Added note to user manual for packagers of OpenOCD
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD.
55 * Developers:: OpenOCD developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * TCL scripting API:: Tcl scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target library:: Target library
76 * FAQ:: Frequently Asked Questions
77 * TCL Crash Course:: TCL Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main index.
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) complient taps on your target board.
96
97 @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
98 Based, Parallel Port Based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
102 ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB Protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
125
126 @node Building
127 @chapter Building
128 @cindex building OpenOCD
129
130 @section Pre-Built Tools
131 If you are interested in getting actual work done rather than building
132 OpenOCD, then check if your interface supplier provides binaries for
133 you. Chances are that that binary is from some SVN version that is more
134 stable than SVN trunk where bleeding edge development takes place.
135
136 @section Packagers Please Read!
137
138 If you are a @b{PACKAGER} of OpenOCD if you
139
140 @enumerate
141 @item @b{Sell dongles} and include pre-built binaries
142 @item @b{Supply tools} ie: A complete development solution
143 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
144 @item @b{Build packages} ie: RPM files, or DEB files for a Linux Distro
145 @end enumerate
146
147 As a @b{PACKAGER} - you are at the top of the food chain. You solve
148 problems for downstream users. What you fix or solve - solves hundreds
149 if not thousands of user questions. If something does not work for you
150 please let us know. That said, would also like you to follow a few
151 suggestions:
152
153 @enumerate
154 @item @b{Always build with Printer Ports Enabled}
155 @item @b{Try where possible to use LIBFTDI + LIBUSB} You cover more bases
156 @end enumerate
157
158 It is your decision..
159
160 @itemize @bullet
161 @item @b{Why YES to LIBFTDI + LIBUSB}
162 @itemize @bullet
163 @item @b{LESS} work - libusb perhaps already there
164 @item @b{LESS} work - identical code multiple platforms
165 @item @b{MORE} dongles are supported
166 @item @b{MORE} platforms are supported
167 @item @b{MORE} complete solution
168 @end itemize
169 @item @b{Why not LIBFTDI + LIBUSB} (ie: ftd2xx instead)
170 @itemize @bullet
171 @item @b{LESS} Some say it is slower.
172 @item @b{LESS} complex to distribute (external dependencies)
173 @end itemize
174 @end itemize
175
176 @section Building From Source
177
178 You can download the current SVN version with SVN client of your choice from the
179 following repositories:
180
181 (@uref{svn://svn.berlios.de/openocd/trunk})
182
183 or
184
185 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
186
187 Using the SVN command line client, you can use the following command to fetch the
188 latest version (make sure there is no (non-svn) directory called "openocd" in the
189 current directory):
190
191 @example
192 svn checkout svn://svn.berlios.de/openocd/trunk openocd
193 @end example
194
195 Building OpenOCD requires a recent version of the GNU autotools.
196 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
197 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
198 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
199 paths, resulting in obscure dependency errors (This is an observation I've gathered
200 from the logs of one user - correct me if I'm wrong).
201
202 You further need the appropriate driver files, if you want to build support for
203 a FTDI FT2232 based interface:
204 @itemize @bullet
205 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
206 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
207 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
208 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
209 @end itemize
210
211 libftdi is supported under windows. Do not use versions earlier then 0.14.
212
213 In general, the D2XX driver provides superior performance (several times as fast),
214 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
215 a kernel module, only a user space library.
216
217 To build OpenOCD (on both Linux and Cygwin), use the following commands:
218 @example
219 ./bootstrap
220 @end example
221 Bootstrap generates the configure script, and prepares building on your system.
222 @example
223 ./configure [options, see below]
224 @end example
225 Configure generates the Makefiles used to build OpenOCD.
226 @example
227 make
228 make install
229 @end example
230 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
231
232 The configure script takes several options, specifying which JTAG interfaces
233 should be included:
234
235 @itemize @bullet
236 @item
237 @option{--enable-parport} - Bit bang pc printer ports.
238 @item
239 @option{--enable-parport_ppdev} - Parallel Port [see below]
240 @item
241 @option{--enable-parport_giveio} - Parallel Port [see below]
242 @item
243 @option{--enable-amtjtagaccel} - Parallel Port [Amontec, see below]
244 @item
245 @option{--enable-ft2232_ftd2xx} - Numerous USB Type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
246 @item
247 @option{--enable-ft2232_libftdi} - An open source (free) alternate to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin)
248 @item
249 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
250 @item
251 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only equal of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
252 @item
253 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static, specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. Shared is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
254 @item
255 @option{--enable-gw16012}
256 @item
257 @option{--enable-usbprog}
258 @item
259 @option{--enable-presto_libftdi}
260 @item
261 @option{--enable-presto_ftd2xx}
262 @item
263 @option{--enable-jlink} - From SEGGER
264 @item
265 @option{--enable-vsllink}
266 @item
267 @option{--enable-rlink} - Raisonance.com dongle.
268 @end itemize
269
270 @section Parallel Port Dongles
271
272 If you want to access the parallel port using the PPDEV interface you have to specify
273 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
274 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
275 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
276
277 @section FT2232C Based USB Dongles
278
279 There are 2 methods of using the FTD2232, either (1) using the
280 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
281 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
282
283 The FTDICHIP drivers come as either a (win32) ZIP file, or a (linux)
284 TAR.GZ file. You must unpack them ``some where'' convient. As of this
285 writing (12/26/2008) FTDICHIP does not supply means to install these
286 files ``in an appropriate place'' As a result, there are two
287 ``./configure'' options that help.
288
289 Below is an example build process:
290
291 1) Check out the latest version of ``openocd'' from SVN.
292
293 2) Download & Unpack either the Windows or Linux FTD2xx Drivers
294 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
295
296 @example
297 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
298 /home/duane/libftd2xx0.4.16 => the Linux TAR file contents.
299 @end example
300
301 3) Configure with these options:
302
303 @example
304 Cygwin FTCICHIP solution
305 ./configure --prefix=/home/duane/mytools \
306 --enable-ft2232_ftd2xx \
307 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
308
309 Linux FTDICHIP solution
310 ./configure --prefix=/home/duane/mytools \
311 --enable-ft2232_ftd2xx \
312 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
313
314 Cygwin/Linux LIBFTDI solution
315 Assumes:
316 1a) For Windows: The windows port of LIBUSB is in place.
317 1b) For Linux: libusb has been built and is inplace.
318
319 2) And libftdi has been built and installed
320 Note: libftdi - relies upon libusb.
321
322 ./configure --prefix=/home/duane/mytools \
323 --enable-ft2232_libftdi
324
325 @end example
326
327 4) Then just type ``make'', and perhaps ``make install''.
328
329
330 @section Miscellaneous configure options
331
332 @itemize @bullet
333 @item
334 @option{--enable-gccwarnings} - enable extra gcc warnings during build
335 @end itemize
336
337 @node JTAG Hardware Dongles
338 @chapter JTAG Hardware Dongles
339 @cindex dongles
340 @cindex ftdi
341 @cindex wiggler
342 @cindex zy1000
343 @cindex printer port
344 @cindex usb adapter
345 @cindex rtck
346
347 Defined: @b{dongle}: A small device that plugins into a computer and serves as
348 an adapter .... [snip]
349
350 In the OpenOCD case, this generally refers to @b{a small adapater} one
351 attaches to your computer via USB or the Parallel Printer Port. The
352 execption being the Zylin ZY1000 which is a small box you attach via
353 an ethernet cable.
354
355
356 @section Choosing a Dongle
357
358 There are three things you should keep in mind when choosing a dongle.
359
360 @enumerate
361 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
362 @item @b{Connection} Printer Ports - Does your computer have one?
363 @item @b{Connection} Is that long printer bit-bang cable practical?
364 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
365 @end enumerate
366
367 @section Stand alone Systems
368
369 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
370 dongle, but a standalone box.
371
372 @section USB FT2232 Based
373
374 There are many USB jtag dongles on the market, many of them are based
375 on a chip from ``Future Technology Devices International'' (FTDI)
376 known as the FTDI FT2232.
377
378 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
379
380 As of 28/Nov/2008, the following are supported:
381
382 @itemize @bullet
383 @item @b{usbjtag}
384 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
385 @item @b{jtagkey}
386 @* See: @url{http://www.amontec.com/jtagkey.shtml}
387 @item @b{oocdlink}
388 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
389 @item @b{signalyzer}
390 @* See: @url{http://www.signalyzer.com}
391 @item @b{evb_lm3s811}
392 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
393 @item @b{olimex-jtag}
394 @* See: @url{http://www.olimex.com}
395 @item @b{flyswatter}
396 @* See: @url{http://www.tincantools.com}
397 @item @b{turtelizer2}
398 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
399 @item @b{comstick}
400 @* Link: @url{http://www.hitex.com/index.php?id=383}
401 @item @b{stm32stick}
402 @* Link @url{http://www.hitex.com/stm32-stick}
403 @item @b{axm0432_jtag}
404 @* Axiom AXM-0432 Link @url{http://www.axman.com}
405 @end itemize
406
407 @section USB JLINK based
408 There are several OEM versions of the Segger @b{JLINK} adapter. It is
409 an example of a micro controller based JTAG adapter, it uses an
410 AT91SAM764 internally.
411
412 @itemize @bullet
413 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
414 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
415 @item @b{SEGGER JLINK}
416 @* Link: @url{http://www.segger.com/jlink.html}
417 @item @b{IAR J-Link}
418 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
419 @end itemize
420
421 @section USB RLINK based
422 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
423
424 @itemize @bullet
425 @item @b{Raisonance RLink}
426 @* Link: @url{http://www.raisonance.com/products/RLink.php}
427 @item @b{STM32 Primer}
428 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
429 @item @b{STM32 Primer2}
430 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
431 @end itemize
432
433 @section USB Other
434 @itemize @bullet
435 @item @b{USBprog}
436 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
437
438 @item @b{USB - Presto}
439 @* Link: @url{http://tools.asix.net/prg_presto.htm}
440
441 @item @b{Versaloon-Link}
442 @* Link: @url{http://www.simonqian.com/en/Versaloon}
443 @end itemize
444
445 @section IBM PC Parallel Printer Port Based
446
447 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
448 and the MacGraigor Wiggler. There are many clones and variations of
449 these on the market.
450
451 @itemize @bullet
452
453 @item @b{Wiggler} - There are many clones of this.
454 @* Link: @url{http://www.macraigor.com/wiggler.htm}
455
456 @item @b{DLC5} - From XILINX - There are many clones of this
457 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
458 produced, PDF schematics are easily found and it is easy to make.
459
460 @item @b{Amontec - JTAG Accelerator}
461 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
462
463 @item @b{GW16402}
464 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
465
466 @item @b{Wiggler2}
467 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
468
469 @item @b{Wiggler_ntrst_inverted}
470 @* Yet another variation - See the source code, src/jtag/parport.c
471
472 @item @b{old_amt_wiggler}
473 @* Unknown - probably not on the market today
474
475 @item @b{arm-jtag}
476 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
477
478 @item @b{chameleon}
479 @* Link: @url{http://www.amontec.com/chameleon.shtml}
480
481 @item @b{Triton}
482 @* Unknown.
483
484 @item @b{Lattice}
485 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
486
487 @item @b{flashlink}
488 @* From ST Microsystems, link:
489 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
490 Title: FlashLINK JTAG programing cable for PSD and uPSD
491
492 @end itemize
493
494 @section Other...
495 @itemize @bullet
496
497 @item @b{ep93xx}
498 @* An EP93xx based linux machine using the GPIO pins directly.
499
500 @item @b{at91rm9200}
501 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
502
503 @end itemize
504
505 @node Running
506 @chapter Running
507 @cindex running OpenOCD
508 @cindex --configfile
509 @cindex --debug_level
510 @cindex --logfile
511 @cindex --search
512
513 The @option{--help} option shows:
514 @verbatim
515 bash$ openocd --help
516
517 --help | -h display this help
518 --version | -v display OpenOCD version
519 --file | -f use configuration file <name>
520 --search | -s dir to search for config files and scripts
521 --debug | -d set debug level <0-3>
522 --log_output | -l redirect log output to file <name>
523 --command | -c run <command>
524 --pipe | -p use pipes when talking to gdb
525 @end verbatim
526
527 By default OpenOCD reads the file configuration file ``openocd.cfg''
528 in the current directory. To specify a different (or multiple)
529 configuration file, you can use the ``-f'' option. For example:
530
531 @example
532 openocd -f config1.cfg -f config2.cfg -f config3.cfg
533 @end example
534
535 Once started, OpenOCD runs as a daemon, waiting for connections from
536 clients (Telnet, GDB, Other).
537
538 If you are having problems, you can enable internal debug messages via
539 the ``-d'' option.
540
541 Also it is possible to interleave commands w/config scripts using the
542 @option{-c} command line switch.
543
544 To enable debug output (when reporting problems or working on OpenOCD
545 itself), use the @option{-d} command line switch. This sets the
546 @option{debug_level} to "3", outputting the most information,
547 including debug messages. The default setting is "2", outputting only
548 informational messages, warnings and errors. You can also change this
549 setting from within a telnet or gdb session using @option{debug_level
550 <n>} @xref{debug_level}.
551
552 You can redirect all output from the daemon to a file using the
553 @option{-l <logfile>} switch.
554
555 Search paths for config/script files can be added to OpenOCD by using
556 the @option{-s <search>} switch. The current directory and the OpenOCD
557 target library is in the search path by default.
558
559 For details on the @option{-p} option. @xref{Connecting to GDB}.
560 Option @option{-p} is not currently supported under native win32.
561
562 Note! OpenOCD will launch the GDB & telnet server even if it can not
563 establish a connection with the target. In general, it is possible for
564 the JTAG controller to be unresponsive until the target is set up
565 correctly via e.g. GDB monitor commands in a GDB init script.
566
567 @node Simple Configuration Files
568 @chapter Simple Configuration Files
569 @cindex configuration
570
571 @section Outline
572 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
573
574 @enumerate
575 @item A small openocd.cfg file which ``sources'' other configuration files
576 @item A monolithic openocd.cfg file
577 @item Many -f filename options on the command line
578 @item Your Mixed Solution
579 @end enumerate
580
581 @section Small configuration file method
582
583 This is the prefered method, it is simple and is works well for many
584 people. The developers of OpenOCD would encourage you to use this
585 method. If you create a new configuration please email new
586 configurations to the development list.
587
588 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
589
590 @example
591 source [find interface/signalyzer.cfg]
592
593 # Change the default telnet port...
594 telnet_port 4444
595 # GDB connects here
596 gdb_port 3333
597 # GDB can also flash my flash!
598 gdb_memory_map enable
599 gdb_flash_program enable
600
601 source [find target/sam7x256.cfg]
602 @end example
603
604 There are many example configuration scripts you can work with. You
605 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
606 should find:
607
608 @enumerate
609 @item @b{board} - eval board level configurations
610 @item @b{interface} - specific dongle configurations
611 @item @b{target} - the target chips
612 @item @b{tcl} - helper scripts
613 @item @b{xscale} - things specific to the xscale.
