argv[4] );
3671 @}
3672
3673 // Return no error
3674 SetResult( interp, "" );
3675 return SUCCESS;
3676 @}
3677 @end example
3678
3679 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3680 in the same basic way.
3681
3682 @section OpenOCD TCL Usage
3683
3684 @subsection source and find commands
3685 @b{Where:} In many configuration files
3686 @* Example: @b{ source [find FILENAME] }
3687 @*Remember the parsing rules
3688 @enumerate
3689 @item The FIND command is in square brackets.
3690 @* The FIND command is executed with the parameter FILENAME. It should
3691 find the full path to the named file. The RESULT is a string, which is
3692 subsituted on the orginal command line.
3693 @item The command source is executed with the resulting filename.
3694 @* SOURCE reads a file and executes as a script.
3695 @end enumerate
3696 @subsection format command
3697 @b{Where:} Generally occurs in numerous places.
3698 @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
3699 @b{sprintf()}.
3700 @b{Example}
3701 @example
3702 set x 6
3703 set y 7
3704 puts [format "The answer: %d" [expr $x * $y]]
3705 @end example
3706 @enumerate
3707 @item The SET command creates 2 variables, X and Y.
3708 @item The double [nested] EXPR command performs math
3709 @* The EXPR command produces numerical result as a string.
3710 @* Refer to Rule #1
3711 @item The format command is executed, producing a single string
3712 @* Refer to Rule #1.
3713 @item The PUTS command outputs the text.
3714 @end enumerate
3715 @subsection Body Or Inlined Text
3716 @b{Where:} Various TARGET scripts.
3717 @example
3718 #1 Good
3719 proc someproc @{@} @{
3720 ... multiple lines of stuff ...
3721 @}
3722 $_TARGETNAME configure -event FOO someproc
3723 #2 Good - no variables
3724 $_TARGETNAME confgure -event foo "this ; that;"
3725 #3 Good Curly Braces
3726 $_TARGETNAME configure -event FOO @{
3727 puts "Time: [date]"
3728 @}
3729 #4 DANGER DANGER DANGER
3730 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3731 @end example
3732 @enumerate
3733 @item The $_TARGETNAME is an OpenOCD variable convention.
3734 @*@b{$_TARGETNAME} represents the last target created, the value changes
3735 each time a new target is created. Remember the parsing rules. When
3736 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3737 the name of the target which happens to be a TARGET (object)
3738 command.
3739 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3740 @*There are 4 examples:
3741 @enumerate
3742 @item The TCLBODY is a simple string that happens to be a proc name
3743 @item The TCLBODY is several simple commands semi-colon seperated
3744 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3745 @item The TCLBODY is a string with variables that get expanded.
3746 @end enumerate
3747
3748 In the end, when the target event FOO occurs the TCLBODY is
3749 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3750 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3751
3752 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3753 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3754 and the text is evaluated. In case #4, they are replaced before the
3755 ``Target Object Command'' is executed. This occurs at the same time
3756 $_TARGETNAME is replaced. In case #4 the date will never
3757 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3758 Jim/OpenOCD does not have a date command@}
3759 @end enumerate
3760 @subsection Global Variables
3761 @b{Where:} You might discover this when writing your own procs @* In
3762 simple terms: Inside a PROC, if you need to access a global variable
3763 you must say so. Also see ``upvar''. Example:
3764 @example
3765 proc myproc @{ @} @{
3766 set y 0 #Local variable Y
3767 global x #Global variable X
3768 puts [format "X=%d, Y=%d" $x $y]
3769 @}
3770 @end example
3771 @section Other Tcl Hacks
3772 @b{Dynamic Variable Creation}
3773 @example
3774 # Dynamically create a bunch of variables.
3775 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3776 # Create var name
3777 set vn [format "BIT%d" $x]
3778 # Make it a global
3779 global $vn
3780 # Set it.
3781 set $vn [expr (1 << $x)]
3782 @}
3783 @end example
3784 @b{Dynamic Proc/Command Creation}
3785 @example
3786 # One "X" function - 5 uart functions.
3787 foreach who @{A B C D E@}
3788 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3789 @}
3790 @end example
3791
3792 @node Target library
3793 @chapter Target library
3794 @cindex Target library
3795
3796 OpenOCD comes with a target configuration script library. These scripts can be
3797 used as-is or serve as a starting point.
3798
3799 The target library is published together with the OpenOCD executable and
3800 the path to the target library is in the OpenOCD script search path.
3801 Similarly there are example scripts for configuring the JTAG interface.
3802
3803 The command line below uses the example parport configuration scripts
3804 that ship with OpenOCD, then configures the str710.cfg target and
3805 finally issues the init and reset command. The communication speed
3806 is set to 10kHz for reset and 8MHz for post reset.
3807
3808
3809 @example
3810 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3811 @end example
3812
3813
3814 To list the target scripts available:
3815
3816 @example
3817 $ ls /usr/local/lib/openocd/target
3818
3819 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3820 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3821 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3822 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3823 @end example
3824
3825
3826
3827 @include fdl.texi
3828
3829 @node OpenOCD Index
3830 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3831 @comment case issue with ``Index.html'' and ``index.html''
3832 @comment Occurs when creating ``--html --no-split'' output
3833 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3834 @unnumbered OpenOCD Index
3835
3836 @printindex cp
3837
3838 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)