- removed flash write_image - binary compare function has been moved to verify_image...
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (openocd)
5 @c %**end of header
6
7 @include version.texi
8
9 @titlepage
10 @title Open On-Chip Debugger (openocd)
11 @subtitle Edition @value{EDITION} for openocd version @value{VERSION}
12 @subtitle @value{UPDATED}
13 @page
14 @vskip 0pt plus 1filll
15 @end titlepage
16
17 @contents
18
19 @node Top, About, , (dir)
20 @top OpenOCD
21
22 This is edition @value{EDITION} of the openocd manual for version
23 @value{VERSION}, @value{UPDATED}
24
25 @menu
26 * About:: About Openocd.
27 * Developers::
28 * Building:: Building Openocd
29 * Running:: Running Openocd
30 * Configuration:: Openocd Configuration.
31 * Commands:: Openocd Commands
32 * Sample Scripts:: Sample Target Scripts
33 * FAQ:: Frequently Asked Questions
34 * License:: GNU Free Documentation License
35 * Index:: Main index.
36 @end menu
37
38 @node About
39 @unnumbered About
40 @cindex about
41
42 The Open On-Chip Debugger (openocd) aims to provide debugging, in-system programming
43 and boundary-scan testing for embedded target devices. The targets are interfaced
44 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
45 connection types in the future.
46
47 Openocd currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
48 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
49 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
50 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
51
52 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
53 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
54 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
55
56 @node Developers
57 @chapter Developers
58 @cindex developers
59
60 Openocd has been created by Dominic Rath as part of a diploma thesis written at the
61 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
62 Others interested in improving the state of free and open debug and testing technology
63 are welcome to participate.
64
65 Other developers have contributed support for additional targets and flashes as well
66 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
67
68 @node Building
69 @chapter Building
70 @cindex building openocd
71
72 You can download the current SVN version with SVN client of your choice from the
73 following repositories:
74
75 (@uref{svn://svn.berlios.de/openocd/trunk})
76
77 or
78
79 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
80
81 Using the SVN command line client, you could use the following command to fetch the
82 latest version (make sure there is no (non-svn) directory called "openocd" in the
83 current directory):
84
85 @smallexample
86 svn checkout svn://svn.berlios.de/openocd/trunk
87 @end smallexample
88
89 Building the OpenOCD requires a recent version of the GNU autotools.
90 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
91 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
92 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
93 paths, resulting in obscure dependency errors (This is an observation I've gathered
94 from the logs of one user - correct me if I'm wrong).
95
96 You further need the appropriate driver files, if you want to build support for
97 a FTDI FT2232 based interface:
98 @itemize @bullet
99 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
100 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
101 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
102 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
103 @end itemize
104
105 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
106 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
107
108 In general, the D2XX driver provides superior performance (several times as fast),
109 but has the draw-back of being binary-only - though that isn't as worse, as it isn't
110 a kernel module, only a user space library.
111
112 To build OpenOCD (on both Linux and Cygwin), use the following commands:
113 @smallexample
114 ./bootstrap
115 @end smallexample
116 Bootstrap generates the configure script, and prepares building on your system.
117 @smallexample
118 ./configure
119 @end smallexample
120 Configure generates the Makefiles used to build OpenOCD
121 @smallexample
122 make
123 @end smallexample
124 Make builds the OpenOCD, and places the final executable in ./src/
125
126 The configure script takes several options, specifying which JTAG interfaces
127 should be included:
128
129 @itemize @bullet
130 @item
131 --enable-parport
132 @item
133 --enable-parport_ppdev
134 @item
135 --enable-amtjtagaccel
136 @item
137 --enable-ft2232_ftd2xx
138 @footnote{Using the latest D2XX drivers from FTDI and following their installation
139 instructions, I had to use @option{--enable-ft2232_libftd2xx} for the OpenOCD to
140 build properly}
141 @item
142 --enable-ft2232_libftdi
143 @item
144 --with-ftd2xx=/path/to/d2xx/
145 @end itemize
146
147 If you want to access the parallel port using the PPDEV interface you have to specify
148 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
149 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
150 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
151
152 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
153 absolute path containing no spaces.
154
155 Linux users should copy the various parts of the D2XX package to the appropriate
156 locations, i.e. /usr/include, /usr/lib.
157
158 @node Running
159 @chapter Running
160 @cindex running openocd
161 The OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
162 Run with @option{--help} or @option{-h} to view the available command line arguments.
163
164 It reads its configuration by default from the file openocd.cfg located in the current
165 working directory. This may be overwritten with the @option{-f <configfile>} command line
166 switch.
167
168 To enable debug output (when reporting problems or working on OpenOCD itself), use
169 the @option{-d} command line switch. This sets the debug_level to "3", outputting
170 the most information, including debug messages. The default setting is "2", outputting
171 only informational messages, warnings and errors. You can also change this setting
172 from within a telnet or gdb session (@option{debug_level <n>}).
173
174 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
175
176 @node Configuration
177 @chapter Configuration
178 @cindex configuration
179 The Open On-Chip Debugger (OpenOCD) runs as a daemon, and reads it current configuration
180 by default from the file openocd.cfg in the current directory. A different configuration
181 file can be specified with the @option{-f <conf.file>} given at the openocd command line.
182
183 The configuration file is used to specify on which ports the daemon listens for new
184 connections, the JTAG interface used to connect to the target, the layout of the JTAG
185 chain, the targets that should be debugged, and connected flashes.
186
187 @section Daemon configuration
188
189 @itemize @bullet
190 @item @b{telnet_port} <@var{number}>
191 @cindex telnet_port
192 Port on which to listen for incoming telnet connections
193 @item @b{gdb_port} <@var{number}>
194 @cindex gdb_port
195 First port on which to listen for incoming GDB connections. The GDB port for the
196 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
197 @item @b{daemon_startup} <@var{mode}> either @samp{attach} or @samp{reset}
198 @cindex daemon_startup
199 Tells the OpenOCD whether it should reset the target when the daemon is launched, or
200 if it should just attach to the target.
201 @end itemize
202
203 @section JTAG interface configuration
204
205 @itemize @bullet
206 @item @b{interface} <@var{name}>
207 @cindex interface
208 Use the interface driver <@var{name}> to connect to the target. Currently supported
209 interfaces are
210 @itemize @minus
211 @item parport
212 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
213 @end itemize
214 @itemize @minus
215 @item amt_jtagaccel
216 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
217 mode parallel port
218 @end itemize
219 @itemize @minus
220 @item ft2232
221 FTDI FT2232 based devices using either the open-source libftdi or the binary only
222 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
223 platform. The libftdi uses libusb, and should be portable to all systems that provide
224 libusb.
225 @end itemize
226 @itemize @minus
227 @item ep93xx
228 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
229 @end itemize
230 @end itemize
231
232 @itemize @bullet
233 @item @b{jtag_speed} <@var{number}>
234 @cindex jtag_speed
235 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
236 speed. The actual effect of this option depends on the JTAG interface used.
237
238 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
239 @cindex reset_config
240 The configuration of the reset signals available on the JTAG interface AND the target.
241 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
242 then OpenOCD can't use it. <@var{signals}> can be @samp{none}, @samp{trst_only},
243 @samp{srst_only} or @samp{trst_and_srst}.
244 [@var{combination}] is an optional value specifying broken reset signal implementations.