614 @end enumerate
615
616 Look first in the ``boards'' area, then the ``targets'' area. Often a board
617 configuration is a good example to work from.
618
619 @section Many -f filename options
620 Some believe this is a wonderful solution, others find it painful.
621
622 You can use a series of ``-f filename'' options on the command line,
623 OpenOCD will read each filename in sequence, for example:
624
625 @example
626 openocd -f file1.cfg -f file2.cfg -f file2.cfg
627 @end example
628
629 You can also intermix various commands with the ``-c'' command line
630 option.
631
632 @section Monolithic file
633 The ``Monolithic File'' dispenses with all ``source'' statements and
634 puts everything in one self contained (monolithic) file. This is not
635 encouraged.
636
637 Please try to ``source'' various files or use the multiple -f
638 technique.
639
640 @section Advice for you
641 Often, one uses a ``mixed approach''. Where possible, please try to
642 ``source'' common things, and if needed cut/paste parts of the
643 standard distribution configuration files as needed.
644
645 @b{REMEMBER:} The ``important parts'' of your configuration file are:
646
647 @enumerate
648 @item @b{Interface} - Defines the dongle
649 @item @b{Taps} - Defines the JTAG Taps
650 @item @b{GDB Targets} - What GDB talks to
651 @item @b{Flash Programing} - Very Helpful
652 @end enumerate
653
654 Some key things you should look at and understand are:
655
656 @enumerate
657 @item The RESET configuration of your debug environment as a hole
658 @item Is there a ``work area'' that OpenOCD can use?
659 @* For ARM - work areas mean up to 10x faster downloads.
660 @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
661 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
662 @end enumerate
663
664
665
666 @node Config File Guidelines
667 @chapter Config File Guidelines
668
669 This section/chapter is aimed at developers and integrators of
670 OpenOCD. These are guidelines for creating new boards and new target
671 configurations as of 28/Nov/2008.
672
673 However, you the user of OpenOCD should be some what familiar with
674 this section as it should help explain some of the internals of what
675 you might be looking at.
676
677 The user should find under @t{$(INSTALLDIR)/lib/openocd} the
678 following directories:
679
680 @itemize @bullet
681 @item @b{interface}
682 @*Think JTAG Dongle. Files that configure the jtag dongle go here.
683 @item @b{board}
684 @* Thing Circuit Board, PWA, PCB, they go by many names. Board files
685 contain initialization items that are specific to a board - for
686 example: The SDRAM initialization sequence for the board, or the type
687 of external flash and what address it is found at. Any initialization
688 sequence to enable that external flash or sdram should be found in the
689 board file. Boards may also contain multiple targets, ie: Two cpus, or
690 a CPU and an FPGA or CPLD.
691 @item @b{target}
692 @* Think CHIP. The ``target'' directory represents a jtag tap (or
693 chip) OpenOCD should control, not a board. Two common types of targets
694 are ARM chips and FPGA or CPLD chips.
695 @end itemize
696
697 @b{If needed...} The user in their ``openocd.cfg'' file or the board
698 file might override a specific feature in any of the above files by
699 setting a variable or two before sourcing the target file. Or adding
700 various commands specific to their situation.
701
702 @section Interface Config Files
703
704 The user should be able to source one of these files via a command like this:
705
706 @example
707 source [find interface/FOOBAR.cfg]
708 Or:
709 openocd -f interface/FOOBAR.cfg
710 @end example
711
712 A preconfigured interface file should exist for every interface in use
713 today, that said, perhaps some interfaces have only been used by the
714 sole developer who created it.
715
716 @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
717 tcl_platform(platform), it should be called jim_platform (because it
718 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
719 ``cygwin'' or ``mingw''
720
721 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
722
723 @section Board Config Files
724
725 @b{Note: BOARD directory NEW as of 28/nov/2008}
726
727 The user should be able to source one of these files via a command like this:
728
729 @example
730 source [find board/FOOBAR.cfg]
731 Or:
732 openocd -f board/FOOBAR.cfg
733 @end example
734
735
736 The board file should contain one or more @t{source [find
737 target/FOO.cfg]} statements along with any board specific things.
738
739 In summery the board files should contain (if present)
740
741 @enumerate
742 @item External flash configuration (ie: the flash on CS0)
743 @item SDRAM configuration (size, speed, etc)
744 @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
745 @item Multiple TARGET source statements
746 @item All things that are not ``inside a chip''
747 @item Things inside a chip go in a 'target' file
748 @end enumerate
749
750 @section Target Config Files
751
752 The user should be able to source one of these files via a command like this:
753
754 @example
755 source [find target/FOOBAR.cfg]
756 Or:
757 openocd -f target/FOOBAR.cfg
758 @end example
759
760 In summery the target files should contain
761
762 @enumerate
763 @item Set Defaults
764 @item Create Taps
765 @item Reset Configuration
766 @item Work Areas
767 @item CPU/Chip/CPU-Core Specific features
768 @item OnChip Flash
769 @end enumerate
770
771 @subsection Important variable names
772
773 By default, the end user should never need to set these
774 variables. However, if the user needs to override a setting they only
775 need to set the variable in a simple way.
776
777 @itemize @bullet
778 @item @b{CHIPNAME}
779 @* This gives a name to the overall chip, and is used as part of the
780 tap identifier dotted name.
781 @item @b{ENDIAN}
782 @* By default little - unless the chip or board is not normally used that way.
783 @item @b{CPUTAPID}
784 @* When OpenOCD examines the JTAG chain, it will attempt to identify
785 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
786 to verify the tap id number verses configuration file and may issue an
787 error or warning like this. The hope is this will help pin point
788 problem OpenOCD configurations.
789
790 @example
791 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
792 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
793 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
794 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
795 @end example
796
797 @item @b{_TARGETNAME}
798 @* By convention, this variable is created by the target configuration
799 script. The board configuration file may make use of this variable to
800 configure things like a ``reset init'' script, or other things
801 specific to that board and that target.
802
803 If the chip has 2 targets, use the names @b{_TARGETNAME0},
804 @b{_TARGETNAME1}, ... etc.
805
806 @b{Remember:} The ``board file'' may include multiple targets.
807
808 At no time should the name ``target0'' (the default target name if
809 none was specified) be used. The name ``target0'' is a hard coded name
810 - the next target on the board will be some other number.
811
812 The user (or board file) should reasonably be able to:
813
814 @example
815 source [find target/FOO.cfg]
816 $_TARGETNAME configure ... FOO specific parameters
817
818 source [find target/BAR.cfg]
819 $_TARGETNAME configure ... BAR specific parameters
820 @end example
821
822 @end itemize
823
824 @subsection TCL Variables Guide Line
825 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
826
827 Thus the rule we follow in OpenOCD is this: Variables that begin with
828 a leading underscore are temporal in nature, and can be modified and
829 used at will within a ?TARGET? configuration file
830
831 @b{EXAMPLE:} The user should be able to do this:
832
833 @example
834 # Board has 3 chips,
835 # PXA270 #1 network side, big endian
836 # PXA270 #2 video side, little endian
837 # Xilinx Glue logic
838 set CHIPNAME network
839 set ENDIAN big
840 source [find target/pxa270.cfg]
841 # variable: _TARGETNAME = network.cpu
842 # other commands can refer to the "network.cpu" tap.
843 $_TARGETNAME configure .... params for this cpu..
844
845 set ENDIAN little
846 set CHIPNAME video
847 source [find target/pxa270.cfg]
848 # variable: _TARGETNAME = video.cpu
849 # other commands can refer to the "video.cpu" tap.
850 $_TARGETNAME configure .... params for this cpu..
851
852 unset ENDIAN
853 set CHIPNAME xilinx
854 source [find target/spartan3.cfg]
855
856 # Since $_TARGETNAME is temporal..
857 # these names still work!
858 network.cpu configure ... params
859 video.cpu configure ... params
860
861 @end example
862
863 @subsection Default Value Boiler Plate Code
864
865 All target configuration files should start with this (or a modified form)
866
867 @example
868 # SIMPLE example
869 if @{ [info exists CHIPNAME] @} @{
870 set _CHIPNAME $CHIPNAME
871 @} else @{
872 set _CHIPNAME sam7x256
873 @}
874
875 if @{ [info exists ENDIAN] @} @{
876 set _ENDIAN $ENDIAN
877 @} else @{
878 set _ENDIAN little
879 @}
880
881 if @{ [info exists CPUTAPID ] @} @{
882 set _CPUTAPID $CPUTAPID
883 @} else @{
884 set _CPUTAPID 0x3f0f0f0f
885 @}
886
887 @end example
888
889 @subsection Creating Taps
890 After the ``defaults'' are choosen, [see above], the taps are created.
891
892 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
893
894 @example
895 # for an ARM7TDMI.
896 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
897 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
898 @end example
899
900 @b{COMPLEX example:}
901
902 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
903
904 @enumerate
905 @item @b{Unform tap names} - See: Tap Naming Convention
906 @item @b{_TARGETNAME} is created at the end where used.
907 @end enumerate
908
909 @example
910 if @{ [info exists FLASHTAPID ] @} @{
911 set _FLASHTAPID $FLASHTAPID
912 @} else @{
913 set _FLASHTAPID 0x25966041
914 @}
915 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
916
917 if @{ [info exists CPUTAPID ] @} @{
918 set _CPUTAPID $CPUTAPID
919 @} else @{
920 set _CPUTAPID 0x25966041
921 @}
922 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
923
924
925 if @{ [info exists BSTAPID ] @} @{
926 set _BSTAPID $BSTAPID
927 @} else @{
928 set _BSTAPID 0x1457f041
929 @}
930 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
931
932 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
933 @end example
934
935 @b{Tap Naming Convention}
936
937 See the command ``jtag newtap'' for detail, but in breif the names you should use are:
938
939 @itemize @bullet
940 @item @b{tap}
941 @item @b{cpu}
942 @item @b{flash}
943 @item @b{bs}
944 @item @b{jrc}
945 @item @b{unknownN} - it happens :-(
946 @end itemize
947
948 @subsection Reset Configuration
949
950 Some chips have specific ways the TRST and SRST signals are
951 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
952 @b{BOARD SPECIFIC} they go in the board file.
953
954 @subsection Work Areas
955
956 Work areas are small RAM areas used by OpenOCD to speed up downloads,
957 and to download small snippits of code to program flash chips.
958
959 If the chip includes an form of ``on-chip-ram'' - and many do - define
960 a reasonable work area and use the ``backup'' option.
961
962 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
963 inaccessable if/when the application code enables or disables the MMU.
964
965 @subsection ARM Core Specific Hacks
966
967 If the chip has a DCC, enable it. If the chip is an arm9 with some
968 special high speed download - enable it.
969
970 If the chip has an ARM ``vector catch'' feature - by defeault enable
971 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
972 user is really writing a handler for those situations - they can
973 easily disable it. Experiance has shown the ``vector catch'' is
974 helpful - for common programing errors.
975
976 If present, the MMU, the MPU and the CACHE should be disabled.
977
978 @subsection Internal Flash Configuration
979
980 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
981
982 @b{Never ever} in the ``target configuration file'' define any type of
983 flash that is external to the chip. (For example the BOOT flash on
984 Chip Select 0). The BOOT flash information goes in a board file - not
985 the TARGET (chip) file.
986
987 Examples:
988 @itemize @bullet
989 @item at91sam7x256 - has 256K flash YES enable it.
990 @item str912 - has flash internal YES enable it.
991 @item imx27 - uses boot flash on CS0 - it goes in the board file.
992 @item pxa270 - again - CS0 flash - it goes in the board file.
993 @end itemize
994
995 @node About JIM-Tcl
996 @chapter About JIM-Tcl
997 @cindex JIM Tcl
998 @cindex tcl
999
1000 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1001 learn more about JIM here: @url{http://jim.berlios.de}
1002
1003 @itemize @bullet
1004 @item @b{JIM vrs TCL}
1005 @* JIM-TCL is a stripped down version of the well known Tcl language,
1006 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1007 fewer features. JIM-Tcl is a single .C file and a single .H file and
1008 impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
1009 4.2MEG zip file containing 1540 files.
1010
1011 @item @b{Missing Features}
1012 @* Our practice has been: Add/clone the Real TCL feature if/when
1013 needed. We welcome JIM Tcl improvements, not bloat.
1014
1015 @item @b{Scripts}
1016 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1017 command interpretor today (28/nov/2008) is a mixture of (newer)
1018 JIM-Tcl commands, and (older) the orginal command interpretor.
1019
1020 @item @b{Commands}
1021 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1022 can type a Tcl for() loop, set variables, etc.
1023
1024 @item @b{Historical Note}
1025 @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
1026
1027 @item @b{Need a Crash Course In TCL?}
1028 @* See: @xref{TCL Crash Course}.
1029 @end itemize
1030
1031
1032 @node Daemon Configuration
1033 @chapter Daemon Configuration
1034 The commands here are commonly found in the openocd.cfg file and are
1035 used to specify what TCP/IP ports are used, and how GDB should be
1036 supported.
1037 @section init
1038 @cindex init
1039 This command terminates the configuration stage and
1040 enters the normal command mode. This can be useful to add commands to
1041 the startup scripts and commands such as resetting the target,
1042 programming flash, etc. To reset the CPU upon startup, add "init" and
1043 "reset" at the end of the config script or at the end of the OpenOCD
1044 command line using the @option{-c} command line switch.
1045
1046 If this command does not appear in any startup/configuration file
1047 OpenOCD executes the command for you after processing all
1048 configuration files and/or command line options.
1049
1050 @b{NOTE:} This command normally occurs at or near the end of your
1051 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1052 targets ready. For example: If your openocd.cfg file needs to
1053 read/write memory on your target - the init command must occur before
1054 the memory read/write commands.
1055
1056 @section TCP/IP Ports
1057 @itemize @bullet
1058 @item @b{telnet_port} <@var{number}>
1059 @cindex telnet_port
1060 @*Intended for a human. Port on which to listen for incoming telnet connections.
1061
1062 @item @b{tcl_port} <@var{number}>
1063 @cindex tcl_port
1064 @*Intended as a machine interface. Port on which to listen for
1065 incoming TCL syntax. This port is intended as a simplified RPC
1066 connection that can be used by clients to issue commands and get the
1067 output from the TCL engine.
1068
1069 @item @b{gdb_port} <@var{number}>
1070 @cindex gdb_port
1071 @*First port on which to listen for incoming GDB connections. The GDB port for the
1072 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1073 @end itemize
1074
1075 @section GDB Items
1076 @itemize @bullet
1077 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
1078 @cindex gdb_breakpoint_override
1079 @anchor{gdb_breakpoint_override}
1080 @*Force breakpoint type for gdb 'break' commands.
1081 The raison d'etre for this option is to support GDB GUI's without
1082 a hard/soft breakpoint concept where the default OpenOCD and
1083 GDB behaviour is not sufficient. Note that GDB will use hardware
1084 breakpoints if the memory map has been set up for flash regions.
1085
1086 This option replaces older arm7_9 target commands that addressed
1087 the same issue.
1088
1089 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1090 @cindex gdb_detach
1091 @*Configures what OpenOCD will do when gdb detaches from the daeman.
