Holger Schurig <hs4233@mail.mn-solutions.de> incorporate some comments from Rick
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD.
55 * Developers:: OpenOCD developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * TCL scripting API:: Tcl scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target library:: Target library
76 * FAQ:: Frequently Asked Questions
77 * TCL Crash Course:: TCL Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main index.
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) complient taps on your target board.
96
97 @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
98 Based, Parallel Port Based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
102 ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB Protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
125
126 @node Building
127 @chapter Building
128 @cindex building OpenOCD
129
130 @section Pre-Built Tools
131 If you are interested in getting actual work done rather than building
132 OpenOCD, then check if your interface supplier provides binaries for
133 you. Chances are that that binary is from some SVN version that is more
134 stable than SVN trunk where bleeding edge development takes place.
135
136 @section Packagers Please Read!
137
138 If you are a @b{PACKAGER} of OpenOCD if you
139
140 @enumerate
141 @item @b{Sell dongles} and include pre-built binaries
142 @item @b{Supply tools} ie: A complete development solution
143 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
144 @item @b{Build packages} ie: RPM files, or DEB files for a Linux Distro
145 @end enumerate
146
147 As a @b{PACKAGER} - you are at the top of the food chain. You solve
148 problems for downstream users. What you fix or solve - solves hundreds
149 if not thousands of user questions. If something does not work for you
150 please let us know. That said, would also like you to follow a few
151 suggestions:
152
153 @enumerate
154 @item @b{Always build with Printer Ports Enabled}
155 @item @b{Try where possible to use LIBFTDI + LIBUSB} You cover more bases
156 @end enumerate
157
158 It is your decision..
159
160 @itemize @bullet
161 @item @b{Why YES to LIBFTDI + LIBUSB}
162 @itemize @bullet
163 @item @b{LESS} work - libusb perhaps already there
164 @item @b{LESS} work - identical code multiple platforms
165 @item @b{MORE} dongles are supported
166 @item @b{MORE} platforms are supported
167 @item @b{MORE} complete solution
168 @end itemize
169 @item @b{Why not LIBFTDI + LIBUSB} (ie: ftd2xx instead)
170 @itemize @bullet
171 @item @b{LESS} Some say it is slower.
172 @item @b{LESS} complex to distribute (external dependencies)
173 @end itemize
174 @end itemize
175
176 @section Building From Source
177
178 You can download the current SVN version with SVN client of your choice from the
179 following repositories:
180
181 (@uref{svn://svn.berlios.de/openocd/trunk})
182
183 or
184
185 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
186
187 Using the SVN command line client, you can use the following command to fetch the
188 latest version (make sure there is no (non-svn) directory called "openocd" in the
189 current directory):
190
191 @example
192 svn checkout svn://svn.berlios.de/openocd/trunk openocd
193 @end example
194
195 Building OpenOCD requires a recent version of the GNU autotools.
196 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
197 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
198 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
199 paths, resulting in obscure dependency errors (This is an observation I've gathered
200 from the logs of one user - correct me if I'm wrong).
201
202 You further need the appropriate driver files, if you want to build support for
203 a FTDI FT2232 based interface:
204 @itemize @bullet
205 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
206 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
207 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
208 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
209 @end itemize
210
211 libftdi is supported under windows. Do not use versions earlier then 0.14.
212
213 In general, the D2XX driver provides superior performance (several times as fast),
214 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
215 a kernel module, only a user space library.
216
217 To build OpenOCD (on both Linux and Cygwin), use the following commands:
218 @example
219 ./bootstrap
220 @end example
221 Bootstrap generates the configure script, and prepares building on your system.
222 @example
223 ./configure [options, see below]
224 @end example
225 Configure generates the Makefiles used to build OpenOCD.
226 @example
227 make
228 make install
229 @end example
230 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
231
232 The configure script takes several options, specifying which JTAG interfaces
233 should be included:
234
235 @itemize @bullet
236 @item
237 @option{--enable-parport} - Bit bang pc printer ports.
