documentation wip for upcoming patch.
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
16 @quotation
17 Permission is granted to copy, distribute and/or modify this document
18 under the terms of the GNU Free Documentation License, Version 1.2 or
19 any later version published by the Free Software Foundation; with no
20 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
21 Texts. A copy of the license is included in the section entitled ``GNU
22 Free Documentation License''.
23 @end quotation
24 @end copying
25
26 @titlepage
27 @title Open On-Chip Debugger (OpenOCD)
28 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
29 @subtitle @value{UPDATED}
30 @page
31 @vskip 0pt plus 1filll
32 @insertcopying
33 @end titlepage
34
35 @contents
36
37 @node Top, About, , (dir)
38 @top OpenOCD
39
40 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
41 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
42
43 @insertcopying
44
45 @menu
46 * About:: About OpenOCD.
47 * Developers:: OpenOCD developers
48 * Building:: Building OpenOCD
49 * Running:: Running OpenOCD
50 * Configuration:: OpenOCD Configuration.
51 * Target library:: Target library
52 * Commands:: OpenOCD Commands
53 * Sample Scripts:: Sample Target Scripts
54 * GDB and OpenOCD:: Using GDB and OpenOCD
55 * TCL and OpenOCD:: Using TCL and OpenOCD
56 * TCL scripting API:: Tcl scripting API
57 * Upgrading:: Deprecated/Removed Commands
58 * FAQ:: Frequently Asked Questions
59 * License:: GNU Free Documentation License
60 * Index:: Main index.
61 @end menu
62
63 @node About
64 @unnumbered About
65 @cindex about
66
67 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
68 and boundary-scan testing for embedded target devices. The targets are interfaced
69 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
70 connection types in the future.
71
72 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
73 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
74 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
75 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
76
77 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
78 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
79 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
80
81 @node Developers
82 @chapter Developers
83 @cindex developers
84
85 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
86 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
87 Others interested in improving the state of free and open debug and testing technology
88 are welcome to participate.
89
90 Other developers have contributed support for additional targets and flashes as well
91 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
92
93 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
94
95 @node Building
96 @chapter Building
97 @cindex building OpenOCD
98
99 You can download the current SVN version with SVN client of your choice from the
100 following repositories:
101
102 (@uref{svn://svn.berlios.de/openocd/trunk})
103
104 or
105
106 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
107
108 Using the SVN command line client, you can use the following command to fetch the
109 latest version (make sure there is no (non-svn) directory called "openocd" in the
110 current directory):
111
112 @smallexample
113 svn checkout svn://svn.berlios.de/openocd/trunk openocd
114 @end smallexample
115
116 Building OpenOCD requires a recent version of the GNU autotools.
117 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
118 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
119 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
120 paths, resulting in obscure dependency errors (This is an observation I've gathered
121 from the logs of one user - correct me if I'm wrong).
122
123 You further need the appropriate driver files, if you want to build support for
124 a FTDI FT2232 based interface:
125 @itemize @bullet
126 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
127 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
128 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
129 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
130 @end itemize
131
132 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
133 see contrib/libftdi for more details.
134
135 In general, the D2XX driver provides superior performance (several times as fast),
136 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
137 a kernel module, only a user space library.
138
139 To build OpenOCD (on both Linux and Cygwin), use the following commands:
140 @smallexample
141 ./bootstrap
142 @end smallexample
143 Bootstrap generates the configure script, and prepares building on your system.
144 @smallexample
145 ./configure
146 @end smallexample
147 Configure generates the Makefiles used to build OpenOCD.
148 @smallexample
149 make
150 @end smallexample
151 Make builds OpenOCD, and places the final executable in ./src/.
152
153 The configure script takes several options, specifying which JTAG interfaces
154 should be included:
155
156 @itemize @bullet
157 @item
158 @option{--enable-parport}
159 @item
160 @option{--enable-parport_ppdev}
161 @item
162 @option{--enable-parport_giveio}
163 @item
164 @option{--enable-amtjtagaccel}
165 @item
166 @option{--enable-ft2232_ftd2xx}
167 @footnote{Using the latest D2XX drivers from FTDI and following their installation
168 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
169 build properly.}
170 @item
171 @option{--enable-ft2232_libftdi}
172 @item
173 @option{--with-ftd2xx=/path/to/d2xx/}
174 @item
175 @option{--enable-gw16012}
176 @item
177 @option{--enable-usbprog}
178 @item
179 @option{--enable-presto_libftdi}
180 @item
181 @option{--enable-presto_ftd2xx}
182 @item
183 @option{--enable-jlink}
184 @end itemize
185
186 If you want to access the parallel port using the PPDEV interface you have to specify
187 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
188 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
189 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
190
191 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
192 absolute path containing no spaces.
193
194 Linux users should copy the various parts of the D2XX package to the appropriate
195 locations, i.e. /usr/include, /usr/lib.
196
197 Miscellaneous configure options
198
199 @itemize @bullet
200 @item
201 @option{--enable-gccwarnings} - enable extra gcc warnings during build
202 @end itemize
203
204 @node Running
205 @chapter Running
206 @cindex running OpenOCD
207 @cindex --configfile
208 @cindex --debug_level
209 @cindex --logfile
210 @cindex --search
211 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
212 Run with @option{--help} or @option{-h} to view the available command line switches.
213
214 It reads its configuration by default from the file openocd.cfg located in the current
215 working directory. This may be overwritten with the @option{-f <configfile>} command line
216 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
217 are executed in order.
218
219 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
220
221 To enable debug output (when reporting problems or working on OpenOCD itself), use
222 the @option{-d} command line switch. This sets the debug_level to "3", outputting
223 the most information, including debug messages. The default setting is "2", outputting
224 only informational messages, warnings and errors. You can also change this setting
225 from within a telnet or gdb session (@option{debug_level <n>}).
226
227 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
228
229 Search paths for config/script files can be added to OpenOCD by using
230 the @option{-s <search>} switch. The current directory and the OpenOCD target library
231 is in the search path by default.