1092 Default behaviour is <@var{resume}>
1093
1094 @item @b{gdb_memory_map} <@var{enable|disable}>
1095 @cindex gdb_memory_map
1096 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
1097 requested. gdb will then know when to set hardware breakpoints, and program flash
1098 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
1099 for flash programming to work.
1100 Default behaviour is <@var{enable}>
1101 @xref{gdb_flash_program}.
1102
1103 @item @b{gdb_flash_program} <@var{enable|disable}>
1104 @cindex gdb_flash_program
1105 @anchor{gdb_flash_program}
1106 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1107 vFlash packet is received.
1108 Default behaviour is <@var{enable}>
1109 @comment END GDB Items
1110 @end itemize
1111
1112 @node Interface - Dongle Configuration
1113 @chapter Interface - Dongle Configuration
1114 Interface commands are normally found in an interface configuration
1115 file which is sourced by your openocd.cfg file. These commands tell
1116 OpenOCD what type of JTAG dongle you have and how to talk to it.
1117 @section Simple Complete Interface Examples
1118 @b{A Turtelizer FT2232 Based JTAG Dongle}
1119 @verbatim
1120 #interface
1121 interface ft2232
1122 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1123 ft2232_layout turtelizer2
1124 ft2232_vid_pid 0x0403 0xbdc8
1125 @end verbatim
1126 @b{A SEGGER Jlink}
1127 @verbatim
1128 # jlink interface
1129 interface jlink
1130 @end verbatim
1131 @b{A Raisonance RLink}
1132 @verbatim
1133 # rlink interface
1134 interface rlink
1135 @end verbatim
1136 @b{Parallel Port}
1137 @verbatim
1138 interface parport
1139 parport_port 0xc8b8
1140 parport_cable wiggler
1141 jtag_speed 0
1142 @end verbatim
1143 @section Interface Conmmand
1144
1145 The interface command tells OpenOCD what type of jtag dongle you are
1146 using. Depending upon the type of dongle, you may need to have one or
1147 more additional commands.
1148
1149 @itemize @bullet
1150
1151 @item @b{interface} <@var{name}>
1152 @cindex interface
1153 @*Use the interface driver <@var{name}> to connect to the
1154 target. Currently supported interfaces are
1155
1156 @itemize @minus
1157
1158 @item @b{parport}
1159 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1160
1161 @item @b{amt_jtagaccel}
1162 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1163 mode parallel port
1164
1165 @item @b{ft2232}
1166 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1167 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1168 platform. The libftdi uses libusb, and should be portable to all systems that provide
1169 libusb.
1170
1171 @item @b{ep93xx}
1172 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1173
1174 @item @b{presto}
1175 @* ASIX PRESTO USB JTAG programmer.
1176
1177 @item @b{usbprog}
1178 @* usbprog is a freely programmable USB adapter.
1179
1180 @item @b{gw16012}
1181 @* Gateworks GW16012 JTAG programmer.
1182
1183 @item @b{jlink}
1184 @* Segger jlink usb adapter
1185
1186 @item @b{rlink}
1187 @* Raisonance RLink usb adapter
1188
1189 @item @b{vsllink}
1190 @* vsllink is part of Versaloon which is a versatile USB programmer.
1191 @comment - End parameters
1192 @end itemize
1193 @comment - End Interface
1194 @end itemize
1195 @subsection parport options
1196
1197 @itemize @bullet
1198 @item @b{parport_port} <@var{number}>
1199 @cindex parport_port
1200 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1201 the @file{/dev/parport} device
1202
1203 When using PPDEV to access the parallel port, use the number of the parallel port:
1204 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1205 you may encounter a problem.
1206 @item @b{parport_cable} <@var{name}>
1207 @cindex parport_cable
1208 @*The layout of the parallel port cable used to connect to the target.
1209 Currently supported cables are
1210 @itemize @minus
1211 @item @b{wiggler}
1212 @cindex wiggler
1213 The original Wiggler layout, also supported by several clones, such
1214 as the Olimex ARM-JTAG
1215 @item @b{wiggler2}
1216 @cindex wiggler2
1217 Same as original wiggler except an led is fitted on D5.
1218 @item @b{wiggler_ntrst_inverted}
1219 @cindex wiggler_ntrst_inverted
1220 Same as original wiggler except TRST is inverted.
1221 @item @b{old_amt_wiggler}
1222 @cindex old_amt_wiggler
1223 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1224 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1225 @item @b{chameleon}
1226 @cindex chameleon
1227 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1228 program the Chameleon itself, not a connected target.
1229 @item @b{dlc5}
1230 @cindex dlc5
1231 The Xilinx Parallel cable III.
1232 @item @b{triton}
1233 @cindex triton
1234 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1235 This is also the layout used by the HollyGates design
1236 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1237 @item @b{flashlink}
1238 @cindex flashlink
1239 The ST Parallel cable.
1240 @item @b{arm-jtag}
1241 @cindex arm-jtag
1242 Same as original wiggler except SRST and TRST connections reversed and
1243 TRST is also inverted.
1244 @item @b{altium}
1245 @cindex altium
1246 Altium Universal JTAG cable.
1247 @end itemize
1248 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1249 @cindex parport_write_on_exit
1250 @*This will configure the parallel driver to write a known value to the parallel
1251 interface on exiting OpenOCD
1252 @end itemize
1253
1254 @subsection amt_jtagaccel options
1255 @itemize @bullet
1256 @item @b{parport_port} <@var{number}>
1257 @cindex parport_port
1258 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1259 @file{/dev/parport} device
1260 @end itemize
1261 @subsection ft2232 options
1262
1263 @itemize @bullet
1264 @item @b{ft2232_device_desc} <@var{description}>
1265 @cindex ft2232_device_desc
1266 @*The USB device description of the FTDI FT2232 device. If not
1267 specified, the FTDI default value is used. This setting is only valid
1268 if compiled with FTD2XX support.
1269
1270 @b{TODO:} Confirm the following: On windows the name needs to end with
1271 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1272 this be added and when must it not be added? Why can't the code in the
1273 interface or in OpenOCD automatically add this if needed? -- Duane.
1274
1275 @item @b{ft2232_serial} <@var{serial-number}>
1276 @cindex ft2232_serial
1277 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1278 values are used.
1279 @item @b{ft2232_layout} <@var{name}>
1280 @cindex ft2232_layout
1281 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1282 signals. Valid layouts are
1283 @itemize @minus
1284 @item @b{usbjtag}
1285 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1286 @item @b{jtagkey}
1287 Amontec JTAGkey and JTAGkey-tiny
1288 @item @b{signalyzer}
1289 Signalyzer
1290 @item @b{olimex-jtag}
1291 Olimex ARM-USB-OCD
1292 @item @b{m5960}
1293 American Microsystems M5960
1294 @item @b{evb_lm3s811}
1295 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1296 SRST signals on external connector
1297 @item @b{comstick}
1298 Hitex STR9 comstick
1299 @item @b{stm32stick}
1300 Hitex STM32 Performance Stick
1301 @item @b{flyswatter}
1302 Tin Can Tools Flyswatter
1303 @item @b{turtelizer2}
1304 egnite Software turtelizer2
1305 @item @b{oocdlink}
1306 OOCDLink
1307 @item @b{axm0432_jtag}
1308 Axiom AXM-0432
1309 @end itemize
1310
1311 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1312 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1313 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
1314 @example
1315 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1316 @end example
1317 @item @b{ft2232_latency} <@var{ms}>
1318 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
1319 ft2232_read() fails to return the expected number of bytes. This can be caused by
1320 USB communication delays and has proved hard to reproduce and debug. Setting the
1321 FT2232 latency timer to a larger value increases delays for short USB packages but it
1322 also reduces the risk of timeouts before receiving the expected number of bytes.
1323 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1324 @end itemize
1325
1326 @subsection ep93xx options
1327 @cindex ep93xx options
1328 Currently, there are no options available for the ep93xx interface.
1329
1330 @section JTAG Speed
1331 @itemize @bullet
1332 @item @b{jtag_khz} <@var{reset speed kHz}>
1333 @cindex jtag_khz
1334
1335 It is debatable if this command belongs here - or in a board
1336 configuration file. In fact, in some situations the jtag speed is
1337 changed during the target initialization process (ie: (1) slow at
1338 reset, (2) program the cpu clocks, (3) run fast)
1339
1340 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1341
1342 Not all interfaces support ``rtck''. If the interface device can not
1343 support the rate asked for, or can not translate from kHz to
1344 jtag_speed, then an error is returned.
1345
1346 Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
1347 especially true for synthesized cores (-S). Also see RTCK.
1348
1349 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1350 please use the command: 'jtag_rclk FREQ'. This TCL proc (in
1351 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1352 the specified frequency.
1353
1354 @example
1355 # Fall back to 3mhz if RCLK is not supported
1356 jtag_rclk 3000
1357 @end example
1358
1359 @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
1360 @cindex jtag_speed
1361 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1362 speed. The actual effect of this option depends on the JTAG interface used.
1363
1364 The speed used during reset can be adjusted using setting jtag_speed during
1365 pre_reset and post_reset events.
1366 @itemize @minus
1367
1368 @item wiggler: maximum speed / @var{number}
1369 @item ft2232: 6MHz / (@var{number}+1)
1370 @item amt jtagaccel: 8 / 2**@var{number}
1371 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1372 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1373 @comment end speed list.
1374 @end itemize
1375
1376 @comment END command list
1377 @end itemize
1378
1379 @node Reset Configuration
1380 @chapter Reset Configuration
1381 @cindex reset configuration
1382
1383 Every system configuration may require a different reset
1384 configuration. This can also be quite confusing. Please see the
1385 various board files for example.
1386
1387 @section jtag_nsrst_delay <@var{ms}>
1388 @cindex jtag_nsrst_delay
1389 @*How long (in milliseconds) OpenOCD should wait after deasserting
1390 nSRST before starting new JTAG operations.
1391
1392 @section jtag_ntrst_delay <@var{ms}>
1393 @cindex jtag_ntrst_delay
1394 @*Same @b{jtag_nsrst_delay}, but for nTRST
1395
1396 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1397 big resistor/capacitor, reset supervisor, or on-chip features). This
1398 keeps the signal asserted for some time after the external reset got
1399 deasserted.
1400
1401 @section reset_config
1402
1403 @b{Note:} To maintainer types and integrators. Where exactly the
1404 ``reset configuration'' goes is a good question. It touches several
1405 things at once. In the end, if you have a board file - the board file
1406 should define it and assume 100% that the DONGLE supports
1407 anything. However, that does not mean the target should not also make
1408 not of something the silicon vendor has done inside the
1409 chip. @i{Grr.... nothing is every pretty.}
1410
1411 @* @b{Problems:}
1412 @enumerate
1413 @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
1414 @item Every board is also slightly different; some boards tie TRST and SRST together.
1415 @item Every chip is slightly different; some chips internally tie the two signals together.
1416 @item Some may not impliment all of the signals the same way.
1417 @item Some signals might be push-pull, others open-drain/collector.
1418 @end enumerate
1419 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1420 reset the TAP via TRST and send commands through the JTAG tap to halt
1421 the CPU at the reset vector before the 1st instruction is executed,
1422 and finally release the SRST signal.
1423 @*Depending upon your board vendor, your chip vendor, etc, these
1424 signals may have slightly different names.
1425
1426 OpenOCD defines these signals in these terms:
1427 @itemize @bullet
1428 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1429 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1430 @end itemize
1431
1432 The Command:
1433
1434 @itemize @bullet
1435 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1436 @cindex reset_config
1437 @* The @t{reset_config} command tells OpenOCD the reset configuration
1438 of your combination of Dongle, Board, and Chips.
1439 If the JTAG interface provides SRST, but the target doesn't connect
1440 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1441 be @option{none}, @option{trst_only}, @option{srst_only} or
1442 @option{trst_and_srst}.
1443
1444 [@var{combination}] is an optional value specifying broken reset
1445 signal implementations. @option{srst_pulls_trst} states that the
1446 testlogic is reset together with the reset of the system (e.g. Philips
1447 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1448 the system is reset together with the test logic (only hypothetical, I
1449 haven't seen hardware with such a bug, and can be worked around).
1450 @option{combined} imples both @option{srst_pulls_trst} and
1451 @option{trst_pulls_srst}. The default behaviour if no option given is
1452 @option{separate}.
1453
1454 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1455 driver type of the reset lines to be specified. Possible values are
1456 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1457 test reset signal, and @option{srst_open_drain} (default) and
1458 @option{srst_push_pull} for the system reset. These values only affect
1459 JTAG interfaces with support for different drivers, like the Amontec
1460 JTAGkey and JTAGAccelerator.
1461
1462 @comment - end command
1463 @end itemize
1464
1465
1466
1467 @node Tap Creation
1468 @chapter Tap Creation
1469 @cindex tap creation
1470 @cindex tap configuration
1471
1472 In order for OpenOCD to control a target, a JTAG tap must be
1473 defined/created.
1474
1475 Commands to create taps are normally found in a configuration file and
1476 are not normally typed by a human.
1477
1478 When a tap is created a @b{dotted.name} is created for the tap. Other
1479 commands use that dotted.name to manipulate or refer to the tap.
1480
1481 Tap Uses:
1482 @itemize @bullet
1483 @item @b{Debug Target} A tap can be used by a GDB debug target
1484 @item @b{Flash Programing} Some chips program the flash via JTAG
1485 @item @b{Boundry Scan} Some chips support boundry scan.
1486 @end itemize
1487
1488
1489 @section jtag newtap
1490 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1491 @cindex jtag_device
1492 @cindex jtag newtap
1493 @cindex tap
1494 @cindex tap order
1495 @cindex tap geometry
1496
1497 @comment START options
1498 @itemize @bullet
1499 @item @b{CHIPNAME}
1500 @* is a symbolic name of the chip.
1501 @item @b{TAPNAME}
1502 @* is a symbol name of a tap present on the chip.
1503 @item @b{Required configparams}
1504 @* Every tap has 3 required configparams, and several ``optional
1505 parameters'', the required parameters are:
1506 @comment START REQUIRED
1507 @itemize @bullet
1508 @item @b{-irlen NUMBER} - the length in bits of the instruction register
1509 @item @b{-ircapture NUMBER} - the ID code capture command.
1510 @item @b{-irmask NUMBER} - the corresponding mask for the ir register.
1511 @comment END REQUIRED
1512 @end itemize
1513 An example of a FOOBAR Tap
1514 @example
1515 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1516 @end example
1517 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1518 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1519 [6,4,2,0] are checked.
1520
1521 FIXME: The IDCODE - this was not used in the old code, it should be?
1522 Right? -Duane.
1523 @item @b{Optional configparams}
1524 @comment START Optional
1525 @itemize @bullet
1526 @item @b{-expected-id NUMBER}
1527 @* By default it is zero. If non-zero represents the
1528 expected tap ID used when the Jtag Chain is examined. See below.