245 @samp{srst_pulls_trst} states that the testlogic is reset together with the reset of
246 the system (e.g. Philips LPC2000, "broken" board layout), @samp{trst_pulls_srst} says
247 that the system is reset together with the test logic (only hypothetical, I haven't
248 seen hardware with such a bug, and can be worked around).
249
250 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
251 reset lines to be specified. Possible values are @samp{trst_push_pull} (default)
252 and @samp{trst_open_drain} for the test reset signal, and @samp{srst_open_drain}
253 (default) and @samp{srst_push_pull} for the system reset. These values only affect
254 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
255
256 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
257 @cindex jtag_device
258 Describes the devices that form the JTAG daisy chain, with the first device being
259 the one closest to TDO. The parameters are the length of the instruction register
260 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
261 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
262 The IDCODE instruction will in future be used to query devices for their JTAG
263 identification code. This line is the same for all ARM7 and ARM9 devices.
264 Other devices, like CPLDs, require different parameters. An example configuration
265 line for a Xilinx XC9500 CPLD would look like this:
266 @smallexample
267 jtag_device 8 0x01 0x0e3 0xfe
268 @end smallexample
269 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
270 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
271 The IDCODE instruction is 0xfe.
272
273 @item @b{jtag_nsrst_delay} <@var{ms}>
274 @cindex jtag_nsrst_delay
275 How long (in miliseconds) the OpenOCD should wait after deasserting nSRST before
276 starting new JTAG operations.
277 @item @b{jtag_ntrst_delay} <@var{ms}>
278 @cindex jtag_ntrst_delay
279 How long (in miliseconds) the OpenOCD should wait after deasserting nTRST before
280 starting new JTAG operations.
281
282 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
283 or on-chip features) keep a reset line asserted for some time after the external reset
284 got deasserted.
285 @end itemize
286
287 @section parport options
288
289 @itemize @bullet
290 @item @b{parport_port} <@var{number}>
291 @cindex parport_port
292 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
293 the @file{/dev/parport} device
294
295 When using PPDEV to access the parallel port, use the number of the parallel port:
296 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
297 you may encounter a problem.
298 @item @b{parport_cable} <@var{name}>
299 @cindex parport_cable
300 The layout of the parallel port cable used to connect to the target.
301 Currently supported cables are
302 @itemize @minus
303 @item wiggler
304 @cindex wiggler
305 Original Wiggler layout, also supported by several clones, such
306 as the Olimex ARM-JTAG
307 @item old_amt_wiggler
308 @cindex old_amt_wiggler
309 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
310 version available from the website uses the original Wiggler layout ('@var{wiggler}')
311 @item chameleon
312 @cindex chameleon
313 Describes the connection of the Amontec Chameleon's CPLD when operated in
314 configuration mode. This is only used to program the Chameleon itself, not
315 a connected target.
316 @item dlc5
317 @cindex dlc5
318 Xilinx Parallel cable III.
319 @item triton
320 @cindex triton
321 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
322 This is also the layout used by the HollyGates design
323 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
324 @item flashlink
325 @cindex flashlink
326 ST Parallel cable.
327 @end itemize
328 @item @b{parport_write_on_exit} <@var{on|off}>
329 @cindex parport_write_on_exit
330 This will configure the parallel driver to write a known value to the parallel
331 interface on exiting openocd
332 @end itemize
333
334 @section amt_jtagaccel options
335 @itemize @bullet
336 @item @b{parport_port} <@var{number}>
337 @cindex parport_port
338 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
339 @file{/dev/parport} device
340 @end itemize
341 @section ft2232 options
342
343 @itemize @bullet
344 @item @b{ft2232_device_desc} <@var{description}>
345 @cindex ft2232_device_desc
346 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
347 default value is used. This setting is only valid if compiled with FTD2XX support.
348 @item @b{ft2232_layout} <@var{name}>
349 @cindex ft2232_layout
350 The layout of the FT2232 GPIO signals used to control output-enables and reset
351 signals. Valid layouts are
352 @itemize @minus
353 @item usbjtag
354 The "USBJTAG-1" layout described in the original OpenOCD diploma thesis
355 @item jtagkey
356 Amontec JTAGkey and JTAGkey-tiny
357 @item signalyzer
358 Signalyzer
359 @item olimex-jtag
360 Olimex ARM-USB-OCD
361 @item m5960
362 American Microsystems M5960
363 @item evb_lm3s811
364 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
365 SRST signals on external connector
366 @item comstick
367 Hitex STR9 comstick
368 @item stm32stick
369 Hitex STM32 Performance Stick
370 @end itemize
371
372 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
373 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
374 default values are used. This command is not available on Windows.
375 @item @b{ft2232_latency} <@var{ms}>
376 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
377 ft2232_read() fails to return the expected number of bytes. This can be caused by
378 USB communication delays and has proved hard to reproduce and debug. Setting the
379 FT2232 latency timer to a larger value increases delays for short USB packages but it
380 also reduces the risk of timeouts before receiving the expected number of bytes.
381 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
382 @end itemize
383
384 @section ep93xx options
385 @cindex ep93xx options
386 Currently, there are no options available for the ep93xx interface.
387
388 @page
389 @section Target configuration
390
391 @itemize @bullet
392 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
393 <@var{variant}>
394 @cindex target
395 Defines a target that should be debugged. Currently supported types are:
396 @itemize @minus
397 @item arm7tdmi
398 @item arm720t
399 @item arm9tdmi
400 @item arm920t
401 @item arm922t
402 @item arm926ejs
403 @item arm966e
404 @item cortex_m3
405 @item xscale
406 @end itemize
407
408 If you want to use a target board that is not on this list, see Adding a new
409 target board
410
411 Endianess may be @option{little} or @option{big}.
412
413 The reset_mode specifies what should happen to the target when a reset occurs:
414 @itemize @minus
415 @item reset_halt
416 @cindex reset_halt
417 Immediately request a target halt after reset. This allows targets to be debugged
418 from the very first instruction. This is only possible with targets and JTAG
419 interfaces that correctly implement the reset signals.
420 @item reset_init
421 @cindex reset_init
422 Similar to @option{reset_halt}, but executes the script file defined to handle the
423 'reset' event for the target. Like @option{reset_halt} this only works with
424 correct reset implementations.
425 @item reset_run
426 @cindex reset_run
427 Simply let the target run after a reset.
428 @item run_and_halt
429 @cindex run_and_halt
430 Let the target run for some time (default: 1s), and then request halt.
431 @item run_and_init
432 @cindex run_and_init
433 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
434 to run for some time, then halted, and the @option{reset} event script is executed.
435 @end itemize
436
437 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
438 completely independent (like the LPC2000 series), or where the JTAG interface is
439 unavailable for some time during startup (like the STR7 series), you can't use
440 @option{reset_halt} or @option{reset_init}.
441
442 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
443 @cindex target_script
444 Event is either @var{reset} or @var{post_halt} or @var{pre_resume}.
445 TODO: describe exact semantic of events
446 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
447 @cindex run_and_halt_time
448 The amount of time the debugger should wait after releasing reset before it asserts
449 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
450 reset modes.
451 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
452 <@var{backup}|@var{nobackup}>
453 @cindex working_area
454 Specifies a working area for the debugger to use. This may be used to speed-up
455 downloads to target memory and flash operations, or to perform otherwise unavailable
456 operations (some coprocessor operations on ARM7/9 systems, for example). The last
457 parameter decides whether the memory should be preserved <@var{backup}>. If possible, use
458 a working_area that doesn't need to be backed up, as that slows down operation.