232
233 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
234 with the target. In general, it is possible for the JTAG controller to be unresponsive until
235 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
236
237 @node Configuration
238 @chapter Configuration
239 @cindex configuration
240 OpenOCD runs as a daemon, and reads it current configuration
241 by default from the file openocd.cfg in the current directory. A different configuration
242 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
243
244 The configuration file is used to specify on which ports the daemon listens for new
245 connections, the JTAG interface used to connect to the target, the layout of the JTAG
246 chain, the targets that should be debugged, and connected flashes.
247
248 @section Daemon configuration
249
250 @itemize @bullet
251 @item @b{init} This command terminates the configuration stage and enters the normal
252 command mode. This can be useful to add commands to the startup scripts and commands
253 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
254 add "init" and "reset" at the end of the config script or at the end of the
255 OpenOCD command line using the @option{-c} command line switch.
256 @cindex init
257 @item @b{telnet_port} <@var{number}>
258 @cindex telnet_port
259 Port on which to listen for incoming telnet connections
260 @item @b{gdb_port} <@var{number}>
261 @cindex gdb_port
262 First port on which to listen for incoming GDB connections. The GDB port for the
263 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
264 @item @b{gdb_breakpoint_override} <@var{hard/soft/disabled}>
265 @cindex gdb_breakpoint_override
266 hard/soft/disabled - force breakpoint type for gdb 'break' commands.
267 The raison d'etre for this option is to support GDB GUI's without
268 a hard/soft breakpoint concept where the default OpenOCD and
269 GDB behaviour is not sufficient. Note that GDB will use hardware
270 breakpoints if the memory map has been set up for flash regions.
271
272 This option replaces older arm7_9 target commands that addressed
273 the same issue.
274 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
275 @cindex gdb_detach
276 Configures what OpenOCD will do when gdb detaches from the daeman.
277 Default behaviour is <@var{resume}>
278 @item @b{gdb_memory_map} <@var{enable|disable}>
279 @cindex gdb_memory_map
280 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
281 requested. gdb will then know when to set hardware breakpoints, and program flash
282 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
283 for flash programming to work.
284 Default behaviour is <@var{enable}>
285 @item @b{gdb_flash_program} <@var{enable|disable}>
286 @cindex gdb_flash_program
287 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
288 vFlash packet is received.
289 Default behaviour is <@var{enable}>
290 at item @b{tcl_port} <@var{number}>
291 at cindex tcl_port
292 Port on which to listen for incoming TCL syntax. This port is intended as
293 a simplified RPC connection that can be used by clients to issue commands
294 and get the output from the TCL engine.
295 @end itemize
296
297 @section JTAG interface configuration
298
299 @itemize @bullet
300 @item @b{interface} <@var{name}>
301 @cindex interface
302 Use the interface driver <@var{name}> to connect to the target. Currently supported
303 interfaces are
304 @itemize @minus
305 @item @b{parport}
306 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
307 @end itemize
308 @itemize @minus
309 @item @b{amt_jtagaccel}
310 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
311 mode parallel port
312 @end itemize
313 @itemize @minus
314 @item @b{ft2232}
315 FTDI FT2232 based devices using either the open-source libftdi or the binary only
316 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
317 platform. The libftdi uses libusb, and should be portable to all systems that provide
318 libusb.
319 @end itemize
320 @itemize @minus
321 @item @b{ep93xx}
322 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
323 @end itemize
324 @itemize @minus
325 @item @b{presto}
326 ASIX PRESTO USB JTAG programmer.
327 @end itemize
328 @itemize @minus
329 @item @b{usbprog}
330 usbprog is a freely programmable USB adapter.
331 @end itemize
332 @itemize @minus
333 @item @b{gw16012}
334 Gateworks GW16012 JTAG programmer.
335 @end itemize
336 @itemize @minus
337 @item @b{jlink}
338 Segger jlink usb adapter
339 @end itemize
340 @end itemize
341
342 @itemize @bullet
343 @item @b{jtag_speed} <@var{reset speed}>
344 @cindex jtag_speed
345 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
346 speed. The actual effect of this option depends on the JTAG interface used.
347
348 The speed used during reset can be adjusted using setting jtag_speed during
349 pre_reset and post_reset events.
350 @itemize @minus
351
352 @item wiggler: maximum speed / @var{number}
353 @item ft2232: 6MHz / (@var{number}+1)
354 @item amt jtagaccel: 8 / 2**@var{number}
355 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
356 @end itemize
357
358 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
359 especially true for synthesized cores (-S).
360
361 @item @b{jtag_khz} <@var{reset speed kHz}>
362 @cindex jtag_khz
363 Same as jtag_speed, except that the speed is specified in maximum kHz. If
364 the device can not support the rate asked for, or can not translate from
365 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
366 is not supported, then an error is reported.
367
368 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
369 @cindex reset_config
370 The configuration of the reset signals available on the JTAG interface AND the target.
371 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
372 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
373 @option{srst_only} or @option{trst_and_srst}.
374
375 [@var{combination}] is an optional value specifying broken reset signal implementations.
376 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
377 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
378 that the system is reset together with the test logic (only hypothetical, I haven't
379 seen hardware with such a bug, and can be worked around).
380 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
381 The default behaviour if no option given is @option{separate}.
382
383 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
384 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
385 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
386 (default) and @option{srst_push_pull} for the system reset. These values only affect
387 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
388
389 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
390 @cindex jtag_device
391 Describes the devices that form the JTAG daisy chain, with the first device being
392 the one closest to TDO. The parameters are the length of the instruction register
393 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
394 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
395 The IDCODE instruction will in future be used to query devices for their JTAG
396 identification code. This line is the same for all ARM7 and ARM9 devices.
397 Other devices, like CPLDs, require different parameters. An example configuration
398 line for a Xilinx XC9500 CPLD would look like this:
399 @smallexample
400 jtag_device 8 0x01 0x0e3 0xfe
401 @end smallexample
402 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
403 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
404 The IDCODE instruction is 0xfe.
405
406 @item @b{jtag_nsrst_delay} <@var{ms}>
407 @cindex jtag_nsrst_delay
408 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
409 starting new JTAG operations.
410 @item @b{jtag_ntrst_delay} <@var{ms}>
411 @cindex jtag_ntrst_delay
412 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
413 starting new JTAG operations.
414
415 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
416 or on-chip features) keep a reset line asserted for some time after the external reset
417 got deasserted.