238 @item
239 @option{--enable-parport_ppdev} - Parallel Port [see below]
240 @item
241 @option{--enable-parport_giveio} - Parallel Port [see below]
242 @item
243 @option{--enable-amtjtagaccel} - Parallel Port [Amontec, see below]
244 @item
245 @option{--enable-ft2232_ftd2xx} - Numerous USB Type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
246 @item
247 @option{--enable-ft2232_libftdi} - An open source (free) alternate to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin)
248 @item
249 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
250 @item
251 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only equal of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
252 @item
253 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static, specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. Shared is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
254 @item
255 @option{--enable-gw16012}
256 @item
257 @option{--enable-usbprog}
258 @item
259 @option{--enable-presto_libftdi}
260 @item
261 @option{--enable-presto_ftd2xx}
262 @item
263 @option{--enable-jlink} - From SEGGER
264 @item
265 @option{--enable-vsllink}
266 @item
267 @option{--enable-rlink} - Raisonance.com dongle.
268 @end itemize
269
270 @section Parallel Port Dongles
271
272 If you want to access the parallel port using the PPDEV interface you have to specify
273 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
274 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
275 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
276
277 @section FT2232C Based USB Dongles
278
279 There are 2 methods of using the FTD2232, either (1) using the
280 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
281 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
282
283 The FTDICHIP drivers come as either a (win32) ZIP file, or a (linux)
284 TAR.GZ file. You must unpack them ``some where'' convient. As of this
285 writing (12/26/2008) FTDICHIP does not supply means to install these
286 files ``in an appropriate place'' As a result, there are two
287 ``./configure'' options that help.
288
289 Below is an example build process:
290
291 1) Check out the latest version of ``openocd'' from SVN.
292
293 2) Download & Unpack either the Windows or Linux FTD2xx Drivers
294 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
295
296 @example
297 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
298 /home/duane/libftd2xx0.4.16 => the Linux TAR file contents.
299 @end example
300
301 3) Configure with these options:
302
303 @example
304 Cygwin FTCICHIP solution
305 ./configure --prefix=/home/duane/mytools \
306 --enable-ft2232_ftd2xx \
307 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
308
309 Linux FTDICHIP solution
310 ./configure --prefix=/home/duane/mytools \
311 --enable-ft2232_ftd2xx \
312 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
313
314 Cygwin/Linux LIBFTDI solution
315 Assumes:
316 1a) For Windows: The windows port of LIBUSB is in place.
317 1b) For Linux: libusb has been built and is inplace.
318
319 2) And libftdi has been built and installed
320 Note: libftdi - relies upon libusb.
321
322 ./configure --prefix=/home/duane/mytools \
323 --enable-ft2232_libftdi
324
325 @end example
326
327 4) Then just type ``make'', and perhaps ``make install''.
328
329
330 @section Miscellaneous configure options
331
332 @itemize @bullet
333 @item
334 @option{--enable-gccwarnings} - enable extra gcc warnings during build.
335 Default is enabled.
336 @item
337 @option{--enable-release} - enable building of a openocd release, generally
338 this is for developers. It simply omits the svn version string when the
339 openocd @option{-v} is executed.
340 @end itemize
341
342 @node JTAG Hardware Dongles
343 @chapter JTAG Hardware Dongles
344 @cindex dongles
345 @cindex ftdi
346 @cindex wiggler
347 @cindex zy1000
348 @cindex printer port
349 @cindex usb adapter
350 @cindex rtck
351
352 Defined: @b{dongle}: A small device that plugins into a computer and serves as
353 an adapter .... [snip]
354
355 In the OpenOCD case, this generally refers to @b{a small adapater} one
356 attaches to your computer via USB or the Parallel Printer Port. The
357 execption being the Zylin ZY1000 which is a small box you attach via
358 an ethernet cable.
359
360
361 @section Choosing a Dongle
362
363 There are three things you should keep in mind when choosing a dongle.
364
365 @enumerate
366 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
367 @item @b{Connection} Printer Ports - Does your computer have one?
368 @item @b{Connection} Is that long printer bit-bang cable practical?
369 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
370 @end enumerate
371
372 @section Stand alone Systems
373
374 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
375 dongle, but a standalone box.
376
377 @section USB FT2232 Based
378
379 There are many USB jtag dongles on the market, many of them are based
380 on a chip from ``Future Technology Devices International'' (FTDI)
381 known as the FTDI FT2232.