459 @end itemize
460
461 @subsection arm7tdmi options
462 @cindex arm7tdmi options
463 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
464 The arm7tdmi target definition requires at least one additional argument, specifying
465 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
466 The optional [@var{variant}] parameter has been removed in recent versions.
467 The correct feature set is determined at runtime.
468
469 @subsection arm720t options
470 @cindex arm720t options
471 ARM720t options are similar to ARM7TDMI options.
472
473 @subsection arm9tdmi options
474 @cindex arm9tdmi options
475 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
476 @option{arm920t}, @option{arm922t} and @option{arm940t}.
477 This enables the hardware single-stepping support found on these cores.
478
479 @subsection arm920t options
480 @cindex arm920t options
481 ARM920t options are similar to ARM9TDMI options.
482
483 @subsection arm966e options
484 @cindex arm966e options
485 ARM966e options are similar to ARM9TDMI options.
486
487 @subsection xscale options
488 @cindex xscale options
489 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
490 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
491
492 @section Flash configuration
493 @cindex Flash configuration
494
495 @itemize @bullet
496 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
497 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
498 @cindex flash bank
499 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
500 and <@var{bus_width}> bytes using the selected flash <driver>.
501
502 @item @b{flash autoerase} <@option{on}|@option{off}>
503 @cindex flash autoerase
504 auto erase flash banks prior to writing. Currently only works when using
505 @option{flash write_image} command. Default is @option{off}.
506 @end itemize
507
508 @subsection lpc2000 options
509 @cindex lpc2000 options
510
511 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
512 <@var{clock}> [@var{calc_checksum}]
513 LPC flashes don't require the chip and bus width to be specified. Additional
514 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
515 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
516 of the target this flash belongs to (first is 0), the frequency at which the core
517 is currently running (in kHz - must be an integral number), and the optional keyword
518 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
519 vector table.
520
521 @subsection cfi options
522 @cindex cfi options
523
524 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
525 <@var{target#}>
526 CFI flashes require the number of the target they're connected to as an additional
527 argument. The CFI driver makes use of a working area (specified for the target)
528 to significantly speed up operation.
529
530 @subsection at91sam7 options
531 @cindex at91sam7 options
532
533 @b{flash bank at91sam7} 0 0 0 0 <@var{target#>}>
534 AT91SAM7 flashes only require the target#, all other values are looked up after
535 reading the chip-id and type.
536
537 @subsection str7 options
538 @cindex str7 options
539
540 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
541 variant can be either STR71x, STR73x or STR75x.
542
543 @subsection str9 options
544 @cindex str9 options
545
546 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
547 The str9 needs the flash controller to be configured prior to Flash programming, eg.
548 @smallexample
549 str9x flash_config 0 4 2 0 0x80000
550 @end smallexample
551 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
552
553 @subsection str9 options (str9xpec driver)
554
555 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
556 Before using the flash commands the turbo mode will need enabling using str9xpec
557 @option{enable_turbo} <@var{num>.}
558
559 Only use this driver for locking/unlocking the device or configuring the option bytes.
560 Use the standard str9 driver for programming.
561
562 @subsection stellaris (LM3Sxxx) options
563 @cindex stellaris (LM3Sxxx) options
564
565 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
566 stellaris flash plugin only require the target#.
567
568 @subsection stm32x options
569 @cindex stm32x options
570
571 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
572 stm32x flash plugin only require the target#.
573
574 @node Commands
575 @chapter Commands
576 @cindex commands
577
578 The Open On-Chip Debugger (OpenOCD) allows user interaction through a telnet interface
579 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
580 is available from both the telnet interface and a GDB session. To issue commands to the
581 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
582 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
583 GDB session.
584
585 @section Daemon
586
587 @itemize @bullet
588 @item @b{sleep} <@var{msec}>
589 @cindex sleep
590 Wait for n milliseconds before resuming. Useful in connection with script files
591 (@var{script} command and @var{target_script} configuration).
592
593 @item @b{shutdown}
594 @cindex shutdown
595 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
596
597 @item @b{debug_level} [@var{n}]
598 @cindex debug_level
599 Display or adjust debug level to n<0-3>
600
601 @item @b{log_output} <@var{file}>
602 @cindex log_output
603 Redirect logging to <file> (default: stderr)
604
605 @item @b{script} <@var{file}>
606 @cindex script
607 Execute commands from <file>
608
609 @end itemize
610
611 @subsection Target state handling
612 @itemize @bullet
613 @item @b{poll} [@option{on}|@option{off}]
614 @cindex poll
615 Poll the target for its current state. If the target is in debug mode, architecture
616 specific information about the current state are printed. An optional parameter
617 allows continuous polling to be enabled and disabled.
618
619 @item @b{halt}
620 @cindex halt
621 Send a halt request to the target. The debugger signals the debug request,
622 and waits for the target to enter debug mode.
623
624 @item @b{resume} [@var{address}]
625 @cindex resume
626 Resume the target at its current code position, or at an optional address.
627
628 @item @b{step} [@var{address}]
629 @cindex step
630 Single-step the target at its current code position, or at an optional address.
631
632 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
633 |@option{run_and_init}]
634 @cindex reset
635 Do a hard-reset. The optional parameter specifies what should happen after the reset.
636 This optional parameter overwrites the setting specified in the configuration file,
637 making the new behaviour the default for the @option{reset} command.
638 @itemize @minus
639 @item run
640 @cindex reset run
641 Let the target run.
642 @item halt
643 @cindex reset halt
644 Immediately halt the target (works only with certain configurations).
645 @item init
646 @cindex reset init
647 Immediately halt the target, and execute the reset script (works only with certain
648 configurations)
649 @item run_and_halt
650 @cindex reset run_and_halt
651 Let the target run for a certain amount of time, then request a halt.
652 @item run_and_init
653 @cindex reset run_and_init
654 Let the target run for a certain amount of time, then request a halt. Execute the
655 reset script once the target entered debug mode.
656 @end itemize
657 @end itemize
658
659 @subsection Memory access commands
660 These commands allow accesses of a specific size to the memory system:
661 @itemize @bullet
662 @item @b{mdw} <@var{addr}> [@var{count}]
663 @cindex mdw
664 display memory words
665 @item @b{mdh} <@var{addr}> [@var{count}]
666 @cindex mdh
667 display memory half-words
668 @item @b{mdb} <@var{addr}> [@var{count}]
669 @cindex mdb
670 display memory bytes
671 @item @b{mww} <@var{addr}> <@var{value}>
672 @cindex mww
673 write memory word
674 @item @b{mwh} <@var{addr}> <@var{value}>
675 @cindex mwh
676 write memory half-word
677 @item @b{mwb} <@var{addr}> <@var{value}>
678 @cindex mwb
679 write memory byte
680
681 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
682 @cindex load_image
683 Load image <@var{file}> to target memory at <@var{address}>
684 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
685 @cindex dump_image
686 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
687 (binary) <@var{file}>.
688 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
689 @cindex verify_image
690 Verify <@var{file}> to target memory starting at <@var{address}>.
691 This will first attempt using a crc checksum, if this fails it will try a binary compare.
692 @item @b{load_binary} <@var{file}> <@var{address}> [DEPRECATED]
693 @cindex load_binary
694 Load binary <@var{file}> to target memory at <@var{address}>
695 @item @b{dump_binary} <@var{file}> <@var{address}> <@var{size}> [DEPRECATED]
696 @cindex dump_binary
697 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
698 (binary) <@var{file}>.