1529 @item @b{-disable}
1530 @item @b{-enable}
1531 @* By default not specified the tap is enabled. Some chips have a
1532 jtag route controller (JRC) that is used to enable and/or disable
1533 specific jtag taps. You can later enable or disable any JTAG tap via
1534 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1535 DOTTED.NAME}
1536 @comment END Optional
1537 @end itemize
1538
1539 @comment END OPTIONS
1540 @end itemize
1541 @b{Notes:}
1542 @comment START NOTES
1543 @itemize @bullet
1544 @item @b{Technically}
1545 @* newtap is a sub command of the ``jtag'' command
1546 @item @b{Big Picture Background}
1547 @*GDB Talks to OpenOCD using the GDB protocol via
1548 tcpip. OpenOCD then uses the JTAG interface (the dongle) to
1549 control the JTAG chain on your board. Your board has one or more chips
1550 in a @i{daisy chain configuration}. Each chip may have one or more
1551 jtag taps. GDB ends up talking via OpenOCD to one of the taps.
1552 @item @b{NAME Rules}
1553 @*Names follow ``C'' symbol name rules (start with alpha ...)
1554 @item @b{TAPNAME - Conventions}
1555 @itemize @bullet
1556 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1557 @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1558 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1559 @item @b{bs} - for boundary scan if this is a seperate tap.
1560 @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
1561 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1562 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1563 @item @b{When in doubt} - use the chip makers name in their data sheet.
1564 @end itemize
1565 @item @b{DOTTED.NAME}
1566 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1567 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1568 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1569 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1570 numerous other places to refer to various taps.
1571 @item @b{ORDER}
1572 @* The order this command appears via the config files is
1573 important.
1574 @item @b{Multi Tap Example}
1575 @* This example is based on the ST Microsystems STR912. See the ST
1576 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1577 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
1578
1579 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1580 @*@b{checked: 28/nov/2008}
1581
1582 The diagram shows the TDO pin connects to the flash tap, flash TDI
1583 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1584 tap which then connects to the TDI pin.
1585
1586 @example
1587 # The order is...
1588 # create tap: 'str912.flash'
1589 jtag newtap str912 flash ... params ...
1590 # create tap: 'str912.cpu'
1591 jtag newtap str912 cpu ... params ...
1592 # create tap: 'str912.bs'
1593 jtag newtap str912 bs ... params ...
1594 @end example
1595
1596 @item @b{Note: Deprecated} - Index Numbers
1597 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1598 feature is still present, however its use is highly discouraged and
1599 should not be counted upon.
1600 @item @b{Multiple chips}
1601 @* If your board has multiple chips, you should be
1602 able to @b{source} two configuration files, in the proper order, and
1603 have the taps created in the proper order.
1604 @comment END NOTES
1605 @end itemize
1606 @comment at command level
1607 @comment DOCUMENT old command
1608 @section jtag_device - REMOVED
1609 @example
1610 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1611 @end example
1612 @cindex jtag_device
1613
1614 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1615 by the ``jtag newtap'' command. The documentation remains here so that
1616 one can easily convert the old syntax to the new syntax. About the old
1617 syntax: The old syntax is positional, ie: The 4th parameter is the
1618 ``irmask''. The new syntax requires named prefixes, and supports
1619 additional options, for example ``-irmask 4''. Please refer to the
1620 @b{jtag newtap} command for details.
1621 @example
1622 OLD: jtag_device 8 0x01 0x0e3 0xfe
1623 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0xe3 -irmask 0xfe
1624 @end example
1625
1626 @section Enable/Disable Taps
1627 @b{Note:} These commands are intended to be used as a machine/script
1628 interface. Humans might find the ``scan_chain'' command more helpful
1629 when querying the state of the JTAG taps.
1630
1631 @b{By default, all taps are enabled}
1632
1633 @itemize @bullet
1634 @item @b{jtag tapenable} @var{DOTTED.NAME}
1635 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1636 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1637 @end itemize
1638 @cindex tap enable
1639 @cindex tap disable
1640 @cindex JRC
1641 @cindex route controller
1642
1643 These commands are used when your target has a JTAG Route controller
1644 that effectively adds or removes a tap from the jtag chain in a
1645 non-standard way.
1646
1647 The ``standard way'' to remove a tap would be to place the tap in
1648 bypass mode. But with the advent of modern chips, this is not always a
1649 good solution. Some taps operate slowly, others operate fast, and
1650 there are other JTAG clock syncronization problems one must face. To
1651 solve that problem, the JTAG Route controller was introduced. Rather
1652 then ``bypass'' the tap, the tap is completely removed from the
1653 circuit and skipped.
1654
1655
1656 From OpenOCD's view point, a JTAG TAP is in one of 3 states:
1657
1658 @itemize @bullet
1659 @item @b{Enabled - Not In ByPass} and has a variable bit length
1660 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1661 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1662 @end itemize
1663
1664 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1665 @b{Historical note:} this feature was added 28/nov/2008
1666
1667 @b{jtag tapisenabled DOTTED.NAME}
1668
1669 This command returns 1 if the named tap is currently enabled, 0 if not.
1670 This command exists so that scripts that manipulate a JRC (like the
1671 Omap3530 has) can determine if OpenOCD thinks a tap is presently
1672 enabled, or disabled.
1673
1674 @page
1675 @node Target Configuration
1676 @chapter Target Configuration
1677
1678 This chapter discusses how to create a GDB Debug Target. Before
1679 creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
1680
1681 @section targets [NAME]
1682 @b{Note:} This command name is PLURAL - not singular.
1683
1684 With NO parameter, this plural @b{targets} command lists all known
1685 targets in a human friendly form.
1686
1687 With a parameter, this pural @b{targets} command sets the current
1688 target to the given name. (ie: If there are multiple debug targets)
1689
1690 Example:
1691 @verbatim
1692 (gdb) mon targets
1693 CmdName Type Endian ChainPos State
1694 -- ---------- ---------- ---------- -------- ----------
1695 0: target0 arm7tdmi little 0 halted
1696 @end verbatim
1697
1698 @section target COMMANDS
1699 @b{Note:} This command name is SINGULAR - not plural. It is used to
1700 manipulate specific targets, to create targets and other things.
1701
1702 Once a target is created, a TARGETNAME (object) command is created;
1703 see below for details.
1704
1705 The TARGET command accepts these sub-commands:
1706 @itemize @bullet
1707 @item @b{create} .. parameters ..
1708 @* creates a new target, See below for details.
1709 @item @b{types}
1710 @* Lists all supported target types (perhaps some are not yet in this document).
1711 @item @b{names}
1712 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1713 @verbatim
1714 foreach t [target names] {
1715 puts [format "Target: %s\n" $t]
1716 }
1717 @end verbatim
1718 @item @b{current}
1719 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1720 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1721 @item @b{number} @b{NUMBER}
1722 @* Internally OpenOCD maintains a list of targets - in numerical index
1723 (0..N-1) this command returns the name of the target at index N.
1724 Example usage:
1725 @verbatim
1726 set thename [target number $x]
1727 puts [format "Target %d is: %s\n" $x $thename]
1728 @end verbatim
1729 @item @b{count}
1730 @* Returns the number of targets known to OpenOCD (see number above)
1731 Example:
1732 @verbatim
1733 set c [target count]
1734 for { set x 0 } { $x < $c } { incr x } {
1735 # Assuming you have created this function
1736 print_target_details $x
1737 }
1738 @end verbatim
1739
1740 @end itemize
1741
1742 @section TARGETNAME (object) commands
1743 @b{Use:} Once a target is created, an ``object name'' that represents the
1744 target is created. By convention, the target name is identical to the
1745 tap name. In a multiple target system, one can preceed many common
1746 commands with a specific target name and effect only that target.
1747 @example
1748 str912.cpu mww 0x1234 0x42
1749 omap3530.cpu mww 0x5555 123
1750 @end example
1751
1752 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1753 good example is a on screen button, once a button is created a button
1754 has a name (a path in TK terms) and that name is useable as a 1st
1755 class command. For example in TK, one can create a button and later
1756 configure it like this:
1757
1758 @example
1759 # Create
1760 button .foobar -background red -command @{ foo @}
1761 # Modify
1762 .foobar configure -foreground blue
1763 # Query
1764 set x [.foobar cget -background]
1765 # Report
1766 puts [format "The button is %s" $x]
1767 @end example
1768
1769 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1770 button. Commands avaialble as a ``target object'' are:
1771
1772 @comment START targetobj commands.
1773 @itemize @bullet
1774 @item @b{configure} - configure the target; see Target Config/Cget Options below
1775 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1776 @item @b{curstate} - current target state (running, halt, etc)
1777 @item @b{eventlist}
1778 @* Intended for a human to see/read the currently configure target events.
1779 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1780 @comment start memory
1781 @itemize @bullet
1782 @item @b{mww} ...
1783 @item @b{mwh} ...
1784 @item @b{mwb} ...
1785 @item @b{mdw} ...
1786 @item @b{mdh} ...
1787 @item @b{mdb} ...
1788 @comment end memory
1789 @end itemize
1790 @item @b{Memory To Array, Array To Memory}
1791 @* These are aimed at a machine interface to memory
1792 @itemize @bullet
1793 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1794 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1795 @* Where:
1796 @* @b{ARRAYNAME} is the name of an array variable
1797 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1798 @* @b{ADDRESS} is the target memory address
1799 @* @b{COUNT} is the number of elements to process
1800 @end itemize
1801 @item @b{Used during ``reset''}
1802 @* These commands are used internally by the OpenOCD scripts to deal
1803 with odd reset situations and are not documented here.
1804 @itemize @bullet
1805 @item @b{arp_examine}
1806 @item @b{arp_poll}
1807 @item @b{arp_reset}
1808 @item @b{arp_halt}
1809 @item @b{arp_waitstate}
1810 @end itemize
1811 @item @b{invoke-event} @b{EVENT-NAME}
1812 @* Invokes the specific event manually for the target
1813 @end itemize
1814
1815 @section Target Events
1816 At various times, certain things can happen, or you want them to happen.
1817
1818 Examples:
1819 @itemize @bullet
1820 @item What should happen when GDB connects? Should your target reset?
1821 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1822 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1823 @end itemize
1824
1825 All of the above items are handled by target events.
1826
1827 To specify an event action, either during target creation, or later
1828 via ``$_TARGETNAME configure'' see this example.
1829
1830 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1831 target event name, and BODY is a tcl procedure or string of commands
1832 to execute.
1833
1834 The programmers model is the ``-command'' option used in Tcl/Tk
1835 buttons and events. Below are two identical examples, the first
1836 creates and invokes small procedure. The second inlines the procedure.
1837
1838 @example
1839 proc my_attach_proc @{ @} @{
1840 puts "RESET...."
1841 reset halt
1842 @}
1843 mychip.cpu configure -event gdb-attach my_attach_proc
1844 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1845 @end example
1846
1847 @section Current Events
1848 The following events are available:
1849 @itemize @bullet
1850 @item @b{debug-halted}
1851 @* The target has halted for debug reasons (ie: breakpoint)
1852 @item @b{debug-resumed}
1853 @* The target has resumed (ie: gdb said run)
1854 @item @b{early-halted}
1855 @* Occurs early in the halt process
1856 @item @b{examine-end}
1857 @* Currently not used (goal: when JTAG examine completes)
1858 @item @b{examine-start}
1859 @* Currently not used (goal: when JTAG examine starts)
1860 @item @b{gdb-attach}
1861 @* When GDB connects
1862 @item @b{gdb-detach}
1863 @* When GDB disconnects
1864 @item @b{gdb-end}
1865 @* When the taret has halted and GDB is not doing anything (see early halt)
1866 @item @b{gdb-flash-erase-start}
1867 @* Before the GDB flash process tries to erase the flash
1868 @item @b{gdb-flash-erase-end}
1869 @* After the GDB flash process has finished erasing the flash
1870 @item @b{gdb-flash-write-start}
1871 @* Before GDB writes to the flash
1872 @item @b{gdb-flash-write-end}
1873 @* After GDB writes to the flash
1874 @item @b{gdb-start}
1875 @* Before the taret steps, gdb is trying to start/resume the tarfget
1876 @item @b{halted}
1877 @* The target has halted
1878 @item @b{old-gdb_program_config}
1879 @* DO NOT USE THIS: Used internally
1880 @item @b{old-pre_resume}
1881 @* DO NOT USE THIS: Used internally
1882 @item @b{reset-assert-pre}
1883 @* Before reset is asserted on the tap.
1884 @item @b{reset-assert-post}
1885 @* Reset is now asserted on the tap.
1886 @item @b{reset-deassert-pre}
1887 @* Reset is about to be released on the tap
1888 @item @b{reset-deassert-post}
1889 @* Reset has been released on the tap
1890 @item @b{reset-end}
1891 @* Currently not used.
1892 @item @b{reset-halt-post}
1893 @* Currently not usd
1894 @item @b{reset-halt-pre}
1895 @* Currently not used
1896 @item @b{reset-init}
1897 @* Currently not used
1898 @item @b{reset-start}
1899 @* Currently not used
1900 @item @b{reset-wait-pos}
1901 @* Currently not used
1902 @item @b{reset-wait-pre}
1903 @* Currently not used
1904 @item @b{resume-start}
1905 @* Before any target is resumed
1906 @item @b{resume-end}
1907 @* After all targets have resumed
1908 @item @b{resume-ok}
1909 @* Success
1910 @item @b{resumed}
1911 @* Target has resumed
1912 @item @b{tap-enable}
1913 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
1914 @example
1915 jtag configure DOTTED.NAME -event tap-enable @{
1916 puts "Enabling CPU"
1917 ...
1918 @}
1919 @end example
1920 @item @b{tap-disable}
1921 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
1922 @example
1923 jtag configure DOTTED.NAME -event tap-disable @{
1924 puts "Disabling CPU"
1925 ...
1926 @}
1927 @end example
1928 @end itemize
1929
1930
1931 @section target create
1932 @cindex target
1933 @cindex target creation
1934
1935 @example
1936 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1937 @end example
1938 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1939 @comment START params
1940 @itemize @bullet
1941 @item @b{NAME}
1942 @* Is the name of the debug target. By convention it should be the tap
1943 DOTTED.NAME, this name is also used to create the target object
1944 command.
1945 @item @b{TYPE}
1946 @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
1947 @comment START types
1948 @itemize @minus
1949 @item @b{arm7tdmi}
1950 @item @b{arm720t}
1951 @item @b{arm9tdmi}
1952 @item @b{arm920t}
1953 @item @b{arm922t}
1954 @item @b{arm926ejs}
1955 @item @b{arm966e}
1956 @item @b{cortex_m3}
1957 @item @b{feroceon}
1958 @item @b{xscale}
1959 @item @b{arm11}
1960 @item @b{mips_m4k}
1961 @comment end TYPES
1962 @end itemize
1963 @item @b{PARAMS}
1964 @*PARAMs are various target configure parameters, the following are mandatory
1965 at configuration:
1966 @comment START mandatory
1967 @itemize @bullet
1968 @item @b{-endian big|little}
1969 @item @b{-chain-position DOTTED.NAME}
1970 @comment end MANDATORY
1971 @end itemize
1972 @comment END params
1973 @end itemize
1974
1975 @section Target Config/Cget Options
1976 These options can be specified when the target is created, or later
1977 via the configure option or to query the target via cget.