418 @end itemize
419
420 @section parport options
421
422 @itemize @bullet
423 @item @b{parport_port} <@var{number}>
424 @cindex parport_port
425 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
426 the @file{/dev/parport} device
427
428 When using PPDEV to access the parallel port, use the number of the parallel port:
429 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
430 you may encounter a problem.
431 @item @b{parport_cable} <@var{name}>
432 @cindex parport_cable
433 The layout of the parallel port cable used to connect to the target.
434 Currently supported cables are
435 @itemize @minus
436 @item @b{wiggler}
437 @cindex wiggler
438 The original Wiggler layout, also supported by several clones, such
439 as the Olimex ARM-JTAG
440 @item @b{old_amt_wiggler}
441 @cindex old_amt_wiggler
442 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
443 version available from the website uses the original Wiggler layout ('@var{wiggler}')
444 @item @b{chameleon}
445 @cindex chameleon
446 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
447 @item @b{dlc5}
448 @cindex dlc5
449 The Xilinx Parallel cable III.
450 @item @b{triton}
451 @cindex triton
452 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
453 This is also the layout used by the HollyGates design
454 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
455 @item @b{flashlink}
456 @cindex flashlink
457 The ST Parallel cable.
458 @end itemize
459 @item @b{parport_write_on_exit} <@var{on|off}>
460 @cindex parport_write_on_exit
461 This will configure the parallel driver to write a known value to the parallel
462 interface on exiting OpenOCD
463 @end itemize
464
465 @section amt_jtagaccel options
466 @itemize @bullet
467 @item @b{parport_port} <@var{number}>
468 @cindex parport_port
469 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
470 @file{/dev/parport} device
471 @end itemize
472 @section ft2232 options
473
474 @itemize @bullet
475 @item @b{ft2232_device_desc} <@var{description}>
476 @cindex ft2232_device_desc
477 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
478 default value is used. This setting is only valid if compiled with FTD2XX support.
479 @item @b{ft2232_layout} <@var{name}>
480 @cindex ft2232_layout
481 The layout of the FT2232 GPIO signals used to control output-enables and reset
482 signals. Valid layouts are
483 @itemize @minus
484 @item @b{usbjtag}
485 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
486 @item @b{jtagkey}
487 Amontec JTAGkey and JTAGkey-tiny
488 @item @b{signalyzer}
489 Signalyzer
490 @item @b{olimex-jtag}
491 Olimex ARM-USB-OCD
492 @item @b{m5960}
493 American Microsystems M5960
494 @item @b{evb_lm3s811}
495 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
496 SRST signals on external connector
497 @item @b{comstick}
498 Hitex STR9 comstick
499 @item @b{stm32stick}
500 Hitex STM32 Performance Stick
501 @item @b{flyswatter}
502 Tin Can Tools Flyswatter
503 @item @b{turtelizer2}
504 egnite Software turtelizer2
505 @item @b{oocdlink}
506 OOCDLink
507 @end itemize
508
509 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
510 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
511 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
512 @smallexample
513 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
514 @end smallexample
515 @item @b{ft2232_latency} <@var{ms}>
516 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
517 ft2232_read() fails to return the expected number of bytes. This can be caused by
518 USB communication delays and has proved hard to reproduce and debug. Setting the
519 FT2232 latency timer to a larger value increases delays for short USB packages but it
520 also reduces the risk of timeouts before receiving the expected number of bytes.
521 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
522 @end itemize
523
524 @section ep93xx options
525 @cindex ep93xx options
526 Currently, there are no options available for the ep93xx interface.
527
528 @page
529 @section Target configuration
530
531 @itemize @bullet
532 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
533 <@var{variant}>
534 @cindex target
535 Defines a target that should be debugged. Currently supported types are:
536 @itemize @minus
537 @item @b{arm7tdmi}
538 @item @b{arm720t}
539 @item @b{arm9tdmi}
540 @item @b{arm920t}
541 @item @b{arm922t}
542 @item @b{arm926ejs}
543 @item @b{arm966e}
544 @item @b{cortex_m3}
545 @item @b{feroceon}
546 @item @b{xscale}
547 @end itemize
548
549 If you want to use a target board that is not on this list, see Adding a new
550 target board
551
552 Endianess may be @option{little} or @option{big}.
553
554 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
555 @cindex target_script
556 Event is one of the following:
557 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
558 @option{pre_resume} or @option{gdb_program_config}.
559 @option{post_reset} and @option{reset} will produce the same results.
560
561 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
562 <@var{backup}|@var{nobackup}>
563 @cindex working_area
564 Specifies a working area for the debugger to use. This may be used to speed-up
565 downloads to target memory and flash operations, or to perform otherwise unavailable
566 operations (some coprocessor operations on ARM7/9 systems, for example). The last
567 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
568 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
569 @end itemize
570
571 @subsection arm7tdmi options
572 @cindex arm7tdmi options
573 target arm7tdmi <@var{endianess}> <@var{jtag#}>
574 The arm7tdmi target definition requires at least one additional argument, specifying
575 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
576 The optional [@var{variant}] parameter has been removed in recent versions.
577 The correct feature set is determined at runtime.
578
579 @subsection arm720t options
580 @cindex arm720t options
581 ARM720t options are similar to ARM7TDMI options.
582
583 @subsection arm9tdmi options
584 @cindex arm9tdmi options
585 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
586 @option{arm920t}, @option{arm922t} and @option{arm940t}.
587 This enables the hardware single-stepping support found on these cores.
588
589 @subsection arm920t options
590 @cindex arm920t options
591 ARM920t options are similar to ARM9TDMI options.
592
593 @subsection arm966e options
594 @cindex arm966e options
595 ARM966e options are similar to ARM9TDMI options.
596
597 @subsection cortex_m3 options
598 @cindex cortex_m3 options
599 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
600 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
601 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
602 be detected and the normal reset behaviour used.
603
604 @subsection xscale options
605 @cindex xscale options
606 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
607 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
608
609 @section Flash configuration
610 @cindex Flash configuration
611
612 @itemize @bullet
613 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
614 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
615 @cindex flash bank
616 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
617 and <@var{bus_width}> bytes using the selected flash <driver>.