699 @end itemize
700
701 @subsection Flash commands
702 @cindex Flash commands
703 @itemize @bullet
704 @item @b{flash banks}
705 @cindex flash banks
706 List configured flash banks
707 @item @b{flash info} <@var{num}>
708 @cindex flash info
709 Print info about flash bank <@option{num}>
710 @item @b{flash probe} <@var{num}>
711 @cindex flash probe
712 Identify the flash, or validate the parameters of the configured flash. Operation
713 depends on the flash type.
714 @item @b{flash erase_check} <@var{num}>
715 @cindex flash erase_check
716 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
717 updates the erase state information displayed by @option{flash info}. That means you have
718 to issue an @option{erase_check} command after erasing or programming the device to get
719 updated information.
720 @item @b{flash protect_check} <@var{num}>
721 @cindex flash protect_check
722 Check protection state of sectors in flash bank <num>.
723
724 @item @b{flash erase} <@var{num}> <@var{first}> <@var{last}> [DEPRECATED]
725 @cindex flash erase
726 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
727 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
728 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
729 the CFI driver). This command was replaced by the new command
730 @option{flash erase_sector} using the same syntax.
731 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
732 @cindex flash erase_sector
733 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
734 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
735 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
736 the CFI driver).
737 @item @b{flash erase_address} <@var{address}> <@var{length}>
738 @cindex flash erase_address
739 Erase sectors starting at <@var{address}> for <@var{length}> number of bytes
740 @item @b{flash write} <@var{num}> <@var{file}> <@var{offset}> [DEPRECATED]
741 @cindex flash write
742 Write the binary <@var{file}> to flash bank <@var{num}>, starting at <@var{offset}>
743 bytes from the beginning of the bank. This command was replaced by the new command
744 @option{flash write_binary} using the same syntax.
745 @item @b{flash write_binary} <@var{num}> <@var{file}> <@var{offset}>
746 @cindex flash write_binary
747 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
748 <@option{offset}> bytes from the beginning of the bank.
749 @item @b{flash write_image} <@var{file}> [@var{offset}] [@var{type}]
750 @cindex flash write_image
751 Write the image <@var{file}> to the current target's flash bank(s). A relocation
752 [@var{offset}] can be specified and the file [@var{type}] can be specified
753 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
754 (ELF file) or @option{s19} (Motorola s19).
755 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
756 @cindex flash protect
757 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
758 <@var{last}> of @option{flash bank} <@var{num}>.
759 @item @b{flash auto_erase} <@var{on}|@var{off}>
760 @cindex flash auto_erase
761 Enable (@option{on}) to erase flash banks prior to writing using the flash @option{write_image} command
762 only. Default is (@option{off}), flash banks have to be erased using @option{flash erase} command.
763 @end itemize
764
765 @page
766 @section Target Specific Commands
767 @cindex Target Specific Commands
768
769 @subsection AT91SAM7 specific commands
770 @cindex AT91SAM7 specific commands
771 The flash configuration is deduced from the chip identification register. The flash
772 controller handles erases automatically on a page (128/265 byte) basis so erase is
773 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
774 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
775 that can be erased separatly.Only an EraseAll command is supported by the controller
776 for each flash plane and this is called with
777 @itemize @bullet
778 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
779 bulk erase flash planes first_plane to last_plane.
780 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
781 @cindex at91sam7 gpnvm
782 set or clear a gpnvm bit for the processor
783 @end itemize
784
785 @subsection STR9 specific commands
786 @cindex STR9 specific commands
787 These are flash specific commands when using the str9xpec driver.
788 @itemize @bullet
789 @item @b{str9xpec enable_turbo} <@var{num}>
790 @cindex str9xpec enable_turbo
791 enable turbo mode, simply this will remove the str9 from the chain and talk
792 directly to the embedded flash controller.
793 @item @b{str9xpec disable_turbo} <@var{num}>
794 @cindex str9xpec disable_turbo
795 restore the str9 into jtag chain.
796 @item @b{str9xpec lock} <@var{num}>
797 @cindex str9xpec lock
798 lock str9 device. The str9 will only respond to an unlock command that will
799 erase the device.
800 @item @b{str9xpec unlock} <@var{num}>
801 @cindex str9xpec unlock
802 unlock str9 device.
803 @item @b{str9xpec options_read} <@var{num}>
804 @cindex str9xpec options_read
805 read str9 option bytes.
806 @item @b{str9xpec options_write} <@var{num}>
807 @cindex str9xpec options_write
808 write str9 option bytes.
809 @end itemize
810
811 @subsection STR9 configuration
812 @cindex STR9 configuration
813 @itemize @bullet
814 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
815 <@var{BBADR}> <@var{NBBADR}>
816 @cindex str9x flash_config
817 Configure str9 flash controller.
818 @smallexample
819 eg. str9x flash_config 0 4 2 0 0x80000
820 This will setup
821 BBSR - Boot Bank Size register
822 NBBSR - Non Boot Bank Size register
823 BBADR - Boot Bank Start Address register
824 NBBADR - Boot Bank Start Address register
825 @end smallexample
826 @end itemize
827
828 @subsection STR9 option byte configuration
829 @cindex STR9 option byte configuration
830 @itemize @bullet
831 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
832 @cindex str9xpec options_cmap
833 configure str9 boot bank.
834 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
835 @cindex str9xpec options_lvdthd
836 configure str9 lvd threshold.
837 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
838 @cindex str9xpec options_lvdsel
839 configure str9 lvd source.
840 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
841 @cindex str9xpec options_lvdwarn
842 configure str9 lvd reset warning source.
843 @end itemize
844
845 @subsection STM32x specific commands
846 @cindex STM32x specific commands
847
848 These are flash specific commands when using the stm32x driver.
849 @itemize @bullet
850 @item @b{stm32x lock} <@var{num}>
851 @cindex stm32x lock
852 lock stm32 device.
853 @item @b{stm32x unlock} <@var{num}>
854 @cindex stm32x unlock
855 unlock stm32 device.
856 @item @b{stm32x options_read} <@var{num}>
857 @cindex stm32x options_read
858 read stm32 option bytes.
859 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
860 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
861 @cindex stm32x options_write
862 write stm32 option bytes.
863 @item @b{stm32x mass_erase} <@var{num}>
864 @cindex stm32x mass_erase
865 mass erase flash memory.
866 @end itemize
867
868 @page
869 @section Arcitecture Specific Commands
870 @cindex Arcitecture Specific Commands
871
872 @subsection ARMV4/5 specific commands
873 @cindex ARMV4/5 specific commands
874
875 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
876 or Intel XScale (XScale isn't supported yet).
877 @itemize @bullet
878 @item @b{armv4_5 reg}
879 @cindex armv4_5 reg
880 Display a list of all banked core registers, fetching the current value from every
881 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
882 register value.