1978 @itemize @bullet
1979 @item @b{-type} - returns the target type
1980 @item @b{-event NAME BODY} see Target events
1981 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
1982 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
1983 @item @b{-work-area-size [ADDRESS]} specify/set the work area
1984 @item @b{-work-area-backup [0|1]} does the work area get backed up
1985 @item @b{-endian [big|little]}
1986 @item @b{-variant [NAME]} some chips have varients OpenOCD needs to know about
1987 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
1988 @end itemize
1989 Example:
1990 @example
1991 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
1992 set name [target number $x]
1993 set y [$name cget -endian]
1994 set z [$name cget -type]
1995 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
1996 @}
1997 @end example
1998
1999 @section Target Varients
2000 @itemize @bullet
2001 @item @b{arm7tdmi}
2002 @* Unknown (please write me)
2003 @item @b{arm720t}
2004 @* Unknown (please write me) (simular to arm7tdmi)
2005 @item @b{arm9tdmi}
2006 @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
2007 This enables the hardware single-stepping support found on these
2008 cores.
2009 @item @b{arm920t}
2010 @* None.
2011 @item @b{arm966e}
2012 @* None (this is also used as the ARM946)
2013 @item @b{cortex_m3}
2014 @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
2015 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2016 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2017 be detected and the normal reset behaviour used.
2018 @item @b{xscale}
2019 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2020 @item @b{arm11}
2021 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2022 @item @b{mips_m4k}
2023 @* Use variant @option{ejtag_srst} when debugging targets that do not
2024 provide a functional SRST line on the EJTAG connector. This causes
2025 OpenOCD to instead use an EJTAG software reset command to reset the
2026 processor. You still need to enable @option{srst} on the reset
2027 configuration command to enable OpenOCD hardware reset functionality.
2028 @comment END varients
2029 @end itemize
2030 @section working_area - Command Removed
2031 @cindex working_area
2032 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2033 @* This documentation remains because there are existing scripts that
2034 still use this that need to be converted.
2035 @example
2036 working_area target# address size backup| [virtualaddress]
2037 @end example
2038 @* The target# is a the 0 based target numerical index.
2039
2040 This command specifies a working area for the debugger to use. This
2041 may be used to speed-up downloads to target memory and flash
2042 operations, or to perform otherwise unavailable operations (some
2043 coprocessor operations on ARM7/9 systems, for example). The last
2044 parameter decides whether the memory should be preserved
2045 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
2046 possible, use a working_area that doesn't need to be backed up, as
2047 performing a backup slows down operation.
2048
2049 @node Flash Configuration
2050 @chapter Flash Programing
2051 @cindex Flash Configuration
2052
2053 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2054 flash that a micro may boot from. Perhaps you the reader would like to
2055 contribute support for this.
2056
2057 Flash Steps:
2058 @enumerate
2059 @item Configure via the command @b{flash bank}
2060 @* Normally this is done in a configuration file.
2061 @item Operate on the flash via @b{flash SOMECOMMAND}
2062 @* Often commands to manipulate the flash are typed by a human, or run
2063 via a script in some automated way. For example: To program the boot
2064 flash on your board.
2065 @item GDB Flashing
2066 @* Flashing via GDB requires the flash be configured via ``flash
2067 bank'', and the GDB flash features be enabled. See the Daemon
2068 configuration section for more details.
2069 @end enumerate
2070
2071 @section Flash commands
2072 @cindex Flash commands
2073 @subsection flash banks
2074 @b{flash banks}
2075 @cindex flash banks
2076 @*List configured flash banks
2077 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2078 @subsection flash info
2079 @b{flash info} <@var{num}>
2080 @cindex flash info
2081 @*Print info about flash bank <@option{num}>
2082 @subsection flash probe
2083 @b{flash probe} <@var{num}>
2084 @cindex flash probe
2085 @*Identify the flash, or validate the parameters of the configured flash. Operation
2086 depends on the flash type.
2087 @subsection flash erase_check
2088 @b{flash erase_check} <@var{num}>
2089 @cindex flash erase_check
2090 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2091 updates the erase state information displayed by @option{flash info}. That means you have
2092 to issue an @option{erase_check} command after erasing or programming the device to get
2093 updated information.
2094 @subsection flash protect_check
2095 @b{flash protect_check} <@var{num}>
2096 @cindex flash protect_check
2097 @*Check protection state of sectors in flash bank <num>.
2098 @option{flash erase_sector} using the same syntax.
2099 @subsection flash erase_sector
2100 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2101 @cindex flash erase_sector
2102 @anchor{flash erase_sector}
2103 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2104 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2105 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2106 the CFI driver).
2107 @subsection flash erase_address
2108 @b{flash erase_address} <@var{address}> <@var{length}>
2109 @cindex flash erase_address
2110 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2111 @subsection flash write_bank
2112 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2113 @cindex flash write_bank
2114 @anchor{flash write_bank}
2115 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2116 <@option{offset}> bytes from the beginning of the bank.
2117 @subsection flash write_image
2118 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2119 @cindex flash write_image
2120 @anchor{flash write_image}
2121 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2122 [@var{offset}] can be specified and the file [@var{type}] can be specified
2123 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2124 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2125 if the @option{erase} parameter is given.
2126 @subsection flash protect
2127 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2128 @cindex flash protect
2129 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2130 <@var{last}> of @option{flash bank} <@var{num}>.
2131
2132 @subsection mFlash commands
2133 @cindex mFlash commands
2134 @itemize @bullet
2135 @item @b{mflash probe}
2136 @cindex mflash probe
2137 Probe mflash.
2138 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2139 @cindex mflash write
2140 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2141 <@var{offset}> bytes from the beginning of the bank.
2142 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2143 @cindex mflash dump
2144 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2145 to a <@var{file}>.
2146 @end itemize
2147
2148 @section flash bank command
2149 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2150
2151 @example
2152 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2153 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2154 @end example
2155 @cindex flash bank
2156 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2157 and <@var{bus_width}> bytes using the selected flash <driver>.
2158
2159 @subsection External Flash - cfi options
2160 @cindex cfi options
2161 CFI flash are external flash chips - often they are connected to a
2162 specific chip select on the micro. By default at hard reset most
2163 micros have the ablity to ``boot'' from some flash chip - typically
2164 attached to the chips CS0 pin.
2165
2166 For other chip selects: OpenOCD does not know how to configure, or
2167 access a specific chip select. Instead you the human might need to via
2168 other commands (like: mww) configure additional chip selects, or
2169 perhaps configure a GPIO pin that controls the ``write protect'' pin
2170 on the FLASH chip.
2171
2172 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2173 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2174 @*CFI flashes require the number of the target they're connected to as an additional
2175 argument. The CFI driver makes use of a working area (specified for the target)
2176 to significantly speed up operation.
2177
2178 @var{chip_width} and @var{bus_width} are specified in bytes.
2179
2180 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
2181
2182 @var{x16_as_x8} ???
2183
2184 @subsection Internal Flash (Micro Controllers)
2185 @subsubsection lpc2000 options
2186 @cindex lpc2000 options
2187
2188 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2189 <@var{clock}> [@var{calc_checksum}]
2190 @*LPC flashes don't require the chip and bus width to be specified. Additional
2191 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2192 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2193 of the target this flash belongs to (first is 0), the frequency at which the core
2194 is currently running (in kHz - must be an integral number), and the optional keyword
2195 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2196 vector table.
2197
2198
2199 @subsubsection at91sam7 options
2200 @cindex at91sam7 options
2201
2202 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2203 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2204 reading the chip-id and type.
2205
2206 @subsubsection str7 options
2207 @cindex str7 options
2208
2209 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2210 @*variant can be either STR71x, STR73x or STR75x.
2211
2212 @subsubsection str9 options
2213 @cindex str9 options
2214
2215 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2216 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
2217 @example
2218 str9x flash_config 0 4 2 0 0x80000
2219 @end example
2220 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2221
2222 @subsubsection str9 options (str9xpec driver)
2223
2224 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2225 @*Before using the flash commands the turbo mode will need enabling using str9xpec
2226 @option{enable_turbo} <@var{num>.}
2227
2228 Only use this driver for locking/unlocking the device or configuring the option bytes.
2229 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2230
2231 @subsubsection stellaris (LM3Sxxx) options
2232 @cindex stellaris (LM3Sxxx) options
2233
2234 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2235 @*stellaris flash plugin only require the @var{target#}.
2236
2237 @subsubsection stm32x options
2238 @cindex stm32x options
2239
2240 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2241 @*stm32x flash plugin only require the @var{target#}.
2242
2243 @subsubsection aduc702x options
2244 @cindex aduc702x options
2245
2246 @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2247 @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
2248
2249 @subsection mFlash configuration
2250 @cindex mFlash configuration
2251 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2252 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2253 @cindex mflash bank
2254 @*Configures a mflash for <@var{soc}> host bank at
2255 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2256 order. Pin number format is dependent on host GPIO calling convention.
2257 If WP or DPD pin was not used, write -1. Currently, mflash bank
2258 support s3c2440 and pxa270.
2259
2260 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2261 @example
2262 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2263 @end example
2264 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2265 @example
2266 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2267 @end example
2268
2269 @section Micro Controller Specific Flash Commands
2270
2271 @subsection AT91SAM7 specific commands
2272 @cindex AT91SAM7 specific commands
2273 The flash configuration is deduced from the chip identification register. The flash
2274 controller handles erases automatically on a page (128/265 byte) basis so erase is
2275 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2276 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2277 that can be erased separatly. Only an EraseAll command is supported by the controller
2278 for each flash plane and this is called with
2279 @itemize @bullet
2280 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2281 @*bulk erase flash planes first_plane to last_plane.
2282 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2283 @cindex at91sam7 gpnvm
2284 @*set or clear a gpnvm bit for the processor
2285 @end itemize
2286
2287 @subsection STR9 specific commands
2288 @cindex STR9 specific commands
2289 @anchor{STR9 specific commands}
2290 These are flash specific commands when using the str9xpec driver.
2291 @itemize @bullet
2292 @item @b{str9xpec enable_turbo} <@var{num}>
2293 @cindex str9xpec enable_turbo
2294 @*enable turbo mode, simply this will remove the str9 from the chain and talk
2295 directly to the embedded flash controller.
2296 @item @b{str9xpec disable_turbo} <@var{num}>
2297 @cindex str9xpec disable_turbo
2298 @*restore the str9 into jtag chain.
2299 @item @b{str9xpec lock} <@var{num}>
2300 @cindex str9xpec lock
2301 @*lock str9 device. The str9 will only respond to an unlock command that will
2302 erase the device.
2303 @item @b{str9xpec unlock} <@var{num}>
2304 @cindex str9xpec unlock
2305 @*unlock str9 device.
2306 @item @b{str9xpec options_read} <@var{num}>
2307 @cindex str9xpec options_read
2308 @*read str9 option bytes.
2309 @item @b{str9xpec options_write} <@var{num}>
2310 @cindex str9xpec options_write
2311 @*write str9 option bytes.
2312 @end itemize
2313
2314 Note: Before using the str9xpec driver here is some background info to help
2315 you better understand how the drivers works. OpenOCD has two flash drivers for
2316 the str9.
2317 @enumerate
2318 @item
2319 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2320 flash programming as it is faster than the @option{str9xpec} driver.
2321 @item
2322 Direct programming @option{str9xpec} using the flash controller, this is
2323 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2324 core does not need to be running to program using this flash driver. Typical use
2325 for this driver is locking/unlocking the target and programming the option bytes.
2326 @end enumerate
2327
2328 Before we run any cmds using the @option{str9xpec} driver we must first disable
2329 the str9 core. This example assumes the @option{str9xpec} driver has been
2330 configured for flash bank 0.
2331 @example
2332 # assert srst, we do not want core running
2333 # while accessing str9xpec flash driver
2334 jtag_reset 0 1
2335 # turn off target polling
2336 poll off
2337 # disable str9 core
2338 str9xpec enable_turbo 0
2339 # read option bytes
2340 str9xpec options_read 0
2341 # re-enable str9 core
2342 str9xpec disable_turbo 0
2343 poll on
2344 reset halt
2345 @end example
2346 The above example will read the str9 option bytes.
2347 When performing a unlock remember that you will not be able to halt the str9 - it
2348 has been locked. Halting the core is not required for the @option{str9xpec} driver
2349 as mentioned above, just issue the cmds above manually or from a telnet prompt.
2350
2351 @subsection STR9 configuration
2352 @cindex STR9 configuration
2353 @itemize @bullet
2354 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2355 <@var{BBADR}> <@var{NBBADR}>
2356 @cindex str9x flash_config
2357 @*Configure str9 flash controller.
2358 @example
2359 eg. str9x flash_config 0 4 2 0 0x80000
2360 This will setup
2361 BBSR - Boot Bank Size register
2362 NBBSR - Non Boot Bank Size register
2363 BBADR - Boot Bank Start Address register
2364 NBBADR - Boot Bank Start Address register
2365 @end example
2366 @end itemize
2367
2368 @subsection STR9 option byte configuration
2369 @cindex STR9 option byte configuration
2370 @itemize @bullet
2371 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2372 @cindex str9xpec options_cmap
2373 @*configure str9 boot bank.
2374 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2375 @cindex str9xpec options_lvdthd
2376 @*configure str9 lvd threshold.
2377 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2378 @cindex str9xpec options_lvdsel
2379 @*configure str9 lvd source.
2380 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2381 @cindex str9xpec options_lvdwarn
2382 @*configure str9 lvd reset warning source.
2383 @end itemize
2384
2385 @subsection STM32x specific commands
2386 @cindex STM32x specific commands
2387
2388 These are flash specific commands when using the stm32x driver.
2389 @itemize @bullet
2390 @item @b{stm32x lock} <@var{num}>
2391 @cindex stm32x lock
2392 @*lock stm32 device.
2393 @item @b{stm32x unlock} <@var{num}>
2394 @cindex stm32x unlock
2395 @*unlock stm32 device.
2396 @item @b{stm32x options_read} <@var{num}>
2397 @cindex stm32x options_read
2398 @*read stm32 option bytes.
2399 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2400 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2401 @cindex stm32x options_write
2402 @*write stm32 option bytes.
2403 @item @b{stm32x mass_erase} <@var{num}>
2404 @cindex stm32x mass_erase
2405 @*mass erase flash memory.
2406 @end itemize
2407
2408 @subsection Stellaris specific commands
2409 @cindex Stellaris specific commands
2410
2411 These are flash specific commands when using the Stellaris driver.
2412 @itemize @bullet
2413 @item @b{stellaris mass_erase} <@var{num}>
2414 @cindex stellaris mass_erase
2415 @*mass erase flash memory.
2416 @end itemize
2417
2418
2419 @node General Commands
2420 @chapter General Commands
2421 @cindex commands
2422
2423 The commands documented in this chapter here are common commands that
2424 you a human may want to type and see the output of. Configuration type
2425 commands are documented elsewhere.
2426
2427 Intent:
2428 @itemize @bullet
2429 @item @b{Source Of Commands}
2430 @* OpenOCD commands can occur in a configuration script (discussed
2431 elsewhere) or typed manually by a human or supplied programatically,
2432 or via one of several Tcp/Ip Ports.