382
383 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
384
385 As of 28/Nov/2008, the following are supported:
386
387 @itemize @bullet
388 @item @b{usbjtag}
389 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
390 @item @b{jtagkey}
391 @* See: @url{http://www.amontec.com/jtagkey.shtml}
392 @item @b{oocdlink}
393 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
394 @item @b{signalyzer}
395 @* See: @url{http://www.signalyzer.com}
396 @item @b{evb_lm3s811}
397 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
398 @item @b{olimex-jtag}
399 @* See: @url{http://www.olimex.com}
400 @item @b{flyswatter}
401 @* See: @url{http://www.tincantools.com}
402 @item @b{turtelizer2}
403 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
404 @item @b{comstick}
405 @* Link: @url{http://www.hitex.com/index.php?id=383}
406 @item @b{stm32stick}
407 @* Link @url{http://www.hitex.com/stm32-stick}
408 @item @b{axm0432_jtag}
409 @* Axiom AXM-0432 Link @url{http://www.axman.com}
410 @end itemize
411
412 @section USB JLINK based
413 There are several OEM versions of the Segger @b{JLINK} adapter. It is
414 an example of a micro controller based JTAG adapter, it uses an
415 AT91SAM764 internally.
416
417 @itemize @bullet
418 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
419 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
420 @item @b{SEGGER JLINK}
421 @* Link: @url{http://www.segger.com/jlink.html}
422 @item @b{IAR J-Link}
423 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
424 @end itemize
425
426 @section USB RLINK based
427 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
428
429 @itemize @bullet
430 @item @b{Raisonance RLink}
431 @* Link: @url{http://www.raisonance.com/products/RLink.php}
432 @item @b{STM32 Primer}
433 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
434 @item @b{STM32 Primer2}
435 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
436 @end itemize
437
438 @section USB Other
439 @itemize @bullet
440 @item @b{USBprog}
441 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
442
443 @item @b{USB - Presto}
444 @* Link: @url{http://tools.asix.net/prg_presto.htm}
445
446 @item @b{Versaloon-Link}
447 @* Link: @url{http://www.simonqian.com/en/Versaloon}
448 @end itemize
449
450 @section IBM PC Parallel Printer Port Based
451
452 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
453 and the MacGraigor Wiggler. There are many clones and variations of
454 these on the market.
455
456 @itemize @bullet
457
458 @item @b{Wiggler} - There are many clones of this.
459 @* Link: @url{http://www.macraigor.com/wiggler.htm}
460
461 @item @b{DLC5} - From XILINX - There are many clones of this
462 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
463 produced, PDF schematics are easily found and it is easy to make.
464
465 @item @b{Amontec - JTAG Accelerator}
466 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
467
468 @item @b{GW16402}
469 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
470
471 @item @b{Wiggler2}
472 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
473
474 @item @b{Wiggler_ntrst_inverted}
475 @* Yet another variation - See the source code, src/jtag/parport.c
476
477 @item @b{old_amt_wiggler}
478 @* Unknown - probably not on the market today
479
480 @item @b{arm-jtag}
481 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
482
483 @item @b{chameleon}
484 @* Link: @url{http://www.amontec.com/chameleon.shtml}
485
486 @item @b{Triton}
487 @* Unknown.
488
489 @item @b{Lattice}
490 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
491
492 @item @b{flashlink}
493 @* From ST Microsystems, link:
494 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
495 Title: FlashLINK JTAG programing cable for PSD and uPSD
496
497 @end itemize
498
499 @section Other...
500 @itemize @bullet
501
502 @item @b{ep93xx}
503 @* An EP93xx based linux machine using the GPIO pins directly.
504
505 @item @b{at91rm9200}
506 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
507
508 @end itemize
509
510 @node Running
511 @chapter Running
512 @cindex running OpenOCD
513 @cindex --configfile
514 @cindex --debug_level
515 @cindex --logfile
516 @cindex --search
517
518 The @option{--help} option shows:
519 @verbatim
520 bash$ openocd --help
521
522 --help | -h display this help
523 --version | -v display OpenOCD version
524 --file | -f use configuration file <name>
525 --search | -s dir to search for config files and scripts
526 --debug | -d set debug level <0-3>
527 --log_output | -l redirect log output to file <name>
528 --command | -c run <command>
529 --pipe | -p use pipes when talking to gdb
530 @end verbatim
531
532 By default OpenOCD reads the file configuration file ``openocd.cfg''
533 in the current directory. To specify a different (or multiple)
534 configuration file, you can use the ``-f'' option. For example:
535
536 @example
537 openocd -f config1.cfg -f config2.cfg -f config3.cfg
538 @end example
539
540 Once started, OpenOCD runs as a daemon, waiting for connections from
541 clients (Telnet, GDB, Other).
542
543 If you are having problems, you can enable internal debug messages via
544 the ``-d'' option.
545
546 Also it is possible to interleave commands w/config scripts using the
547 @option{-c} command line switch.