618 @end itemize
619
620 @subsection lpc2000 options
621 @cindex lpc2000 options
622
623 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
624 <@var{clock}> [@var{calc_checksum}]
625 LPC flashes don't require the chip and bus width to be specified. Additional
626 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
627 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
628 of the target this flash belongs to (first is 0), the frequency at which the core
629 is currently running (in kHz - must be an integral number), and the optional keyword
630 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
631 vector table.
632
633 @subsection cfi options
634 @cindex cfi options
635
636 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
637 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
638 CFI flashes require the number of the target they're connected to as an additional
639 argument. The CFI driver makes use of a working area (specified for the target)
640 to significantly speed up operation.
641
642 @var{chip_width} and @var{bus_width} are specified in bytes.
643
644 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
645
646 @var{x16_as_x8} ???
647
648 @subsection at91sam7 options
649 @cindex at91sam7 options
650
651 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
652 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
653 reading the chip-id and type.
654
655 @subsection str7 options
656 @cindex str7 options
657
658 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
659 variant can be either STR71x, STR73x or STR75x.
660
661 @subsection str9 options
662 @cindex str9 options
663
664 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
665 The str9 needs the flash controller to be configured prior to Flash programming, eg.
666 @smallexample
667 str9x flash_config 0 4 2 0 0x80000
668 @end smallexample
669 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
670
671 @subsection str9 options (str9xpec driver)
672
673 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
674 Before using the flash commands the turbo mode will need enabling using str9xpec
675 @option{enable_turbo} <@var{num>.}
676
677 Only use this driver for locking/unlocking the device or configuring the option bytes.
678 Use the standard str9 driver for programming.
679
680 @subsection stellaris (LM3Sxxx) options
681 @cindex stellaris (LM3Sxxx) options
682
683 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
684 stellaris flash plugin only require the @var{target#}.
685
686 @subsection stm32x options
687 @cindex stm32x options
688
689 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
690 stm32x flash plugin only require the @var{target#}.
691
692 @node Target library
693 @chapter Target library
694 @cindex Target library
695
696 OpenOCD comes with a target configuration script library. These scripts can be
697 used as-is or serve as a starting point.
698
699 The target library is published together with the openocd executable and
700 the path to the target library is in the OpenOCD script search path.
701 Similarly there are example scripts for configuring the JTAG interface.
702
703 The command line below uses the example parport configuration scripts
704 that ship with OpenOCD, then configures the str710.cfg target and
705 finally issues the init and reset command. The communication speed
706 is set to 10kHz for reset and 8MHz for post reset.
707
708
709 @smallexample
710 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
711 @end smallexample
712
713
714 To list the target scripts available:
715
716 @smallexample
717 $ ls /usr/local/lib/openocd/target
718
719 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
720 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
721 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
722 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
723 @end smallexample
724
725
726 @node Commands
727 @chapter Commands
728 @cindex commands
729
730 OpenOCD allows user interaction through a GDB server (default: port 3333),
731 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
732 is available from both the telnet interface and a GDB session. To issue commands to the
733 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
734 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
735 GDB session.
736
737 The TCL interface is used as a simplified RPC mechanism that feeds all the
738 input into the TCL interpreter and returns the output from the evaluation of
739 the commands.
740
741 @section Daemon
742
743 @itemize @bullet
744 @item @b{sleep} <@var{msec}>
745 @cindex sleep
746 Wait for n milliseconds before resuming. Useful in connection with script files
747 (@var{script} command and @var{target_script} configuration).
748
749 @item @b{shutdown}
750 @cindex shutdown
751 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
752
753 @item @b{debug_level} [@var{n}]
754 @cindex debug_level
755 Display or adjust debug level to n<0-3>
756
757 @item @b{fast} [@var{enable/disable}]
758 @cindex fast
759 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
760 downloads and fast memory access will work if the JTAG interface isn't too fast and
761 the core doesn't run at a too low frequency. Note that this option only changes the default
762 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
763 individually.
764
765 The target specific "dangerous" optimisation tweaking options may come and go
766 as more robust and user friendly ways are found to ensure maximum throughput
767 and robustness with a minimum of configuration.
768
769 Typically the "fast enable" is specified first on the command line:
770
771 @smallexample
772 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
773 @end smallexample
774
775 @item @b{log_output} <@var{file}>
776 @cindex log_output
777 Redirect logging to <file> (default: stderr)
778
779 @item @b{script} <@var{file}>
780 @cindex script
781 Execute commands from <file>
782
783 @end itemize
784
785 @subsection Target state handling
786 @itemize @bullet
787 @item @b{poll} [@option{on}|@option{off}]
788 @cindex poll
789 Poll the target for its current state. If the target is in debug mode, architecture
790 specific information about the current state is printed. An optional parameter
791 allows continuous polling to be enabled and disabled.
792
793 @item @b{halt} [@option{ms}]
794 @cindex halt
795 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
796 Default [@option{ms}] is 5 seconds if no arg given.
797 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
798 will stop OpenOCD from waiting.
799
800 @item @b{wait_halt} [@option{ms}]
801 @cindex wait_halt
802 Wait for the target to enter debug mode. Optional [@option{ms}] is
803 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
804 arg given.
805
806 @item @b{resume} [@var{address}]
807 @cindex resume
808 Resume the target at its current code position, or at an optional address.
809 OpenOCD will wait 5 seconds for the target to resume.
810
811 @item @b{step} [@var{address}]
812 @cindex step
813 Single-step the target at its current code position, or at an optional address.
814
815 @item @b{reset} [@option{run}|@option{halt}|@option{init}]
816 @cindex reset
817 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
818
819 With no arguments a "reset run" is executed
820 @itemize @minus
821 @item @b{run}
822 @cindex reset run
823 Let the target run.
824 @item @b{halt}
825 @cindex reset halt
826 Immediately halt the target (works only with certain configurations).
827 @item @b{init}
828 @cindex reset init
829 Immediately halt the target, and execute the reset script (works only with certain
830 configurations)
831 @end itemize
832 @end itemize
833
834 @subsection Memory access commands
835 These commands allow accesses of a specific size to the memory system:
836 @itemize @bullet
837 @item @b{mdw} <@var{addr}> [@var{count}]
838 @cindex mdw
839 display memory words
840 @item @b{mdh} <@var{addr}> [@var{count}]
841 @cindex mdh
842 display memory half-words
843 @item @b{mdb} <@var{addr}> [@var{count}]
844 @cindex mdb
845 display memory bytes
846 @item @b{mww} <@var{addr}> <@var{value}>
847 @cindex mww
848 write memory word
849 @item @b{mwh} <@var{addr}> <@var{value}>
850 @cindex mwh
851 write memory half-word
852 @item @b{mwb} <@var{addr}> <@var{value}>
853 @cindex mwb
854 write memory byte
855
856 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
857 @cindex load_image
858 Load image <@var{file}> to target memory at <@var{address}>
859 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
860 @cindex dump_image
861 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
862 (binary) <@var{file}>.