2433
2434 @item @b{From the human}
2435 @* A human should interact with the Telnet interface (default port: 4444,
2436 or via GDB, default port 3333)
2437
2438 To issue commands from within a GDB session, use the @option{monitor}
2439 command, e.g. use @option{monitor poll} to issue the @option{poll}
2440 command. All output is relayed through the GDB session.
2441
2442 @item @b{Machine Interface}
2443 The TCL interface intent is to be a machine interface. The default TCL
2444 port is 5555.
2445 @end itemize
2446
2447
2448 @section Daemon Commands
2449
2450 @subsection sleep [@var{msec}]
2451 @cindex sleep
2452 @*Wait for n milliseconds before resuming. Useful in connection with script files
2453 (@var{script} command and @var{target_script} configuration).
2454
2455 @subsection shutdown
2456 @cindex shutdown
2457 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
2458
2459 @subsection debug_level [@var{n}]
2460 @cindex debug_level
2461 @anchor{debug_level}
2462 @*Display or adjust debug level to n<0-3>
2463
2464 @subsection fast [@var{enable|disable}]
2465 @cindex fast
2466 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2467 downloads and fast memory access will work if the JTAG interface isn't too fast and
2468 the core doesn't run at a too low frequency. Note that this option only changes the default
2469 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2470 individually.
2471
2472 The target specific "dangerous" optimisation tweaking options may come and go
2473 as more robust and user friendly ways are found to ensure maximum throughput
2474 and robustness with a minimum of configuration.
2475
2476 Typically the "fast enable" is specified first on the command line:
2477
2478 @example
2479 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2480 @end example
2481
2482 @subsection log_output <@var{file}>
2483 @cindex log_output
2484 @*Redirect logging to <file> (default: stderr)
2485
2486 @subsection script <@var{file}>
2487 @cindex script
2488 @*Execute commands from <file>
2489 Also see: ``source [find FILENAME]''
2490
2491 @section Target state handling
2492 @subsection power <@var{on}|@var{off}>
2493 @cindex reg
2494 @*Turn power switch to target on/off.
2495 No arguments: print status.
2496 Not all interfaces support this.
2497
2498 @subsection reg [@option{#}|@option{name}] [value]
2499 @cindex reg
2500 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2501 No arguments: list all available registers for the current target.
2502 Number or name argument: display a register
2503 Number or name and value arguments: set register value
2504
2505 @subsection poll [@option{on}|@option{off}]
2506 @cindex poll
2507 @*Poll the target for its current state. If the target is in debug mode, architecture
2508 specific information about the current state is printed. An optional parameter
2509 allows continuous polling to be enabled and disabled.
2510
2511 @subsection halt [@option{ms}]
2512 @cindex halt
2513 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2514 Default [@option{ms}] is 5 seconds if no arg given.
2515 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2516 will stop OpenOCD from waiting.
2517
2518 @subsection wait_halt [@option{ms}]
2519 @cindex wait_halt
2520 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2521 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2522 arg given.
2523
2524 @subsection resume [@var{address}]
2525 @cindex resume
2526 @*Resume the target at its current code position, or at an optional address.
2527 OpenOCD will wait 5 seconds for the target to resume.
2528
2529 @subsection step [@var{address}]
2530 @cindex step
2531 @*Single-step the target at its current code position, or at an optional address.
2532
2533 @subsection reset [@option{run}|@option{halt}|@option{init}]
2534 @cindex reset
2535 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2536
2537 With no arguments a "reset run" is executed
2538 @itemize @minus
2539 @item @b{run}
2540 @cindex reset run
2541 @*Let the target run.
2542 @item @b{halt}
2543 @cindex reset halt
2544 @*Immediately halt the target (works only with certain configurations).
2545 @item @b{init}
2546 @cindex reset init
2547 @*Immediately halt the target, and execute the reset script (works only with certain
2548 configurations)
2549 @end itemize
2550
2551 @subsection soft_reset_halt
2552 @cindex reset
2553 @*Requesting target halt and executing a soft reset. This often used
2554 when a target cannot be reset and halted. The target, after reset is
2555 released begins to execute code. OpenOCD attempts to stop the CPU and
2556 then sets the Program counter back at the reset vector. Unfortunatlly
2557 that code that was executed may have left hardware in an unknown
2558 state.
2559
2560
2561 @section Memory access commands
2562 @subsection meminfo
2563 display available ram memory.
2564 @subsection Memory Peek/Poke type commands
2565 These commands allow accesses of a specific size to the memory
2566 system. Often these are used to configure the current target in some
2567 special way. For example - one may need to write certian values to the
2568 SDRAM controller to enable SDRAM.
2569
2570 @enumerate
2571 @item To change the current target see the ``targets'' (plural) command
2572 @item In system level scripts these commands are depricated, please use the TARGET object versions.
2573 @end enumerate
2574
2575 @itemize @bullet
2576 @item @b{mdw} <@var{addr}> [@var{count}]
2577 @cindex mdw
2578 @*display memory words (32bit)
2579 @item @b{mdh} <@var{addr}> [@var{count}]
2580 @cindex mdh
2581 @*display memory half-words (16bit)
2582 @item @b{mdb} <@var{addr}> [@var{count}]
2583 @cindex mdb
2584 @*display memory bytes (8bit)
2585 @item @b{mww} <@var{addr}> <@var{value}>
2586 @cindex mww
2587 @*write memory word (32bit)
2588 @item @b{mwh} <@var{addr}> <@var{value}>
2589 @cindex mwh
2590 @*write memory half-word (16bit)
2591 @item @b{mwb} <@var{addr}> <@var{value}>
2592 @cindex mwb
2593 @*write memory byte (8bit)
2594 @end itemize
2595
2596 @section Image Loading Commands
2597 @subsection load_image
2598 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2599 @cindex load_image
2600 @anchor{load_image}
2601 @*Load image <@var{file}> to target memory at <@var{address}>
2602 @subsection fast_load_image
2603 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2604 @cindex fast_load_image
2605 @anchor{fast_load_image}
2606 @*Normally you should be using @b{load_image} or GDB load. However, for
2607 testing purposes or when IO overhead is significant(OpenOCD running on embedded
2608 host), then storing the image in memory and uploading the image to the target
2609 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2610 Arguments as @b{load_image}, but image is stored in OpenOCD host
2611 memory, i.e. does not affect target. This approach is also useful when profiling
2612 target programming performance as IO and target programming can easily be profiled
2613 seperately.
2614 @subsection fast_load
2615 @b{fast_load}
2616 @cindex fast_image
2617 @anchor{fast_image}
2618 @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
2619 @subsection dump_image
2620 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2621 @cindex dump_image
2622 @anchor{dump_image}
2623 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2624 (binary) <@var{file}>.
2625 @subsection verify_image
2626 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2627 @cindex verify_image
2628 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2629 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
2630
2631
2632 @section Breakpoint commands
2633 @cindex Breakpoint commands
2634 @itemize @bullet
2635 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2636 @cindex bp
2637 @*set breakpoint <address> <length> [hw]
2638 @item @b{rbp} <@var{addr}>
2639 @cindex rbp
2640 @*remove breakpoint <adress>
2641 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2642 @cindex wp
2643 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2644 @item @b{rwp} <@var{addr}>
2645 @cindex rwp
2646 @*remove watchpoint <adress>
2647 @end itemize
2648
2649 @section Misc Commands
2650 @cindex Other Target Commands
2651 @itemize
2652 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2653
2654 Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
2655 @end itemize
2656
2657 @section Target Specific Commands
2658 @cindex Target Specific Commands
2659
2660
2661 @page
2662 @section Architecture Specific Commands
2663 @cindex Architecture Specific Commands
2664
2665 @subsection ARMV4/5 specific commands
2666 @cindex ARMV4/5 specific commands
2667
2668 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2669 or Intel XScale (XScale isn't supported yet).
2670 @itemize @bullet
2671 @item @b{armv4_5 reg}
2672 @cindex armv4_5 reg
2673 @*Display a list of all banked core registers, fetching the current value from every
2674 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2675 register value.
2676 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2677 @cindex armv4_5 core_mode
2678 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2679 The target is resumed in the currently set @option{core_mode}.
2680 @end itemize
2681
2682 @subsection ARM7/9 specific commands
2683 @cindex ARM7/9 specific commands
2684
2685 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2686 ARM920t or ARM926EJ-S.
2687 @itemize @bullet
2688 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2689 @cindex arm7_9 dbgrq
2690 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2691 safe for all but ARM7TDMI--S cores (like Philips LPC).
2692 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2693 @cindex arm7_9 fast_memory_access
2694 @anchor{arm7_9 fast_memory_access}
2695 @*Allow OpenOCD to read and write memory without checking completion of
2696 the operation. This provides a huge speed increase, especially with USB JTAG
2697 cables (FT2232), but might be unsafe if used with targets running at a very low
2698 speed, like the 32kHz startup clock of an AT91RM9200.
2699 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2700 @cindex arm7_9 dcc_downloads
2701 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2702 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2703 unsafe, especially with targets running at a very low speed. This command was introduced
2704 with OpenOCD rev. 60.
2705 @end itemize
2706
2707 @subsection ARM720T specific commands
2708 @cindex ARM720T specific commands
2709
2710 @itemize @bullet
2711 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2712 @cindex arm720t cp15
2713 @*display/modify cp15 register <@option{num}> [@option{value}].
2714 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2715 @cindex arm720t md<bhw>_phys
2716 @*Display memory at physical address addr.
2717 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2718 @cindex arm720t mw<bhw>_phys
2719 @*Write memory at physical address addr.
2720 @item @b{arm720t virt2phys} <@var{va}>
2721 @cindex arm720t virt2phys
2722 @*Translate a virtual address to a physical address.
2723 @end itemize
2724
2725 @subsection ARM9TDMI specific commands
2726 @cindex ARM9TDMI specific commands
2727
2728 @itemize @bullet
2729 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2730 @cindex arm9tdmi vector_catch
2731 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2732 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2733 @option{irq} @option{fiq}.
2734
2735 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
2736 @end itemize
2737
2738 @subsection ARM966E specific commands
2739 @cindex ARM966E specific commands
2740
2741 @itemize @bullet
2742 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2743 @cindex arm966e cp15
2744 @*display/modify cp15 register <@option{num}> [@option{value}].
2745 @end itemize
2746
2747 @subsection ARM920T specific commands
2748 @cindex ARM920T specific commands
2749
2750 @itemize @bullet
2751 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2752 @cindex arm920t cp15
2753 @*display/modify cp15 register <@option{num}> [@option{value}].
2754 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2755 @cindex arm920t cp15i
2756 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2757 @item @b{arm920t cache_info}
2758 @cindex arm920t cache_info
2759 @*Print information about the caches found. This allows you to see if your target
2760 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2761 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2762 @cindex arm920t md<bhw>_phys
2763 @*Display memory at physical address addr.
2764 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2765 @cindex arm920t mw<bhw>_phys
2766 @*Write memory at physical address addr.
2767 @item @b{arm920t read_cache} <@var{filename}>
2768 @cindex arm920t read_cache
2769 @*Dump the content of ICache and DCache to a file.
2770 @item @b{arm920t read_mmu} <@var{filename}>
2771 @cindex arm920t read_mmu
2772 @*Dump the content of the ITLB and DTLB to a file.
2773 @item @b{arm920t virt2phys} <@var{va}>
2774 @cindex arm920t virt2phys
2775 @*Translate a virtual address to a physical address.
2776 @end itemize
2777
2778 @subsection ARM926EJS specific commands
2779 @cindex ARM926EJS specific commands
2780
2781 @itemize @bullet
2782 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2783 @cindex arm926ejs cp15
2784 @*display/modify cp15 register <@option{num}> [@option{value}].
2785 @item @b{arm926ejs cache_info}
2786 @cindex arm926ejs cache_info
2787 @*Print information about the caches found.
2788 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2789 @cindex arm926ejs md<bhw>_phys
2790 @*Display memory at physical address addr.
2791 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2792 @cindex arm926ejs mw<bhw>_phys
2793 @*Write memory at physical address addr.
2794 @item @b{arm926ejs virt2phys} <@var{va}>
2795 @cindex arm926ejs virt2phys
2796 @*Translate a virtual address to a physical address.
2797 @end itemize
2798
2799 @subsection CORTEX_M3 specific commands
2800 @cindex CORTEX_M3 specific commands
2801
2802 @itemize @bullet
2803 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2804 @cindex cortex_m3 maskisr
2805 @*Enable masking (disabling) interrupts during target step/resume.
2806 @end itemize
2807
2808 @page
2809 @section Debug commands
2810 @cindex Debug commands
2811 The following commands give direct access to the core, and are most likely
2812 only useful while debugging OpenOCD.
2813 @itemize @bullet
2814 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2815 @cindex arm7_9 write_xpsr
2816 @*Immediately write either the current program status register (CPSR) or the saved
2817 program status register (SPSR), without changing the register cache (as displayed
2818 by the @option{reg} and @option{armv4_5 reg} commands).
2819 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2820 <@var{0=cpsr},@var{1=spsr}>
2821 @cindex arm7_9 write_xpsr_im8
2822 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2823 operation (similar to @option{write_xpsr}).
2824 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2825 @cindex arm7_9 write_core_reg
2826 @*Write a core register, without changing the register cache (as displayed by the
2827 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2828 encoding of the [M4:M0] bits of the PSR.
2829 @end itemize
2830
2831 @section Target Requests
2832 @cindex Target Requests
2833 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2834 See libdcc in the contrib dir for more details.
2835 @itemize @bullet
2836 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
2837 @cindex target_request debugmsgs
2838 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
2839 @end itemize
2840
2841 @node JTAG Commands
2842 @chapter JTAG Commands
2843 @cindex JTAG commands
2844 Generally most people will not use the bulk of these commands. They
2845 are mostly used by the OpenOCD developers or those who need to
2846 directly manipulate the JTAG taps.
2847
2848 In general these commands control JTAG taps at a very low level. For
2849 example if you need to control a JTAG Route Controller (ie: the
2850 OMAP3530 on the Beagle Board has one) you might use these commands in
2851 a script or an event procedure.
2852 @section Commands
2853 @cindex Commands
2854 @itemize @bullet
2855 @item @b{scan_chain}
2856 @cindex scan_chain
2857 @*Print current scan chain configuration.
2858 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2859 @cindex jtag_reset
2860 @*Toggle reset lines.
2861 @item @b{endstate} <@var{tap_state}>
2862 @cindex endstate
2863 @*Finish JTAG operations in <@var{tap_state}>.
2864 @item @b{runtest} <@var{num_cycles}>
2865 @cindex runtest
2866 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2867 @item @b{statemove} [@var{tap_state}]
2868 @cindex statemove
2869 @*Move to current endstate or [@var{tap_state}]
2870 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2871 @cindex irscan
2872 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2873 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2874 @cindex drscan
2875 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2876 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2877 @cindex verify_ircapture
2878 @*Verify value captured during Capture-IR. Default is enabled.