883 @item @b{armv4_5 core_mode} [@option{arm}|@option{thumb}]
884 @cindex armv4_5 core_mode
885 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
886 The target is resumed in the currently set @option{core_mode}.
887 @end itemize
888
889 @subsection ARM7/9 specific commands
890 @cindex ARM7/9 specific commands
891
892 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
893 ARM920t or ARM926EJ-S.
894 @itemize @bullet
895 @item @b{arm7_9 sw_bkpts} <@option{enable}|@option{disable}>
896 @cindex arm7_9 sw_bkpts
897 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
898 one of the watchpoint registers to implement software breakpoints. Disabling
899 SW Bkpts frees that register again.
900 @item @b{arm7_9 force_hw_bkpts} <@option{enable}|@option{disable}>
901 @cindex arm7_9 force_hw_bkpts
902 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
903 breakpoints are turned into hardware breakpoints.
904 @item @b{arm7_9 dbgrq} <@option{enable}|@option{disable}>
905 @cindex arm7_9 dbgrq
906 Enable use of the DBGRQ bit to force entry into debug mode. This should be
907 safe for all but ARM7TDMI--S cores (like Philips LPC).
908 @item @b{arm7_9 fast_writes} <@option{enable}|@option{disable}>
909 @cindex arm7_9 fast_writes [DEPRECATED]
910 See @option{arm7_9 fast_memory_access} instead.
911 @item @b{arm7_9 fast_memory_access} <@option{enable}|@option{disable}>
912 @cindex arm7_9 fast_memory_access
913 Allow the OpenOCD to read and write memory without checking completion of
914 the operation. This provides a huge speed increase, especially with USB JTAG
915 cables (FT2232), but might be unsafe if used with targets running at a very low
916 speed, like the 32kHz startup clock of an AT91RM9200.
917 @item @b{arm7_9 dcc_downloads} <@option{enable}|@option{disable}>
918 @cindex arm7_9 dcc_downloads
919 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
920 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
921 unsafe, especially with targets running at a very low speed. This command was introduced
922 with OpenOCD rev. 60.
923 @end itemize
924
925 @subsection ARM920T specific commands
926 @cindex ARM920T specific commands
927
928 @itemize @bullet
929 @item @b{arm920t cache_info}
930 @cindex arm920t cache_info
931 Print information about the caches found. This allows you to see if your target
932 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
933 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
934 @cindex arm920t md<bhw>_phys
935 Display memory at physical address addr.
936 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
937 @cindex arm920t mw<bhw>_phys
938 Write memory at physical address addr.
939 @item @b{arm920t read_cache} <@var{filename}>
940 @cindex arm920t read_cache
941 Dump the content of ICache and DCache to a file.
942 @item @b{arm920t read_mmu} <@var{filename}>
943 @cindex arm920t read_mmu
944 Dump the content of the ITLB and DTLB to a file.
945 @item @b{arm920t virt2phys} <@var{VA}>
946 @cindex arm920t virt2phys
947 Translate a virtual address to a physical address.
948 @end itemize
949
950 @page
951 @section Debug commands
952 @cindex Debug commands
953 The following commands give direct access to the core, and are most likely
954 only useful while debugging the OpenOCD.
955 @itemize @bullet
956 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
957 @cindex arm7_9 write_xpsr
958 Immediately write either the current program status register (CPSR) or the saved
959 program status register (SPSR), without changing the register cache (as displayed
960 by the @option{reg} and @option{armv4_5 reg} commands).
961 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
962 <@var{0=cpsr},@var{1=spsr}>
963 @cindex arm7_9 write_xpsr_im8
964 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
965 operation (similar to @option{write_xpsr}).
966 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
967 @cindex arm7_9 write_core_reg
968 Write a core register, without changing the register cache (as displayed by the
969 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
970 encoding of the [M4:M0] bits of the PSR.
971 @end itemize
972
973 @page
974 @section JTAG commands
975 @cindex JTAG commands
976 @itemize @bullet
977 @item @b{scan_chain}
978 @cindex scan_chain
979 Print current scan chain configuration.
980 @item @b{jtag_reset}
981 @cindex jtag_reset
982 Toggle reset lines <@var{trst}> <@var{srst}>.
983 @item @b{endstate} <@var{tap_state}>
984 @cindex endstate
985 Finish JTAG operations in <@var{tap_state}>.
986 @item @b{runtest} <@var{num_cycles}>
987 @cindex runtest
988 Move to Run-Test/Idle, and execute <@var{num_cycles}>
989 @item @b{statemove} [@var{tap_state}]
990 @cindex statemove
991 Move to current endstate or [@var{tap_state}]
992 @item @b{irscan}
993 @cindex irscan
994 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
995 @item @b{drscan}
996 @cindex drscan
997 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
998 @item @b{verify_ircapture}
999 @cindex verify_ircapture
1000 Verify value captured during Capture-IR <@option{enable}|@option{disable}>
1001 @item @b{var}
1002 @cindex var
1003 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1004 @item @b{field}
1005 @cindex field
1006 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1007 @end itemize
1008
1009 @node Sample Scripts
1010 @chapter Sample Scripts
1011 @cindex scripts
1012
1013 This page will collect some script examples for different CPUs.
1014
1015 The configuration script can be divided in the following section:
1016 @itemize @bullet
1017 @item deamon configuration
1018 @item interface
1019 @item jtag scan chain
1020 @item target configuration
1021 @item flash configuration
1022 @end itemize
1023
1024 Detailed information about each section can be found at OpenOCD configuration
1025
1026 @section OMAP5912 Flash Debug
1027 @cindex OMAP5912 Flash Debug
1028 The following two scripts was used with an wiggler PP and and a TI OMAP5912
1029 dual core processor (@uref{http://www.ti.com}) on a OMAP5912 OSK board
1030 (@uref{http://www.spectrumdigital.com}).