863 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
864 @cindex verify_image
865 Verify <@var{file}> against target memory starting at <@var{address}>.
866 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
867 @end itemize
868
869 @subsection Flash commands
870 @cindex Flash commands
871 @itemize @bullet
872 @item @b{flash banks}
873 @cindex flash banks
874 List configured flash banks
875 @item @b{flash info} <@var{num}>
876 @cindex flash info
877 Print info about flash bank <@option{num}>
878 @item @b{flash probe} <@var{num}>
879 @cindex flash probe
880 Identify the flash, or validate the parameters of the configured flash. Operation
881 depends on the flash type.
882 @item @b{flash erase_check} <@var{num}>
883 @cindex flash erase_check
884 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
885 updates the erase state information displayed by @option{flash info}. That means you have
886 to issue an @option{erase_check} command after erasing or programming the device to get
887 updated information.
888 @item @b{flash protect_check} <@var{num}>
889 @cindex flash protect_check
890 Check protection state of sectors in flash bank <num>.
891 @option{flash erase_sector} using the same syntax.
892 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
893 @cindex flash erase_sector
894 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
895 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
896 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
897 the CFI driver).
898 @item @b{flash erase_address} <@var{address}> <@var{length}>
899 @cindex flash erase_address
900 Erase sectors starting at <@var{address}> for <@var{length}> bytes
901 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
902 @cindex flash write_bank
903 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
904 <@option{offset}> bytes from the beginning of the bank.
905 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
906 @cindex flash write_image
907 Write the image <@var{file}> to the current target's flash bank(s). A relocation
908 [@var{offset}] can be specified and the file [@var{type}] can be specified
909 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
910 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
911 if the @option{erase} parameter is given.
912 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
913 @cindex flash protect
914 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
915 <@var{last}> of @option{flash bank} <@var{num}>.
916 @end itemize
917
918 @page
919 @section Target Specific Commands
920 @cindex Target Specific Commands
921
922 @subsection AT91SAM7 specific commands
923 @cindex AT91SAM7 specific commands
924 The flash configuration is deduced from the chip identification register. The flash
925 controller handles erases automatically on a page (128/265 byte) basis so erase is
926 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
927 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
928 that can be erased separatly. Only an EraseAll command is supported by the controller
929 for each flash plane and this is called with
930 @itemize @bullet
931 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
932 bulk erase flash planes first_plane to last_plane.
933 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
934 @cindex at91sam7 gpnvm
935 set or clear a gpnvm bit for the processor
936 @end itemize
937
938 @subsection STR9 specific commands
939 @cindex STR9 specific commands
940 These are flash specific commands when using the str9xpec driver.
941 @itemize @bullet
942 @item @b{str9xpec enable_turbo} <@var{num}>
943 @cindex str9xpec enable_turbo
944 enable turbo mode, simply this will remove the str9 from the chain and talk
945 directly to the embedded flash controller.
946 @item @b{str9xpec disable_turbo} <@var{num}>
947 @cindex str9xpec disable_turbo
948 restore the str9 into jtag chain.
949 @item @b{str9xpec lock} <@var{num}>
950 @cindex str9xpec lock
951 lock str9 device. The str9 will only respond to an unlock command that will
952 erase the device.
953 @item @b{str9xpec unlock} <@var{num}>
954 @cindex str9xpec unlock
955 unlock str9 device.
956 @item @b{str9xpec options_read} <@var{num}>
957 @cindex str9xpec options_read
958 read str9 option bytes.
959 @item @b{str9xpec options_write} <@var{num}>
960 @cindex str9xpec options_write
961 write str9 option bytes.
962 @end itemize
963
964 @subsection STR9 configuration
965 @cindex STR9 configuration
966 @itemize @bullet
967 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
968 <@var{BBADR}> <@var{NBBADR}>
969 @cindex str9x flash_config
970 Configure str9 flash controller.
971 @smallexample
972 eg. str9x flash_config 0 4 2 0 0x80000
973 This will setup
974 BBSR - Boot Bank Size register
975 NBBSR - Non Boot Bank Size register
976 BBADR - Boot Bank Start Address register
977 NBBADR - Boot Bank Start Address register
978 @end smallexample
979 @end itemize
980
981 @subsection STR9 option byte configuration
982 @cindex STR9 option byte configuration
983 @itemize @bullet
984 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
985 @cindex str9xpec options_cmap
986 configure str9 boot bank.
987 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
988 @cindex str9xpec options_lvdthd
989 configure str9 lvd threshold.
990 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
991 @cindex str9xpec options_lvdsel
992 configure str9 lvd source.
993 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
994 @cindex str9xpec options_lvdwarn
995 configure str9 lvd reset warning source.
996 @end itemize
997
998 @subsection STM32x specific commands
999 @cindex STM32x specific commands
1000
1001 These are flash specific commands when using the stm32x driver.
1002 @itemize @bullet
1003 @item @b{stm32x lock} <@var{num}>
1004 @cindex stm32x lock
1005 lock stm32 device.
1006 @item @b{stm32x unlock} <@var{num}>
1007 @cindex stm32x unlock
1008 unlock stm32 device.
1009 @item @b{stm32x options_read} <@var{num}>
1010 @cindex stm32x options_read
1011 read stm32 option bytes.
1012 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1013 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1014 @cindex stm32x options_write
1015 write stm32 option bytes.