2879 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2880 @cindex var
2881 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2882 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2883 @cindex field
2884 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2885 @end itemize
2886
2887 @section Tap states
2888 @cindex Tap states
2889 Available tap_states are:
2890 @itemize @bullet
2891 @item @b{RESET}
2892 @cindex RESET
2893 @item @b{IDLE}
2894 @cindex IDLE
2895 @item @b{DRSELECT}
2896 @cindex DRSELECT
2897 @item @b{DRCAPTURE}
2898 @cindex DRCAPTURE
2899 @item @b{DRSHIFT}
2900 @cindex DRSHIFT
2901 @item @b{DREXIT1}
2902 @cindex DREXIT1
2903 @item @b{DRPAUSE}
2904 @cindex DRPAUSE
2905 @item @b{DREXIT2}
2906 @cindex DREXIT2
2907 @item @b{DRUPDATE}
2908 @cindex DRUPDATE
2909 @item @b{IRSELECT}
2910 @cindex IRSELECT
2911 @item @b{IRCAPTURE}
2912 @cindex IRCAPTURE
2913 @item @b{IRSHIFT}
2914 @cindex IRSHIFT
2915 @item @b{IREXIT1}
2916 @cindex IREXIT1
2917 @item @b{IRPAUSE}
2918 @cindex IRPAUSE
2919 @item @b{IREXIT2}
2920 @cindex IREXIT2
2921 @item @b{IRUPDATE}
2922 @cindex IRUPDATE
2923 @end itemize
2924
2925
2926 @node TFTP
2927 @chapter TFTP
2928 @cindex TFTP
2929 If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
2930 be used to access files on PCs(either developer PC or some other PC).
2931
2932 The way this works on the ZY1000 is to prefix a filename by
2933 "/tftp/ip/" and append the tftp path on the tftp
2934 server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2935 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2936 if the file was hosted on the embedded host.
2937
2938 In order to achieve decent performance, you must choose a tftp server
2939 that supports a packet size bigger than the default packet size(512 bytes). There
2940 are numerous tftp servers out there(free and commercial) and you will have to do
2941 a bit of googling to find something that fits your requirements.
2942
2943 @node Sample Scripts
2944 @chapter Sample Scripts
2945 @cindex scripts
2946
2947 This page shows how to use the target library.
2948
2949 The configuration script can be divided in the following section:
2950 @itemize @bullet
2951 @item daemon configuration
2952 @item interface
2953 @item jtag scan chain
2954 @item target configuration
2955 @item flash configuration
2956 @end itemize
2957
2958 Detailed information about each section can be found at OpenOCD configuration.
2959
2960 @section AT91R40008 example
2961 @cindex AT91R40008 example
2962 To start OpenOCD with a target script for the AT91R40008 CPU and reset
2963 the CPU upon startup of the OpenOCD daemon.
2964 @example
2965 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
2966 @end example
2967
2968
2969 @node GDB and OpenOCD
2970 @chapter GDB and OpenOCD
2971 @cindex GDB and OpenOCD
2972 OpenOCD complies with the remote gdbserver protocol, and as such can be used
2973 to debug remote targets.
2974
2975 @section Connecting to GDB
2976 @cindex Connecting to GDB
2977 @anchor{Connecting to GDB}
2978 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
2979 instance 6.3 has a known bug where it produces bogus memory access
2980 errors, which has since been fixed: look up 1836 in
2981 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
2982
2983 @*OpenOCD can communicate with GDB in two ways:
2984 @enumerate
2985 @item
2986 A socket (tcp) connection is typically started as follows:
2987 @example
2988 target remote localhost:3333
2989 @end example
2990 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
2991 @item
2992 A pipe connection is typically started as follows:
2993 @example
2994 target remote openocd --pipe
2995 @end example
2996 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
2997 Using this method has the advantage of GDB starting/stopping OpenOCD for debug session.
2998 @end enumerate
2999
3000 @*To see a list of available OpenOCD commands type @option{monitor help} on the
3001 GDB commandline.
3002
3003 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3004 to be sent by the gdb server (OpenOCD) to GDB. Typical information includes
3005 packet size and device memory map.
3006
3007 Previous versions of OpenOCD required the following GDB options to increase
3008 the packet size and speed up GDB communication.
3009 @example
3010 set remote memory-write-packet-size 1024
3011 set remote memory-write-packet-size fixed
3012 set remote memory-read-packet-size 1024
3013 set remote memory-read-packet-size fixed
3014 @end example
3015 This is now handled in the @option{qSupported} PacketSize and should not be required.
3016
3017 @section Programming using GDB
3018 @cindex Programming using GDB
3019
3020 By default the target memory map is sent to GDB, this can be disabled by
3021 the following OpenOCD config option:
3022 @example
3023 gdb_memory_map disable
3024 @end example
3025 For this to function correctly a valid flash config must also be configured
3026 in OpenOCD. For faster performance you should also configure a valid
3027 working area.
3028
3029 Informing GDB of the memory map of the target will enable GDB to protect any
3030 flash area of the target and use hardware breakpoints by default. This means
3031 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3032 using a memory map. @xref{gdb_breakpoint_override}.
3033
3034 To view the configured memory map in GDB, use the gdb command @option{info mem}
3035 All other unasigned addresses within GDB are treated as RAM.
3036
3037 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
3038 this can be changed to the old behaviour by using the following GDB command.
3039 @example
3040 set mem inaccessible-by-default off
3041 @end example
3042
3043 If @option{gdb_flash_program enable} is also used, GDB will be able to
3044 program any flash memory using the vFlash interface.
3045
3046 GDB will look at the target memory map when a load command is given, if any
3047 areas to be programmed lie within the target flash area the vFlash packets
3048 will be used.
3049
3050 If the target needs configuring before GDB programming, an event
3051 script can be executed.
3052 @example
3053 $_TARGETNAME configure -event EVENTNAME BODY
3054 @end example
3055
3056 To verify any flash programming the GDB command @option{compare-sections}
3057 can be used.
3058
3059 @node TCL scripting API
3060 @chapter TCL scripting API
3061 @cindex TCL scripting API
3062 API rules
3063
3064 The commands are stateless. E.g. the telnet command line has a concept
3065 of currently active target, the Tcl API proc's take this sort of state
3066 information as an argument to each proc.
3067
3068 There are three main types of return values: single value, name value
3069 pair list and lists.
3070
3071 Name value pair. The proc 'foo' below returns a name/value pair
3072 list.
3073
3074 @verbatim
3075
3076 > set foo(me) Duane
3077 > set foo(you) Oyvind
3078 > set foo(mouse) Micky
3079 > set foo(duck) Donald
3080
3081 If one does this:
3082
3083 > set foo
3084
3085 The result is:
3086
3087 me Duane you Oyvind mouse Micky duck Donald
3088
3089 Thus, to get the names of the associative array is easy:
3090
3091 foreach { name value } [set foo] {
3092 puts "Name: $name, Value: $value"
3093 }
3094 @end verbatim
3095
3096 Lists returned must be relatively small. Otherwise a range
3097 should be passed in to the proc in question.
3098
3099 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
3100 is the low level API upon which "flash banks" is implemented.
3101
3102 @itemize @bullet
3103 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3104
3105 Read memory and return as a TCL array for script processing
3106 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3107
3108 Convert a TCL array to memory locations and write the values
3109 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3110
3111 Return information about the flash banks
3112 @end itemize
3113
3114 OpenOCD commands can consist of two words, e.g. "flash banks". The
3115 startup.tcl "unknown" proc will translate this into a tcl proc
3116 called "flash_banks".
3117
3118
3119 @node Upgrading
3120 @chapter Deprecated/Removed Commands
3121 @cindex Deprecated/Removed Commands
3122 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3123
3124 @itemize @bullet
3125 @item @b{arm7_9 fast_writes}
3126 @cindex arm7_9 fast_writes
3127 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3128 @item @b{arm7_9 force_hw_bkpts}
3129 @cindex arm7_9 force_hw_bkpts
3130 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3131 for flash if the gdb memory map has been set up(default when flash is declared in
3132 target configuration). @xref{gdb_breakpoint_override}.
3133 @item @b{arm7_9 sw_bkpts}
3134 @cindex arm7_9 sw_bkpts
3135 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3136 @item @b{daemon_startup}
3137 @cindex daemon_startup
3138 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3139 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3140 and @option{target cortex_m3 little reset_halt 0}.
3141 @item @b{dump_binary}
3142 @cindex dump_binary
3143 @*use @option{dump_image} command with same args. @xref{dump_image}.
3144 @item @b{flash erase}
3145 @cindex flash erase
3146 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3147 @item @b{flash write}
3148 @cindex flash write
3149 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3150 @item @b{flash write_binary}
3151 @cindex flash write_binary
3152 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3153 @item @b{flash auto_erase}
3154 @cindex flash auto_erase
3155 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3156 @item @b{load_binary}
3157 @cindex load_binary
3158 @*use @option{load_image} command with same args. @xref{load_image}.
3159 @item @b{run_and_halt_time}
3160 @cindex run_and_halt_time
3161 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3162 following commands:
3163 @smallexample
3164 reset run
3165 sleep 100
3166 halt
3167 @end smallexample
3168 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3169 @cindex target
3170 @*use the create subcommand of @option{target}.
3171 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3172 @cindex target_script
3173 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3174 @item @b{working_area}
3175 @cindex working_area
3176 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3177 @end itemize
3178
3179 @node FAQ
3180 @chapter FAQ
3181 @cindex faq
3182 @enumerate
3183 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3184 @cindex RTCK
3185 @cindex adaptive clocking
3186 @*
3187
3188 In digital circuit design it is often refered to as ``clock
3189 syncronization'' the JTAG interface uses one clock (TCK or TCLK)
3190 operating at some speed, your target is operating at another. The two
3191 clocks are not syncronized, they are ``asynchronous''
3192
3193 In order for the two to work together they must syncronize. Otherwise
3194 the two systems will get out of sync with each other and nothing will
3195 work. There are 2 basic options. @b{1.} use a special circuit or
3196 @b{2.} one clock must be some multile slower the the other.
3197
3198 @b{Does this really matter?} For some chips and some situations, this
3199 is a non-issue (ie: A 500mhz ARM926) but for others - for example some
3200 ATMEL SAM7 and SAM9 chips start operation from reset at 32khz -
3201 program/enable the oscillators and eventually the main clock. It is in
3202 those critical times you must slow the jtag clock to sometimes 1 to
3203 4khz.
3204
3205 Imagine debugging that 500mhz arm926 hand held battery powered device
3206 that ``deep sleeps'' at 32khz between every keystroke. It can be
3207 painful.
3208
3209 @b{Solution #1 - A special circuit}
3210
3211 In order to make use of this your jtag dongle must support the RTCK
3212 feature. Not all dongles support this - keep reading!
3213
3214 The RTCK signal often found in some ARM chips is used to help with
3215 this problem. ARM has a good description of the problem described at
3216 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3217 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
3218 work? / how does adaptive clocking working?''.
3219
3220 The nice thing about adaptive clocking is that ``battery powered hand
3221 held device example'' - the adaptiveness works perfectly all the
3222 time. One can set a break point or halt the system in the deep power
3223 down code, slow step out until the system speeds up.
3224
3225 @b{Solution #2 - Always works - but is slower}
3226
3227 Often this is a perfectly acceptable solution.
3228
3229 In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3230 the target clock speed. But what is that ``magic division'' it varies
3231 depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
3232 based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
3233 1/12 the clock speed.
3234
3235 Note: Many FTDI2232C based JTAG dongles are limited to 6mhz.
3236
3237 You can still debug the 'lower power' situations - you just need to
3238 manually adjust the clock speed at every step. While painful and
3239 teadious, it is not always practical.
3240
3241 It is however easy to ``code your way around it'' - ie: Cheat a little
3242 have a special debug mode in your application that does a ``high power
3243 sleep''. If you are careful - 98% of your problems can be debugged
3244 this way.
3245
3246 To set the JTAG frequency use the command:
3247
3248 @example
3249 # Example: 1.234mhz
3250 jtag_khz 1234
3251 @end example
3252
3253
3254 @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
3255
3256 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3257 around Windows filenames.
3258
3259 @example
3260 > echo \a
3261
3262 > echo @{\a@}
3263 \a
3264 > echo "\a"
3265
3266 >
3267 @end example
3268
3269
3270 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3271
3272 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3273 claims to come with all the necessary dlls. When using Cygwin, try launching
3274 OpenOCD from the Cygwin shell.
3275
3276 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3277 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3278 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3279
3280 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3281 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
3282 software breakpoints consume one of the two available hardware breakpoints.
3283
3284 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
3285 and works sometimes fine.
3286
3287 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3288 clock at the time you're programming the flash. If you've specified the crystal's
3289 frequency, make sure the PLL is disabled, if you've specified the full core speed
3290 (e.g. 60MHz), make sure the PLL is enabled.
3291
3292 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3293 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3294 out while waiting for end of scan, rtck was disabled".
3295
3296 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3297 settings in your PC BIOS (ECP, EPP, and different versions of those).
3298
3299 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3300 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3301 memory read caused data abort".
3302
3303 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3304 beyond the last valid frame. It might be possible to prevent this by setting up
3305 a proper "initial" stack frame, if you happen to know what exactly has to
3306 be done, feel free to add this here.
3307
3308 @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
3309 stack before calling main(). What GDB is doing is ``climbing'' the run
3310 time stack by reading various values on the stack using the standard
3311 call frame for the target. GDB keeps going - until one of 2 things
3312 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3313 stackframes have been processed. By pushing ZEROs on the stack, GDB
3314 gracefully stops.
3315
3316 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3317 your C code, do the same, artifically push some zeros on to the stack,
3318 remember to pop them off when the ISR is done.
3319
3320 @b{Also note:} If you have a multi-threaded operating system, they
3321 often do not @b{in the intrest of saving memory} waste these few
3322 bytes. Painful...
3323
3324
3325 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3326 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3327
3328 This warning doesn't indicate any serious problem, as long as you don't want to
3329 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3330 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3331 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3332 independently. With this setup, it's not possible to halt the core right out of
3333 reset, everything else should work fine.
3334
3335 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3336 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3337 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3338 quit with an error message. Is there a stability issue with OpenOCD?
3339
3340 No, this is not a stability issue concerning OpenOCD. Most users have solved
3341 this issue by simply using a self-powered USB hub, which they connect their
3342 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3343 supply stable enough for the Amontec JTAGkey to be operated.
3344
3345 @b{Laptops running on battery have this problem too...}
3346
3347 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3348 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3349 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3350 What does that mean and what might be the reason for this?
3351
3352 First of all, the reason might be the USB power supply. Try using a self-powered
3353 hub instead of a direct connection to your computer. Secondly, the error code 4
3354 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3355 chip ran into some sort of error - this points us to a USB problem.
3356
3357 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3358 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3359 What does that mean and what might be the reason for this?
3360
3361 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3362 has closed the connection to OpenOCD. This might be a GDB issue.
3363
3364 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3365 are described, there is a parameter for specifying the clock frequency
3366 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3367 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3368 specified in kilohertz. However, I do have a quartz crystal of a
3369 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3370 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3371 clock frequency?