1031 @subsection Openocd config
1032 @smallexample
1033 #daemon configuration
1034 telnet_port 4444
1035 gdb_port 3333
1036
1037 #interface
1038 interface parport
1039 parport_port 0x378
1040 parport_cable wiggler
1041 jtag_speed 0
1042
1043 #use combined on interfaces or targets that can't set TRST/SRST separately
1044 reset_config trst_and_srst
1045
1046 #jtag scan chain
1047 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1048 jtag_device 38 0x0 0x0 0x0
1049 jtag_device 4 0x1 0x0 0xe
1050 jtag_device 8 0x0 0x0 0x0
1051
1052 #target configuration
1053 daemon_startup reset
1054
1055 #target <type> <endianness> <reset mode> <chainpos> <variant>
1056 target arm926ejs little run_and_init 1 arm926ejs
1057 target_script 0 reset omap5912_osk.init
1058 run_and_halt_time 0 30
1059
1060 # omap5912 lcd frame buffer as working area
1061 working_area 0 0x20000000 0x3e800 nobackup
1062
1063 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1064 flash bank cfi 0x00000000 0x1000000 2 2 0
1065 @end smallexample
1066
1067 @subsection Openocd init
1068 @smallexample
1069 #
1070 # halt target
1071 #
1072 poll
1073 sleep 1
1074 halt
1075 wait_halt
1076 #
1077 # disable wdt
1078 #
1079 mww 0xfffec808 0x000000f5
1080 mww 0xfffec808 0x000000a0
1081
1082 mww 0xfffeb048 0x0000aaaa
1083 sleep 500
1084 mww 0xfffeb048 0x00005555
1085 sleep 500
1086 #
1087 # detect flash
1088 #
1089 flash probe 0
1090
1091 @end smallexample
1092
1093 @section STR71x Script
1094 @cindex STR71x Script
1095 The following script was used with an Amontec JTAGkey and a STR710 / STR711 cpu:
1096 @smallexample
1097 #daemon configuration
1098 telnet_port 4444
1099 gdb_port 3333
1100
1101 #interface
1102 interface ft2232
1103 ft2232_device_desc "Amontec JTAGkey A"
1104 ft2232_layout jtagkey
1105 ft2232_vid_pid 0x0403 0xcff8
1106 jtag_speed 0
1107
1108 #use combined on interfaces or targets that can't set TRST/SRST separately
1109 reset_config trst_and_srst srst_pulls_trst
1110
1111 #jtag scan chain
1112 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1113 jtag_device 4 0x1 0xf 0xe
1114
1115 #target configuration
1116 daemon_startup reset
1117
1118 #target <type> <startup mode>
1119 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1120 target arm7tdmi little run_and_halt 0 arm7tdmi
1121 run_and_halt_time 0 30
1122
1123 working_area 0 0x2000C000 0x4000 nobackup
1124
1125 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1126 flash bank str7x 0x40000000 0x00040000 0 0 0 STR71x
1127 @end smallexample
1128
1129 @section STR750 Script
1130 @cindex STR750 Script
1131 The following script was used with an Amontec JTAGkey and a STR750 cpu:
1132 @smallexample
1133 #daemon configuration
1134 telnet_port 4444
1135 gdb_port 3333
1136
1137 #interface
1138 interface ft2232
1139 ft2232_device_desc "Amontec JTAGkey A"
1140 ft2232_layout jtagkey
1141 ft2232_vid_pid 0x0403 0xcff8
1142 jtag_speed 19
1143
1144 #use combined on interfaces or targets that can't set TRST/SRST separately
1145 #reset_config trst_and_srst srst_pulls_trst
1146 reset_config trst_and_srst srst_pulls_trst
1147
1148 #jtag scan chain
1149 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1150 jtag_device 4 0x1 0xf 0xe
1151
1152 #jtag nTRST and nSRST delay
1153 jtag_nsrst_delay 500
1154 jtag_ntrst_delay 500
1155
1156 #target configuration
1157 daemon_startup reset
1158
1159 #target <type> <startup mode>
1160 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1161 target arm7tdmi little run_and_halt 0 arm7tdmi
1162 run_and_halt_time 0 30
1163
1164 working_area 0 0x40000000 0x4000 nobackup
1165
1166 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1167 flash bank str7x 0x20000000 0x000040000 0 0 0 STR75x
1168 @end smallexample
1169
1170 @section STR912 Script
1171 @cindex STR912 Script
1172 The following script was used with an Amontec JTAGkey and a STR912 cpu:
1173 @smallexample
1174 #daemon configuration
1175 telnet_port 4444
1176 gdb_port 3333
1177
1178 #interface
1179 interface ft2232
1180 ft2232_device_desc "Amontec JTAGkey A"
1181 ft2232_layout jtagkey
1182 jtag_speed 1
1183
1184 #use combined on interfaces or targets that can't set TRST/SRST separately
1185 reset_config trst_and_srst
1186
1187 #jtag scan chain
1188 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1189 jtag_device 8 0x1 0x1 0xfe
1190 jtag_device 4 0x1 0xf 0xe
1191 jtag_device 5 0x1 0x1 0x1e
1192
1193 #target configuration
1194 daemon_startup reset
1195
1196 #target <type> <startup mode>
1197 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1198 target arm966e little reset_halt 1 arm966e
1199 run_and_halt_time 0 30
1200
1201 working_area 0 0x50000000 16384 nobackup
1202
1203 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1204 flash bank str9x 0x00000000 0x00080000 0 0 0
1205 @end smallexample
1206
1207 @section STR912 comstick
1208 @cindex STR912 comstick Script
1209 The following script was used with a Hitex STR9 Comstick:
1210 @smallexample
1211 #daemon configuration
1212 telnet_port 4444
1213 gdb_port 3333
1214
1215 #interface
1216 interface ft2232
1217 ft2232_device_desc "STR9-comStick A"
1218 ft2232_layout comstick
1219 jtag_speed 1
1220
1221 jtag_nsrst_delay 100
1222 jtag_ntrst_delay 100
1223
1224 #use combined on interfaces or targets that can't set TRST/SRST separately
1225 reset_config trst_and_srst
1226
1227 #jtag scan chain
1228 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1229 jtag_device 8 0x1 0x1 0xfe
1230 jtag_device 4 0x1 0xf 0xe
1231 jtag_device 5 0x1 0x1 0x1e
1232
1233 #target configuration
1234 daemon_startup reset
1235
1236 #target <type> <startup mode>
1237 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1238 target arm966e little reset_halt 1 arm966e
1239 run_and_halt_time 0 30
1240
1241 working_area 0 0x50000000 16384 nobackup
1242
1243 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1244 flash bank str9x 0x00000000 0x00080000 0 0 0
1245 @end smallexample
1246
1247 @section STM32x Script
1248 @cindex STM32x Script
1249 The following script was used with an Amontec JTAGkey and a STM32x cpu:
1250 @smallexample
1251 #daemon configuration
1252 telnet_port 4444
1253 gdb_port 3333
1254
1255 #interface
1256 interface ft2232
1257 ft2232_device_desc "Amontec JTAGkey A"
1258 ft2232_layout jtagkey
1259 jtag_speed 10
1260
1261 jtag_nsrst_delay 100
1262 jtag_ntrst_delay 100
1263
1264 #use combined on interfaces or targets that can't set TRST/SRST separately
1265 reset_config trst_and_srst
1266
1267 #jtag scan chain
1268 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1269 jtag_device 4 0x1 0xf 0xe
1270 jtag_device 5 0x1 0x1 0x1e
1271
1272 #target configuration
1273 daemon_startup reset
1274
1275 #target <type> <startup mode>
1276 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1277 target cortex_m3 little run_and_halt 0
1278 run_and_halt_time 0 30
1279
1280 working_area 0 0x20000000 16384 nobackup
1281
1282 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1283 flash bank stm32x 0x08000000 0x00010000 0 0 0
1284 @end smallexample
1285
1286 @section STM32x Performance Stick
1287 @cindex STM32x Performance Stick Script
1288 The following script was used with the Hitex STM32 Performance Stick
1289 @smallexample
1290 #daemon configuration
1291 telnet_port 4444
1292 gdb_port 3333
1293
1294 #interface
1295 interface ft2232
1296 ft2232_device_desc "STM32-PerformanceStick A"
1297 ft2232_layout stm32stick
1298 jtag_speed 10
1299
1300 jtag_nsrst_delay 100
1301 jtag_ntrst_delay 100
1302
1303 #use combined on interfaces or targets that can't set TRST/SRST separately