1016 @item @b{stm32x mass_erase} <@var{num}>
1017 @cindex stm32x mass_erase
1018 mass erase flash memory.
1019 @end itemize
1020
1021 @subsection Stellaris specific commands
1022 @cindex Stellaris specific commands
1023
1024 These are flash specific commands when using the Stellaris driver.
1025 @itemize @bullet
1026 @item @b{stellaris mass_erase} <@var{num}>
1027 @cindex stellaris mass_erase
1028 mass erase flash memory.
1029 @end itemize
1030
1031 @page
1032 @section Architecture Specific Commands
1033 @cindex Architecture Specific Commands
1034
1035 @subsection ARMV4/5 specific commands
1036 @cindex ARMV4/5 specific commands
1037
1038 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1039 or Intel XScale (XScale isn't supported yet).
1040 @itemize @bullet
1041 @item @b{armv4_5 reg}
1042 @cindex armv4_5 reg
1043 Display a list of all banked core registers, fetching the current value from every
1044 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1045 register value.
1046 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1047 @cindex armv4_5 core_mode
1048 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1049 The target is resumed in the currently set @option{core_mode}.
1050 @end itemize
1051
1052 @subsection ARM7/9 specific commands
1053 @cindex ARM7/9 specific commands
1054
1055 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1056 ARM920t or ARM926EJ-S.
1057 @itemize @bullet
1058 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1059 @cindex arm7_9 dbgrq
1060 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1061 safe for all but ARM7TDMI--S cores (like Philips LPC).
1062 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1063 @cindex arm7_9 fast_memory_access
1064 Allow OpenOCD to read and write memory without checking completion of
1065 the operation. This provides a huge speed increase, especially with USB JTAG
1066 cables (FT2232), but might be unsafe if used with targets running at a very low
1067 speed, like the 32kHz startup clock of an AT91RM9200.
1068 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1069 @cindex arm7_9 dcc_downloads
1070 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1071 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1072 unsafe, especially with targets running at a very low speed. This command was introduced
1073 with OpenOCD rev. 60.
1074 @end itemize
1075
1076 @subsection ARM720T specific commands
1077 @cindex ARM720T specific commands
1078
1079 @itemize @bullet
1080 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1081 @cindex arm720t cp15
1082 display/modify cp15 register <@option{num}> [@option{value}].
1083 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1084 @cindex arm720t md<bhw>_phys
1085 Display memory at physical address addr.
1086 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1087 @cindex arm720t mw<bhw>_phys
1088 Write memory at physical address addr.
1089 @item @b{arm720t virt2phys} <@var{va}>
1090 @cindex arm720t virt2phys
1091 Translate a virtual address to a physical address.
1092 @end itemize
1093
1094 @subsection ARM9TDMI specific commands
1095 @cindex ARM9TDMI specific commands
1096
1097 @itemize @bullet
1098 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1099 @cindex arm9tdmi vector_catch
1100 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1101 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1102 @option{irq} @option{fiq}.
1103
1104 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1105 @end itemize
1106
1107 @subsection ARM966E specific commands
1108 @cindex ARM966E specific commands
1109
1110 @itemize @bullet
1111 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1112 @cindex arm966e cp15
1113 display/modify cp15 register <@option{num}> [@option{value}].
1114 @end itemize
1115
1116 @subsection ARM920T specific commands
1117 @cindex ARM920T specific commands
1118
1119 @itemize @bullet
1120 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1121 @cindex arm920t cp15
1122 display/modify cp15 register <@option{num}> [@option{value}].
1123 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1124 @cindex arm920t cp15i
1125 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1126 @item @b{arm920t cache_info}
1127 @cindex arm920t cache_info
1128 Print information about the caches found. This allows you to see if your target
1129 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1130 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1131 @cindex arm920t md<bhw>_phys
1132 Display memory at physical address addr.
1133 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1134 @cindex arm920t mw<bhw>_phys
1135 Write memory at physical address addr.
1136 @item @b{arm920t read_cache} <@var{filename}>
1137 @cindex arm920t read_cache
1138 Dump the content of ICache and DCache to a file.
1139 @item @b{arm920t read_mmu} <@var{filename}>
1140 @cindex arm920t read_mmu
1141 Dump the content of the ITLB and DTLB to a file.
1142 @item @b{arm920t virt2phys} <@var{va}>
1143 @cindex arm920t virt2phys
1144 Translate a virtual address to a physical address.
1145 @end itemize
1146
1147 @subsection ARM926EJS specific commands
1148 @cindex ARM926EJS specific commands
1149
1150 @itemize @bullet
1151 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1152 @cindex arm926ejs cp15
1153 display/modify cp15 register <@option{num}> [@option{value}].
1154 @item @b{arm926ejs cache_info}
1155 @cindex arm926ejs cache_info
1156 Print information about the caches found.
1157 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1158 @cindex arm926ejs md<bhw>_phys
1159 Display memory at physical address addr.
1160 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1161 @cindex arm926ejs mw<bhw>_phys
1162 Write memory at physical address addr.
1163 @item @b{arm926ejs virt2phys} <@var{va}>
1164 @cindex arm926ejs virt2phys
1165 Translate a virtual address to a physical address.
1166 @end itemize
1167
1168 @page
1169 @section Debug commands
1170 @cindex Debug commands
1171 The following commands give direct access to the core, and are most likely
1172 only useful while debugging OpenOCD.
1173 @itemize @bullet
1174 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1175 @cindex arm7_9 write_xpsr
1176 Immediately write either the current program status register (CPSR) or the saved
1177 program status register (SPSR), without changing the register cache (as displayed
1178 by the @option{reg} and @option{armv4_5 reg} commands).
1179 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1180 <@var{0=cpsr},@var{1=spsr}>
1181 @cindex arm7_9 write_xpsr_im8
1182 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1183 operation (similar to @option{write_xpsr}).
1184 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1185 @cindex arm7_9 write_core_reg
1186 Write a core register, without changing the register cache (as displayed by the
1187 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1188 encoding of the [M4:M0] bits of the PSR.