3372
3373 No. The clock frequency specified here must be given as an integral number.
3374 However, this clock frequency is used by the In-Application-Programming (IAP)
3375 routines of the LPC2000 family only, which seems to be very tolerant concerning
3376 the given clock frequency, so a slight difference between the specified clock
3377 frequency and the actual clock frequency will not cause any trouble.
3378
3379 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3380
3381 Well, yes and no. Commands can be given in arbitrary order, yet the
3382 devices listed for the JTAG scan chain must be given in the right
3383 order (jtag newdevice), with the device closest to the TDO-Pin being
3384 listed first. In general, whenever objects of the same type exist
3385 which require an index number, then these objects must be given in the
3386 right order (jtag newtap, targets and flash banks - a target
3387 references a jtag newtap and a flash bank references a target).
3388
3389 You can use the ``scan_chain'' command to verify and display the tap order.
3390
3391 @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
3392
3393 Many newer devices have multiple JTAG taps. For example: ST
3394 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3395 ``cortexM3'' tap. Example: The STM32 reference manual, Document ID:
3396 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3397 connected to the Boundary Scan Tap, which then connects to the
3398 CortexM3 Tap, which then connects to the TDO pin.
3399
3400 Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
3401 (2) The Boundary Scan Tap. If your board includes an additional JTAG
3402 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3403 place it before or after the stm32 chip in the chain. For example:
3404
3405 @itemize @bullet
3406 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3407 @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
3408 @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
3409 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3410 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3411 @end itemize
3412
3413 The ``jtag device'' commands would thus be in the order shown below. Note
3414
3415 @itemize @bullet
3416 @item jtag newtap Xilinx tap -irlen ...
3417 @item jtag newtap stm32 cpu -irlen ...
3418 @item jtag newtap stm32 bs -irlen ...
3419 @item # Create the debug target and say where it is
3420 @item target create stm32.cpu -chain-position stm32.cpu ...
3421 @end itemize
3422
3423
3424 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3425 log file, I can see these error messages: Error: arm7_9_common.c:561
3426 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3427
3428 TODO.
3429
3430 @end enumerate
3431
3432 @node TCL Crash Course
3433 @chapter TCL Crash Course
3434 @cindex TCL
3435
3436 Not everyone knows TCL - this is not intended to be a replacement for
3437 learning TCL, the intent of this chapter is to give you some idea of
3438 how the TCL Scripts work.
3439
3440 This chapter is written with two audiences in mind. (1) OpenOCD users
3441 who need to understand a bit more of how JIM-Tcl works so they can do
3442 something useful, and (2) those that want to add a new command to
3443 OpenOCD.
3444
3445 @section TCL Rule #1
3446 There is a famous joke, it goes like this:
3447 @enumerate
3448 @item Rule #1: The wife is always correct
3449 @item Rule #2: If you think otherwise, See Rule #1
3450 @end enumerate
3451
3452 The TCL equal is this:
3453
3454 @enumerate
3455 @item Rule #1: Everything is a string
3456 @item Rule #2: If you think otherwise, See Rule #1
3457 @end enumerate
3458
3459 As in the famous joke, the consequences of Rule #1 are profound. Once
3460 you understand Rule #1, you will understand TCL.
3461
3462 @section TCL Rule #1b
3463 There is a second pair of rules.
3464 @enumerate
3465 @item Rule #1: Control flow does not exist. Only commands
3466 @* For example: the classic FOR loop or IF statement is not a control
3467 flow item, they are commands, there is no such thing as control flow
3468 in TCL.
3469 @item Rule #2: If you think otherwise, See Rule #1
3470 @* Actually what happens is this: There are commands that by
3471 convention, act like control flow key words in other languages. One of
3472 those commands is the word ``for'', another command is ``if''.
3473 @end enumerate
3474
3475 @section Per Rule #1 - All Results are strings
3476 Every TCL command results in a string. The word ``result'' is used
3477 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3478 Everything is a string}
3479
3480 @section TCL Quoting Operators
3481 In life of a TCL script, there are two important periods of time, the
3482 difference is subtle.
3483 @enumerate
3484 @item Parse Time
3485 @item Evaluation Time
3486 @end enumerate
3487
3488 The two key items here are how ``quoted things'' work in TCL. TCL has
3489 three primary quoting constructs, the [square-brackets] the
3490 @{curly-braces@} and ``double-quotes''
3491
3492 By now you should know $VARIABLES always start with a $DOLLAR
3493 sign. BTW, to set a variable, you actually use the command ``set'', as
3494 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3495 = 1'' statement, but without the equal sign.
3496
3497 @itemize @bullet
3498 @item @b{[square-brackets]}
3499 @* @b{[square-brackets]} are command subsitution. It operates much
3500 like Unix Shell `back-ticks`. The result of a [square-bracket]
3501 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3502 string}. These two statments are roughly identical.
3503 @example
3504 # bash example
3505 X=`date`
3506 echo "The Date is: $X"
3507 # TCL example
3508 set X [date]
3509 puts "The Date is: $X"
3510 @end example
3511 @item @b{``double-quoted-things''}
3512 @* @b{``double-quoted-things''} are just simply quoted
3513 text. $VARIABLES and [square-brackets] are expanded in place - the
3514 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3515 is a string}
3516 @example
3517 set x "Dinner"
3518 puts "It is now \"[date]\", $x is in 1 hour"
3519 @end example
3520 @item @b{@{Curly-Braces@}}
3521 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3522 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3523 'single-quote' operators in BASH shell scripts, with the added
3524 feature: @{curly-braces@} nest, single quotes can not. @{@{@{this is
3525 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3526 28/nov/2008, Jim/OpenOCD does not have a date command.
3527 @end itemize
3528
3529 @section Consequences of Rule 1/2/3/4
3530
3531 The consequences of Rule 1 is profound.
3532
3533 @subsection Tokenizing & Execution.
3534
3535 Of course, whitespace, blank lines and #comment lines are handled in
3536 the normal way.
3537
3538 As a script is parsed, each (multi) line in the script file is
3539 tokenized and according to the quoting rules. After tokenizing, that
3540 line is immedatly executed.
3541
3542 Multi line statements end with one or more ``still-open''
3543 @{curly-braces@} which - eventually - a few lines later closes.
3544
3545 @subsection Command Execution
3546
3547 Remember earlier: There is no such thing as ``control flow''
3548 statements in TCL. Instead there are COMMANDS that simpily act like
3549 control flow operators.
3550
3551 Commands are executed like this:
3552
3553 @enumerate
3554 @item Parse the next line into (argc) and (argv[]).
3555 @item Look up (argv[0]) in a table and call its function.
3556 @item Repeat until End Of File.
3557 @end enumerate
3558
3559 It sort of works like this:
3560 @example
3561 for(;;)@{
3562 ReadAndParse( &argc, &argv );
3563
3564 cmdPtr = LookupCommand( argv[0] );
3565
3566 (*cmdPtr->Execute)( argc, argv );
3567 @}
3568 @end example
3569
3570 When the command ``proc'' is parsed (which creates a procedure
3571 function) it gets 3 parameters on the command line. @b{1} the name of
3572 the proc (function), @b{2} the list of parameters, and @b{3} the body
3573 of the function. Not the choice of words: LIST and BODY. The PROC
3574 command stores these items in a table somewhere so it can be found by
3575 ``LookupCommand()''
3576
3577 @subsection The FOR Command
3578
3579 The most interesting command to look at is the FOR command. In TCL,
3580 the FOR command is normally implimented in C. Remember, FOR is a
3581 command just like any other command.
3582
3583 When the ascii text containing the FOR command is parsed, the parser
3584 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3585 are:
3586
3587 @enumerate 0
3588 @item The ascii text 'for'
3589 @item The start text
3590 @item The test expression
3591 @item The next text
3592 @item The body text
3593 @end enumerate
3594
3595 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3596 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3597 Often many of those parameters are in @{curly-braces@} - thus the
3598 variables inside are not expanded or replaced until later.
3599
3600 Remember that every TCL command looks like the classic ``main( argc,
3601 argv )'' function in C. In JimTCL - they actually look like this:
3602
3603 @example
3604 int
3605 MyCommand( Jim_Interp *interp,
3606 int *argc,
3607 Jim_Obj * const *argvs );
3608 @end example
3609
3610 Real TCL is nearly identical. Although the newer versions have
3611 introduced a byte-code parser and intepreter, but at the core, it
3612 still operates in the same basic way.
3613
3614 @subsection FOR Command Implimentation
3615
3616 To understand TCL it is perhaps most helpful to see the FOR
3617 command. Remember, it is a COMMAND not a control flow structure.
3618
3619 In TCL there are two underying C helper functions.
3620
3621 Remember Rule #1 - You are a string.
3622
3623 The @b{first} helper parses and executes commands found in an ascii
3624 string. Commands can be seperated by semi-colons, or newlines. While
3625 parsing, variables are expanded per the quoting rules
3626
3627 The @b{second} helper evaluates an ascii string as a numerical
3628 expression and returns a value.
3629
3630 Here is an example of how the @b{FOR} command could be
3631 implimented. The pseudo code below does not show error handling.
3632 @example
3633 void Execute_AsciiString( void *interp, const char *string );
3634
3635 int Evaluate_AsciiExpression( void *interp, const char *string );
3636
3637 int
3638 MyForCommand( void *interp,
3639 int argc,
3640 char **argv )
3641 @{
3642 if( argc != 5 )@{
3643 SetResult( interp, "WRONG number of parameters");
3644 return ERROR;
3645 @}
3646
3647 // argv[0] = the ascii string just like C
3648
3649 // Execute the start statement.
3650 Execute_AsciiString( interp, argv[1] );
3651
3652 // Top of loop test
3653 for(;;)@{
3654 i = Evaluate_AsciiExpression(interp, argv[2]);
3655 if( i == 0 )
3656 break;
3657
3658 // Execute the body
3659 Execute_AsciiString( interp, argv[3] );
3660
3661 // Execute the LOOP part
3662 Execute_AsciiString( interp, argv[4] );
3663 @}
3664
3665 // Return no error
3666 SetResult( interp, "" );
3667 return SUCCESS;
3668 @}
3669 @end example
3670
3671 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3672 in the same basic way.
3673
3674 @section OpenOCD TCL Usage
3675
3676 @subsection source and find commands
3677 @b{Where:} In many configuration files
3678 @* Example: @b{ source [find FILENAME] }
3679 @*Remember the parsing rules
3680 @enumerate
3681 @item The FIND command is in square brackets.
3682 @* The FIND command is executed with the parameter FILENAME. It should
3683 find the full path to the named file. The RESULT is a string, which is
3684 subsituted on the orginal command line.
3685 @item The command source is executed with the resulting filename.
3686 @* SOURCE reads a file and executes as a script.
3687 @end enumerate
3688 @subsection format command
3689 @b{Where:} Generally occurs in numerous places.
3690 @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
3691 @b{sprintf()}.
3692 @b{Example}
3693 @example
3694 set x 6
3695 set y 7
3696 puts [format "The answer: %d" [expr $x * $y]]
3697 @end example
3698 @enumerate
3699 @item The SET command creates 2 variables, X and Y.
3700 @item The double [nested] EXPR command performs math
3701 @* The EXPR command produces numerical result as a string.
3702 @* Refer to Rule #1
3703 @item The format command is executed, producing a single string
3704 @* Refer to Rule #1.
3705 @item The PUTS command outputs the text.
3706 @end enumerate
3707 @subsection Body Or Inlined Text
3708 @b{Where:} Various TARGET scripts.
3709 @example
3710 #1 Good
3711 proc someproc @{@} @{
3712 ... multiple lines of stuff ...
3713 @}
3714 $_TARGETNAME configure -event FOO someproc
3715 #2 Good - no variables
3716 $_TARGETNAME confgure -event foo "this ; that;"
3717 #3 Good Curly Braces
3718 $_TARGETNAME configure -event FOO @{
3719 puts "Time: [date]"
3720 @}
3721 #4 DANGER DANGER DANGER
3722 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3723 @end example
3724 @enumerate
3725 @item The $_TARGETNAME is an OpenOCD variable convention.
3726 @*@b{$_TARGETNAME} represents the last target created, the value changes
3727 each time a new target is created. Remember the parsing rules. When
3728 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3729 the name of the target which happens to be a TARGET (object)
3730 command.
3731 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3732 @*There are 4 examples:
3733 @enumerate
3734 @item The TCLBODY is a simple string that happens to be a proc name
3735 @item The TCLBODY is several simple commands semi-colon seperated
3736 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3737 @item The TCLBODY is a string with variables that get expanded.
3738 @end enumerate
3739
3740 In the end, when the target event FOO occurs the TCLBODY is
3741 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3742 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3743
3744 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3745 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3746 and the text is evaluated. In case #4, they are replaced before the
3747 ``Target Object Command'' is executed. This occurs at the same time
3748 $_TARGETNAME is replaced. In case #4 the date will never
3749 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3750 Jim/OpenOCD does not have a date command@}
3751 @end enumerate
3752 @subsection Global Variables
3753 @b{Where:} You might discover this when writing your own procs @* In
3754 simple terms: Inside a PROC, if you need to access a global variable
3755 you must say so. Also see ``upvar''. Example:
3756 @example
3757 proc myproc @{ @} @{
3758 set y 0 #Local variable Y
3759 global x #Global variable X
3760 puts [format "X=%d, Y=%d" $x $y]
3761 @}
3762 @end example
3763 @section Other Tcl Hacks
3764 @b{Dynamic Variable Creation}
3765 @example
3766 # Dynamically create a bunch of variables.
3767 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3768 # Create var name
3769 set vn [format "BIT%d" $x]
3770 # Make it a global
3771 global $vn
3772 # Set it.
3773 set $vn [expr (1 << $x)]
3774 @}
3775 @end example
3776 @b{Dynamic Proc/Command Creation}
3777 @example
3778 # One "X" function - 5 uart functions.
3779 foreach who @{A B C D E@}
3780 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3781 @}
3782 @end example
3783
3784 @node Target library
3785 @chapter Target library
3786 @cindex Target library
3787
3788 OpenOCD comes with a target configuration script library. These scripts can be
3789 used as-is or serve as a starting point.
3790
3791 The target library is published together with the OpenOCD executable and
3792 the path to the target library is in the OpenOCD script search path.
3793 Similarly there are example scripts for configuring the JTAG interface.
3794
3795 The command line below uses the example parport configuration scripts
3796 that ship with OpenOCD, then configures the str710.cfg target and
3797 finally issues the init and reset command. The communication speed
3798 is set to 10kHz for reset and 8MHz for post reset.
3799
3800
3801 @example
3802 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3803 @end example
3804
3805
3806 To list the target scripts available:
3807
3808 @example
3809 $ ls /usr/local/lib/openocd/target
3810
3811 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3812 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3813 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3814 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3815 @end example
3816
3817
3818
3819 @include fdl.texi
3820
3821 @node OpenOCD Index
3822 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3823 @comment case issue with ``Index.html'' and ``index.html''
3824 @comment Occurs when creating ``--html --no-split'' output
3825 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3826 @unnumbered OpenOCD Index
3827
3828 @printindex cp
3829
3830 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)