548
549 To enable debug output (when reporting problems or working on OpenOCD
550 itself), use the @option{-d} command line switch. This sets the
551 @option{debug_level} to "3", outputting the most information,
552 including debug messages. The default setting is "2", outputting only
553 informational messages, warnings and errors. You can also change this
554 setting from within a telnet or gdb session using @option{debug_level
555 <n>} @xref{debug_level}.
556
557 You can redirect all output from the daemon to a file using the
558 @option{-l <logfile>} switch.
559
560 Search paths for config/script files can be added to OpenOCD by using
561 the @option{-s <search>} switch. The current directory and the OpenOCD
562 target library is in the search path by default.
563
564 For details on the @option{-p} option. @xref{Connecting to GDB}.
565
566 Note! OpenOCD will launch the GDB & telnet server even if it can not
567 establish a connection with the target. In general, it is possible for
568 the JTAG controller to be unresponsive until the target is set up
569 correctly via e.g. GDB monitor commands in a GDB init script.
570
571 @node Simple Configuration Files
572 @chapter Simple Configuration Files
573 @cindex configuration
574
575 @section Outline
576 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
577
578 @enumerate
579 @item A small openocd.cfg file which ``sources'' other configuration files
580 @item A monolithic openocd.cfg file
581 @item Many -f filename options on the command line
582 @item Your Mixed Solution
583 @end enumerate
584
585 @section Small configuration file method
586
587 This is the prefered method, it is simple and is works well for many
588 people. The developers of OpenOCD would encourage you to use this
589 method. If you create a new configuration please email new
590 configurations to the development list.
591
592 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
593
594 @example
595 source [find interface/signalyzer.cfg]
596
597 # Change the default telnet port...
598 telnet_port 4444
599 # GDB connects here
600 gdb_port 3333
601 # GDB can also flash my flash!
602 gdb_memory_map enable
603 gdb_flash_program enable
604
605 source [find target/sam7x256.cfg]
606 @end example
607
608 There are many example configuration scripts you can work with. You
609 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
610 should find:
611
612 @enumerate
613 @item @b{board} - eval board level configurations
614 @item @b{interface} - specific dongle configurations
615 @item @b{target} - the target chips
616 @item @b{tcl} - helper scripts
617 @item @b{xscale} - things specific to the xscale.
618 @end enumerate
619
620 Look first in the ``boards'' area, then the ``targets'' area. Often a board
621 configuration is a good example to work from.
622
623 @section Many -f filename options
624 Some believe this is a wonderful solution, others find it painful.
625
626 You can use a series of ``-f filename'' options on the command line,
627 OpenOCD will read each filename in sequence, for example:
628
629 @example
630 openocd -f file1.cfg -f file2.cfg -f file2.cfg
631 @end example
632
633 You can also intermix various commands with the ``-c'' command line
634 option.
635
636 @section Monolithic file
637 The ``Monolithic File'' dispenses with all ``source'' statements and
638 puts everything in one self contained (monolithic) file. This is not
639 encouraged.
640
641 Please try to ``source'' various files or use the multiple -f
642 technique.
643
644 @section Advice for you
645 Often, one uses a ``mixed approach''. Where possible, please try to
646 ``source'' common things, and if needed cut/paste parts of the
647 standard distribution configuration files as needed.
648
649 @b{REMEMBER:} The ``important parts'' of your configuration file are:
650
651 @enumerate
652 @item @b{Interface} - Defines the dongle
653 @item @b{Taps} - Defines the JTAG Taps
654 @item @b{GDB Targets} - What GDB talks to
655 @item @b{Flash Programing} - Very Helpful
656 @end enumerate
657
658 Some key things you should look at and understand are:
659
660 @enumerate
661 @item The RESET configuration of your debug environment as a hole
662 @item Is there a ``work area'' that OpenOCD can use?
663 @* For ARM - work areas mean up to 10x faster downloads.
664 @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
665 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
666 @end enumerate
667
668
669
670 @node Config File Guidelines
671 @chapter Config File Guidelines
672
673 This section/chapter is aimed at developers and integrators of
674 OpenOCD. These are guidelines for creating new boards and new target
675 configurations as of 28/Nov/2008.
676
677 However, you the user of OpenOCD should be some what familiar with
678 this section as it should help explain some of the internals of what
679 you might be looking at.
680
681 The user should find under @t{$(INSTALLDIR)/lib/openocd} the
682 following directories:
683
684 @itemize @bullet
685 @item @b{interface}
686 @*Think JTAG Dongle. Files that configure the jtag dongle go here.