1189 @end itemize
1190
1191 @page
1192 @section JTAG commands
1193 @cindex JTAG commands
1194 @itemize @bullet
1195 @item @b{scan_chain}
1196 @cindex scan_chain
1197 Print current scan chain configuration.
1198 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1199 @cindex jtag_reset
1200 Toggle reset lines.
1201 @item @b{endstate} <@var{tap_state}>
1202 @cindex endstate
1203 Finish JTAG operations in <@var{tap_state}>.
1204 @item @b{runtest} <@var{num_cycles}>
1205 @cindex runtest
1206 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1207 @item @b{statemove} [@var{tap_state}]
1208 @cindex statemove
1209 Move to current endstate or [@var{tap_state}]
1210 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1211 @cindex irscan
1212 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1213 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1214 @cindex drscan
1215 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1216 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1217 @cindex verify_ircapture
1218 Verify value captured during Capture-IR. Default is enabled.
1219 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1220 @cindex var
1221 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1222 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1223 @cindex field
1224 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1225 @end itemize
1226
1227 @page
1228 @section Target Requests
1229 @cindex Target Requests
1230 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1231 See libdcc in the contrib dir for more details.
1232 @itemize @bullet
1233 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1234 @cindex target_request debugmsgs
1235 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1236 @end itemize
1237
1238 @node Sample Scripts
1239 @chapter Sample Scripts
1240 @cindex scripts
1241
1242 This page shows how to use the target library.
1243
1244 The configuration script can be divided in the following section:
1245 @itemize @bullet
1246 @item daemon configuration
1247 @item interface
1248 @item jtag scan chain
1249 @item target configuration
1250 @item flash configuration
1251 @end itemize
1252
1253 Detailed information about each section can be found at OpenOCD configuration.
1254
1255 @section AT91R40008 example
1256 @cindex AT91R40008 example
1257 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1258 the CPU upon startup of the OpenOCD daemon.
1259 @smallexample
1260 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1261 @end smallexample
1262
1263
1264 @node GDB and OpenOCD
1265 @chapter GDB and OpenOCD
1266 @cindex GDB and OpenOCD
1267 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1268 to debug remote targets.
1269
1270 @section Connecting to gdb
1271 @cindex Connecting to gdb
1272 A connection is typically started as follows:
1273 @smallexample
1274 target remote localhost:3333
1275 @end smallexample
1276 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1277
1278 To see a list of available OpenOCD commands type @option{monitor help} on the
1279 gdb commandline.
1280
1281 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1282 to be sent by the gdb server (openocd) to gdb. Typical information includes
1283 packet size and device memory map.
1284
1285 Previous versions of OpenOCD required the following gdb options to increase
1286 the packet size and speed up gdb communication.
1287 @smallexample
1288 set remote memory-write-packet-size 1024
1289 set remote memory-write-packet-size fixed
1290 set remote memory-read-packet-size 1024
1291 set remote memory-read-packet-size fixed
1292 @end smallexample
1293 This is now handled in the @option{qSupported} PacketSize.
1294
1295 @section Programming using gdb
1296 @cindex Programming using gdb
1297
1298 By default the target memory map is sent to gdb, this can be disabled by
1299 the following OpenOCD config option:
1300 @smallexample
1301 gdb_memory_map disable
1302 @end smallexample
1303 For this to function correctly a valid flash config must also be configured
1304 in OpenOCD. For faster performance you should also configure a valid
1305 working area.
1306
1307 Informing gdb of the memory map of the target will enable gdb to protect any
1308 flash area of the target and use hardware breakpoints by default. This means
1309 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
1310 using a memory map.
1311
1312 To view the configured memory map in gdb, use the gdb command @option{info mem}
1313 All other unasigned addresses within gdb are treated as RAM.
1314
1315 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1316 this can be changed to the old behaviour by using the following gdb command.
1317 @smallexample
1318 set mem inaccessible-by-default off
1319 @end smallexample
1320
1321 If @option{gdb_flash_program enable} is also used, gdb will be able to
1322 program any flash memory using the vFlash interface.
1323
1324 gdb will look at the target memory map when a load command is given, if any
1325 areas to be programmed lie within the target flash area the vFlash packets
1326 will be used.
1327
1328 If the target needs configuring before gdb programming, a script can be executed.
1329 @smallexample
1330 target_script 0 gdb_program_config config.script
1331 @end smallexample
1332
1333 To verify any flash programming the gdb command @option{compare-sections}
1334 can be used.
1335
1336 @node TCL and OpenOCD
1337 @chapter TCL and OpenOCD
1338 @cindex TCL and OpenOCD
1339 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1340 support.
1341
1342 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1343
1344 The command and file interfaces are fairly straightforward, while the network
1345 port is geared toward intergration with external clients. A small example
1346 of an external TCL script that can connect to openocd is shown below.
1347
1348 @verbatim
1349 # Simple tcl client to connect to openocd
1350 puts "Use empty line to exit"
1351 set fo [socket 127.0.0.1 6666]
1352 puts -nonewline stdout "> "
1353 flush stdout
1354 while {[gets stdin line] >= 0} {
1355 if {$line eq {}} break
1356 puts $fo $line
1357 flush $fo
1358 gets $fo line
1359 puts $line
1360 puts -nonewline stdout "> "
1361 flush stdout
1362 }
1363 close $fo
1364 @end verbatim
1365
1366 This script can easily be modified to front various GUIs or be a sub
1367 component of a larger framework for control and interaction.
1368
1369
1370 @node TCL scripting API
1371 @chapter TCL scripting API
1372 @cindex TCL scripting API
1373 API rules
1374
1375 The commands are stateless. E.g. the telnet command line has a concept
1376 of currently active target, the Tcl API proc's take this sort of state
1377 information as an argument to each proc.
1378
1379 There are three main types of return values: single value, name value
1380 pair list and lists.
1381
1382 Name value pair. The proc 'foo' below returns a name/value pair
1383 list.
1384
1385 @verbatim
1386
1387 > set foo(me) Duane
1388 > set foo(you) Oyvind
1389 > set foo(mouse) Micky
1390 > set foo(duck) Donald
1391
1392 If one does this:
1393
1394 > set foo
1395
1396 The result is:
1397
1398 me Duane you Oyvind mouse Micky duck Donald
1399
1400 Thus, to get the names of the associative array is easy:
1401
1402 foreach { name value } [set foo] {
1403 puts "Name: $name, Value: $value"
1404 }
1405 @end verbatim
1406
1407 Lists returned must be relatively small. Otherwise a range
1408 should be passed in to the proc in question.