1304 reset_config trst_and_srst
1305
1306 #jtag scan chain
1307 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1308 jtag_device 4 0x1 0xf 0xe
1309 jtag_device 5 0x1 0x1 0x1e
1310 jtag_device 4 0x1 0xf 0xe
1311
1312 #target configuration
1313 daemon_startup reset
1314
1315 #target <type> <startup mode>
1316 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1317 target cortex_m3 little run_and_halt 0
1318 run_and_halt_time 0 30
1319
1320 working_area 0 0x20000000 16384 nobackup
1321
1322 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1323 flash bank stm32x 0x08000000 0x00010000 0 0 0
1324 @end smallexample
1325
1326 @section LPC2294 Script
1327 @cindex LPC2294 Script
1328 The following script was used with an Amontec JTAGkey and a LPC2294 cpu:
1329 @smallexample
1330 #daemon configuration
1331 telnet_port 4444
1332 gdb_port 3333
1333
1334 #interface
1335 interface ft2232
1336 ft2232_device_desc "Amontec JTAGkey A"
1337 ft2232_layout jtagkey
1338 ft2232_vid_pid 0x0403 0xcff8
1339 jtag_speed 2
1340
1341 #use combined on interfaces or targets that can't set TRST/SRST separately
1342 reset_config trst_and_srst srst_pulls_trst
1343
1344 #jtag scan chain
1345 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1346 jtag_device 4 0x1 0xf 0xe
1347
1348 #target configuration
1349 daemon_startup reset
1350
1351 #target <type> <startup mode>
1352 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1353 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1354 run_and_halt_time 0 30
1355
1356 working_area 0 0x40000000 0x40000 nobackup
1357
1358 #flash configuration
1359 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1360 @end smallexample
1361
1362 @section AT91R40008 Script
1363 @cindex AT91R40008 Script
1364 The following script was used with an Amontec JTAGkey and a AT91R40008 cpu:
1365 @smallexample
1366 #daemon configuration
1367 telnet_port 4444
1368 gdb_port 3333
1369
1370 #interface
1371 interface ft2232
1372 ft2232_device_desc "Amontec JTAGkey A"
1373 ft2232_layout jtagkey
1374 ft2232_vid_pid 0x0403 0xcff8
1375 jtag_speed 0
1376 jtag_nsrst_delay 200
1377 jtag_ntrst_delay 200
1378
1379 #use combined on interfaces or targets that can't set TRST/SRST separately
1380 reset_config srst_only srst_pulls_trst
1381
1382 #jtag scan chain
1383 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1384 jtag_device 4 0x1 0xf 0xe
1385
1386 #target configuration
1387 daemon_startup reset
1388
1389 #target <type> <startup mode>
1390 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1391 target arm7tdmi little run_and_halt 0 arm7tdmi
1392 run_and_halt_time 0 30
1393 @end smallexample
1394
1395 @section LPC2129 Script
1396 @cindex LPC2129 Script
1397 The following script was used with an wiggler PP and a LPC-2129 cpu:
1398 @smallexample
1399 #daemon configuration
1400 telnet_port 4444
1401 gdb_port 3333
1402
1403 #interface
1404 interface parport
1405 parport_port 0x378
1406 parport_cable wiggler
1407 jtag_speed 0
1408
1409 #use combined on interfaces or targets that can't set TRST/SRST separately
1410 reset_config trst_and_srst srst_pulls_trst
1411
1412 #jtag scan chain
1413 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1414 jtag_device 4 0x1 0xf 0xe
1415
1416 #target configuration
1417 daemon_startup reset
1418
1419 #target <type> <startup mode>
1420 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1421 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1422 run_and_halt_time 0 30
1423
1424 working_area 0 0x00000000 0x400000 nobackup
1425
1426 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1427 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1428 @end smallexample
1429
1430 @section AT91SAM7s Script
1431 @cindex AT91SAM7s Script
1432 The following script was used with an Olimex ARM-JTAG-OCD and a AT91SAM7S64 cpu:
1433 @smallexample
1434 #daemon configuration
1435 telnet_port 4444
1436 gdb_port 3333
1437
1438 #interface
1439 interface ft2232
1440 ft2232_device_desc "Olimex OpenOCD JTAG A"
1441 ft2232_layout olimex-jtag
1442 ft2232_vid_pid 0x15BA 0x0003
1443 jtag_speed 0
1444 jtag_nsrst_delay 200
1445 jtag_ntrst_delay 200
1446
1447 #use combined on interfaces or targets that can't set TRST/SRST separately
1448 reset_config srst_only srst_pulls_trst
1449
1450 #jtag scan chain
1451 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1452 jtag_device 4 0x1 0xf 0xe
1453
1454 #target configuration
1455 daemon_startup reset
1456
1457 #target <type> <startup mode>
1458 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1459 target arm7tdmi little run_and_halt 0 arm7tdmi
1460 run_and_halt_time 0 30
1461
1462 # flash-options AT91
1463 working_area 0 0x00200000 0x4000 nobackup
1464 flash bank at91sam7 0 0 0 0 0
1465
1466 # Information:
1467 # erase command (telnet-interface) for complete flash:
1468 # flash erase <num> 0 numlockbits-1 (can be seen from output of flash info 0)
1469 # SAM7S64 with 16 lockbits and bank 0: flash erase 0 0 15
1470 # set/clear NVM-Bits:
1471 # at91sam7 gpnvm <num> <bit> <set|clear>
1472 # disable locking from SAM-BA:
1473 # flash protect 0 0 1 off
1474 @end smallexample
1475
1476 @section XSCALE IXP42x Script
1477 @cindex XSCALE IXP42x Script
1478 The following script was used with an Amontec JTAGkey-Tiny and a xscale ixp42x cpu:
1479 @smallexample
1480 #daemon configuration
1481 telnet_port 4444
1482 gdb_port 3333
1483
1484 #interface
1485 interface ft2232
1486 ft2232_device_desc "Amontec JTAGkey A"
1487 ft2232_layout jtagkey
1488 ft2232_vid_pid 0x0403 0xcff8
1489 jtag_speed 0
1490 jtag_nsrst_delay 200
1491 jtag_ntrst_delay 200
1492
1493 #use combined on interfaces or targets that can't set TRST/SRST separately
1494 reset_config srst_only srst_pulls_trst
1495
1496 #jtag scan chain
1497 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1498 jtag_device 7 0x1 0x7f 0x7e
1499
1500 #target configuration
1501 daemon_startup reset
1502
1503 #target <type> <startup mode>
1504 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1505 target xscale big run_and_halt 0 IXP42x
1506 run_and_halt_time 0 30
1507 @end smallexample
1508
1509 @section Cirrus Logic EP9301 Script
1510 @cindex Cirrus Logic EP9301 Script
1511 The following script was used with FT2232 based JTAG interfaces and a
1512 Cirrus Logic EP9301 processor on an Olimex CS-E9301 board.
1513 @smallexample
1514 #daemon configuration
1515 telnet_port 4444
1516 gdb_port 3333
1517
1518 #interface
1519 interface ft2232
1520
1521 #Olimex ARM-USB-OCD
1522 #ft2232_device_desc "Olimex OpenOCD JTAG"
1523 #ft2232_layout olimex-jtag
1524 #ft2232_vid_pid 0x15ba 0x0003
1525
1526 #Amontec JTAGkey (and JTAGkey-Tiny)
1527 #Serial is only necessary if more than one JTAGkey is connected
1528 ft2232_device_desc "Amontec JTAGkey A"
1529 #ft2232_serial AMTJKV31
1530 #ft2232_serial T1P3S2W8
1531 ft2232_layout jtagkey
1532 ft2232_vid_pid 0x0403 0xcff8
1533
1534 #wiggler/parallel port interface
1535 #interface parport
1536 #parport_port 0x378
1537 #parport_cable wiggler
1538 #jtag_speed 0
1539 jtag_speed 1
1540 reset_config trst_and_srst
1541
1542 #jtag scan chain
1543 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1544 jtag_device 4 0x1 0xf 0xe
1545
1546 jtag_nsrst_delay 100
1547 jtag_ntrst_delay 100
1548
1549 #target configuration
1550 daemon_startup attach
1551
1552 #target <type> <endianess> <reset mode>
1553 target arm920t little reset_halt 0
1554 working_area 0 0x80014000 0x1000 backup
1555
1556 #flash configuration
1557 #flash bank <driver> <base> <size> <chip_width> <bus_width> [driver_options ...]