1409
1410 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1411 is the low level API upon which "flash banks" is implemented.
1412
1413 OpenOCD commands can consist of two words, e.g. "flash banks". The
1414 startup.tcl "unknown" proc will translate this into a tcl proc
1415 called "flash_banks".
1416
1417
1418 @node Upgrading
1419 @chapter Deprecated/Removed Commands
1420 @cindex Deprecated/Removed Commands
1421 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1422
1423 @itemize @bullet
1424 @item @b{load_binary}
1425 @cindex load_binary
1426 use @option{load_image} command with same args
1427 @item @b{dump_binary}
1428 @cindex dump_binary
1429 use @option{dump_image} command with same args
1430 @item @b{flash erase}
1431 @cindex flash erase
1432 use @option{flash erase_sector} command with same args
1433 @item @b{flash write}
1434 @cindex flash write
1435 use @option{flash write_bank} command with same args
1436 @item @b{flash write_binary}
1437 @cindex flash write_binary
1438 use @option{flash write_bank} command with same args
1439 @item @b{arm7_9 fast_writes}
1440 @cindex arm7_9 fast_writes
1441 use @option{arm7_9 fast_memory_access} command with same args
1442 @item @b{flash auto_erase}
1443 @cindex flash auto_erase
1444 use @option{flash write_image} command passing @option{erase} as the first parameter.
1445 @item @b{daemon_startup}
1446 @cindex daemon_startup
1447 this config option has been removed, simply adding @option{init} and @option{reset halt} to
1448 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
1449 and @option{target cortex_m3 little reset_halt 0}.
1450 @item @b{arm7_9 sw_bkpts}
1451 @cindex arm7_9 sw_bkpts
1452 On by default. See also @option{gdb_breakpoint_override}.
1453 @item @b{arm7_9 force_hw_bkpts}
1454 @cindex arm7_9 force_hw_bkpts
1455 Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
1456 for flash if the gdb memory map has been set up(default when flash is declared in
1457 target configuration).
1458 @item @b{run_and_halt_time}
1459 @cindex run_and_halt_time
1460 This command has been removed for simpler reset behaviour, it can be simulated with the
1461 following commands:
1462 @smallexample
1463 reset run
1464 sleep 100
1465 halt
1466 @end smallexample
1467 @end itemize
1468
1469 @node FAQ
1470 @chapter FAQ
1471 @cindex faq
1472 @enumerate
1473 @item OpenOCD complains about a missing cygwin1.dll.
1474
1475 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1476 claims to come with all the necessary dlls. When using Cygwin, try launching
1477 OpenOCD from the Cygwin shell.
1478
1479 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1480 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1481 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1482
1483 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1484 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1485 software breakpoints consume one of the two available hardware breakpoints.
1486
1487 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1488 and works sometimes fine.
1489
1490 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1491 clock at the time you're programming the flash. If you've specified the crystal's
1492 frequency, make sure the PLL is disabled, if you've specified the full core speed
1493 (e.g. 60MHz), make sure the PLL is enabled.
1494
1495 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1496 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1497 out while waiting for end of scan, rtck was disabled".
1498
1499 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1500 settings in your PC BIOS (ECP, EPP, and different versions of those).
1501
1502 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1503 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1504 memory read caused data abort".
1505
1506 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1507 beyond the last valid frame. It might be possible to prevent this by setting up
1508 a proper "initial" stack frame, if you happen to know what exactly has to
1509 be done, feel free to add this here.
1510
1511 @item I get the following message in the OpenOCD console (or log file):
1512 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1513
1514 This warning doesn't indicate any serious problem, as long as you don't want to
1515 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1516 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1517 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1518 independently. With this setup, it's not possible to halt the core right out of
1519 reset, everything else should work fine.
1520
1521 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1522 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1523 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1524 quit with an error message. Is there a stability issue with OpenOCD?
1525
1526 No, this is not a stability issue concerning OpenOCD. Most users have solved
1527 this issue by simply using a self-powered USB hub, which they connect their
1528 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1529 supply stable enough for the Amontec JTAGkey to be operated.
1530
1531 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1532 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1533 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1534 What does that mean and what might be the reason for this?
1535
1536 First of all, the reason might be the USB power supply. Try using a self-powered
1537 hub instead of a direct connection to your computer. Secondly, the error code 4
1538 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1539 chip ran into some sort of error - this points us to a USB problem.
1540
1541 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1542 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1543 What does that mean and what might be the reason for this?
1544
1545 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1546 has closed the connection to OpenOCD. This might be a GDB issue.
1547
1548 @item In the configuration file in the section where flash device configurations
1549 are described, there is a parameter for specifying the clock frequency for
1550 LPC2000 internal flash devices (e.g.
1551 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1552 which must be specified in kilohertz. However, I do have a quartz crystal of a
1553 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1554 Is it possible to specify real numbers for the clock frequency?
1555
1556 No. The clock frequency specified here must be given as an integral number.
1557 However, this clock frequency is used by the In-Application-Programming (IAP)
1558 routines of the LPC2000 family only, which seems to be very tolerant concerning
1559 the given clock frequency, so a slight difference between the specified clock
1560 frequency and the actual clock frequency will not cause any trouble.
1561
1562 @item Do I have to keep a specific order for the commands in the configuration file?
1563
1564 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1565 listed for the JTAG scan chain must be given in the right order (jtag_device),
1566 with the device closest to the TDO-Pin being listed first. In general,
1567 whenever objects of the same type exist which require an index number, then
1568 these objects must be given in the right order (jtag_devices, targets and flash
1569 banks - a target references a jtag_device and a flash bank references a target).
1570
1571 @item Sometimes my debugging session terminates with an error. When I look into the
1572 log file, I can see these error messages: Error: arm7_9_common.c:561
1573 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1574
1575 TODO.
1576
1577 @end enumerate
1578
1579 @include fdl.texi
1580
1581 @node Index
1582 @unnumbered Index
1583
1584 @printindex cp
1585
1586 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)