1558 flash bank cfi 0x60000000 0x1000000 2 2 0
1559 @end smallexample
1560
1561 @section Hilscher netX 100 / 500 Script
1562 @cindex Hilscher netX 100 / 500 Script
1563 The following script was used with an Amontec JTAGkey and a Hilscher
1564 netX 500 cpu:
1565 @smallexample
1566 #daemon configuration
1567 telnet_port 4444
1568 gdb_port 3333
1569
1570 #interface
1571 interface ft2232
1572 ft2232_device_desc "Amontec JTAGkey A"
1573 ft2232_layout jtagkey
1574 ft2232_vid_pid 0x0403 0xcff8
1575 jtag_speed 5
1576
1577 #use combined on interfaces or targets that can't set TRST/SRST separately
1578 reset_config trst_and_srst
1579
1580 #jtag scan chain
1581 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1582 jtag_device 4 0x1 0xf 0xe
1583
1584 jtag_nsrst_delay 100
1585 jtag_ntrst_delay 100
1586
1587 #target configuration
1588 daemon_startup reset
1589
1590 #target <type> <endianness> <startup mode> <chainpos> <variant>
1591 target arm926ejs little run_and_halt 0 arm926ejs
1592 run_and_halt_time 0 500
1593 @end smallexample
1594
1595 @section Marvell/Intel PXA270 Script
1596 @cindex Marvell/Intel PXA270 Script
1597 @smallexample
1598 # config for Intel PXA270
1599 # not, as of 2007-06-22, openocd only works with the
1600 # libftd2xx library from ftdi. libftdi does not work.
1601
1602 telnet_port 3333
1603 gdb_port 4444
1604
1605 interface ft2232
1606 ft2232_layout olimex-jtag
1607 ft2232_vid_pid 0x15BA 0x0003
1608 ft2232_device_desc "Olimex OpenOCD JTAG"
1609 jtag_speed 0
1610 # set jtag_nsrst_delay to the delay introduced by your reset circuit
1611 # the rest of the needed delays are built into the openocd program
1612 jtag_nsrst_delay 260
1613 # set the jtag_ntrst_delay to the delay introduced by a reset circuit
1614 # the rest of the needed delays are built into the openocd program
1615 jtag_ntrst_delay 0
1616
1617 #use combined on interfaces or targets that can't set TRST/SRST separately
1618 reset_config trst_and_srst separate
1619
1620 #jtag scan chain
1621 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1622 jtag_device 7 0x1 0x7f 0x7e
1623
1624 #target configuration
1625 daemon_startup reset
1626
1627 target xscale little reset_halt 0 pxa27x
1628
1629 # maps to PXA internal RAM. If you are using a PXA255
1630 # you must initialize SDRAM or leave this option off
1631 working_area 0 0x5c000000 0x10000 nobackup
1632
1633 run_and_halt_time 0 30
1634
1635 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1636 # works for P30 flash
1637 flash bank cfi 0x00000000 0x1000000 2 4 0
1638 @end smallexample
1639
1640 @node FAQ
1641 @chapter FAQ
1642 @cindex faq
1643 @enumerate
1644 @item OpenOCD complains about a missing cygwin1.dll
1645
1646 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1647 claims to come with all the necessary dlls. When using Cygwin, try launching
1648 the OpenOCD from the Cygwin shell.
1649
1650 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1651 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1652 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1653
1654 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1655 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1656 software breakpoints consume one of the two available hardware breakpoints,
1657 and are therefor disabled by default. If your code is running from RAM, you
1658 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1659 your code resides in Flash, you can't use software breakpoints, but you can force
1660 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1661
1662 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1663 and works sometimes fine.
1664
1665 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1666 clock at the time you're programming the flash. If you've specified the crystal's
1667 frequency, make sure the PLL is disabled, if you've specified the full core speed
1668 (e.g. 60MHz), make sure the PLL is enabled.
1669
1670 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1671 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1672 out while waiting for end of scan, rtck was disabled".
1673
1674 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1675 settings in your PC Bios (ECP, EPP, and different versions of those).
1676
1677 @item When debugging with the OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1678 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1679 memory read caused data abort".
1680
1681 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1682 beyond the last valid frame. It might be possible to prevent this by setting up
1683 a proper "initial" stack frame, if you happen to know what exactly has to
1684 be done, feel free to add this here.
1685
1686 @item I get the following message in the OpenOCD console (or log file):
1687 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1688
1689 This warning doesn't indicate any serious problem, as long as you don't want to
1690 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1691 trst_and_srst srst_pulls_trst} to tell the OpenOCD that either your board,
1692 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1693 independently. With this setup, it's not possible to halt the core right out of
1694 reset, everything else should work fine.
1695
1696 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1697 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1698 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1699 quit with an error message. Is there a stability issue with OpenOCD?
1700
1701 No, this is not a stability issue concering OpenOCD. Most users have solved
1702 this issue by simply using a self-powered USB Hub, which they connect their
1703 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1704 supply stable enough for the Amontec JTAGkey to be operated.
1705
1706 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1707 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1708 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1709 What does that mean and what might be the reason for this?
1710
1711 First of all, the reason might be the USB power supply. Try using a self-powered
1712 hub instead of a direct connection to your computer. Secondly, the error code 4
1713 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1714 Chip ran into some sort of error - this points us to a USB problem.
1715
1716 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1717 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1718 What does that mean and what might be the reason for this?
1719
1720 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1721 has closed the connection to OpenOCD. This might be a GDB issue.
1722
1723 @item In the configuration file in the section where flash device configurations
1724 are described, there is a parameter for specifying the clock frequency for
1725 LPC2000 internal flash devices (e.g.
1726 @option{flash bank lpc2000 0x0 0x40000 0 0 lpc2000_v1 0 14746 calc_checksum}),
1727 which must be sepcified in kilohertz. However, I do have a quartz crystal of a
1728 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1729 Is it possible to specify real numbers for the clock frequency?
1730
1731 No. The clock frequency specified here must be given as an integral number.
1732 However, this clock frequency is used by the In-Application-Programming (IAP)
1733 routines of the LPC2000 family only, which seems to be very tolerant concerning
1734 the given clock frequency, so a slight difference between the specified clock
1735 frequency and the actual clock frequency will not cause any trouble.
1736
1737 @item Do I have to keep a specific order for the commands in the configuration file?
1738
1739 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1740 listed for the JTAG scan chain must be given in the right order (jtag_device),
1741 with the device closest to the TDO-Pin being listed first. In general,
1742 whenever objects of the same type exist which require an index number, then
1743 these objects must be given in the right order (jtag_devices, targets and flash
1744 banks - a target references a jtag_device and a flash bank references a target).
1745
1746 @item Sometimes my debugging session terminates with an error. When I look into the
1747 log file, I can see these error messages: Error: arm7_9_common.c:561
1748 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1749
1750 @end enumerate
1751
1752 @include fdl.texi
1753
1754 @node Index
1755 @unnumbered Index
1756
1757 @printindex cp
1758
1759 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)