687 @item @b{board}
688 @* Thing Circuit Board, PWA, PCB, they go by many names. Board files
689 contain initialization items that are specific to a board - for
690 example: The SDRAM initialization sequence for the board, or the type
691 of external flash and what address it is found at. Any initialization
692 sequence to enable that external flash or sdram should be found in the
693 board file. Boards may also contain multiple targets, ie: Two cpus, or
694 a CPU and an FPGA or CPLD.
695 @item @b{target}
696 @* Think CHIP. The ``target'' directory represents a jtag tap (or
697 chip) OpenOCD should control, not a board. Two common types of targets
698 are ARM chips and FPGA or CPLD chips.
699 @end itemize
700
701 @b{If needed...} The user in their ``openocd.cfg'' file or the board
702 file might override a specific feature in any of the above files by
703 setting a variable or two before sourcing the target file. Or adding
704 various commands specific to their situation.
705
706 @section Interface Config Files
707
708 The user should be able to source one of these files via a command like this:
709
710 @example
711 source [find interface/FOOBAR.cfg]
712 Or:
713 openocd -f interface/FOOBAR.cfg
714 @end example
715
716 A preconfigured interface file should exist for every interface in use
717 today, that said, perhaps some interfaces have only been used by the
718 sole developer who created it.
719
720 @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
721 tcl_platform(platform), it should be called jim_platform (because it
722 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
723 ``cygwin'' or ``mingw''
724
725 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
726
727 @section Board Config Files
728
729 @b{Note: BOARD directory NEW as of 28/nov/2008}
730
731 The user should be able to source one of these files via a command like this:
732
733 @example
734 source [find board/FOOBAR.cfg]
735 Or:
736 openocd -f board/FOOBAR.cfg
737 @end example
738
739
740 The board file should contain one or more @t{source [find
741 target/FOO.cfg]} statements along with any board specific things.
742
743 In summery the board files should contain (if present)
744
745 @enumerate
746 @item External flash configuration (ie: the flash on CS0)
747 @item SDRAM configuration (size, speed, etc)
748 @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
749 @item Multiple TARGET source statements
750 @item All things that are not ``inside a chip''
751 @item Things inside a chip go in a 'target' file
752 @end enumerate
753
754 @section Target Config Files
755
756 The user should be able to source one of these files via a command like this:
757
758 @example
759 source [find target/FOOBAR.cfg]
760 Or:
761 openocd -f target/FOOBAR.cfg
762 @end example
763
764 In summery the target files should contain
765
766 @enumerate
767 @item Set Defaults
768 @item Create Taps
769 @item Reset Configuration
770 @item Work Areas
771 @item CPU/Chip/CPU-Core Specific features
772 @item OnChip Flash
773 @end enumerate
774
775 @subsection Important variable names
776
777 By default, the end user should never need to set these
778 variables. However, if the user needs to override a setting they only
779 need to set the variable in a simple way.
780
781 @itemize @bullet
782 @item @b{CHIPNAME}
783 @* This gives a name to the overall chip, and is used as part of the
784 tap identifier dotted name.
785 @item @b{ENDIAN}
786 @* By default little - unless the chip or board is not normally used that way.
787 @item @b{CPUTAPID}
788 @* When OpenOCD examines the JTAG chain, it will attempt to identify
789 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
790 to verify the tap id number verses configuration file and may issue an
791 error or warning like this. The hope is this will help pin point
792 problem OpenOCD configurations.
793
794 @example
795 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
796 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
797 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
798 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
799 @end example
800
801 @item @b{_TARGETNAME}
802 @* By convention, this variable is created by the target configuration
803 script. The board configuration file may make use of this variable to
804 configure things like a ``reset init'' script, or other things
805 specific to that board and that target.
806
807 If the chip has 2 targets, use the names @b{_TARGETNAME0},
808 @b{_TARGETNAME1}, ... etc.
809
810 @b{Remember:} The ``board file'' may include multiple targets.
811
812 At no time should the name ``target0'' (the default target name if
813 none was specified) be used. The name ``target0'' is a hard coded name
814 - the next target on the board will be some other number.
815
816 The user (or board file) should reasonably be able to:
817
818 @example
819 source [find target/FOO.cfg]
820 $_TARGETNAME configure ... FOO specific parameters
821
822 source [find target/BAR.cfg]
823 $_TARGETNAME configure ... BAR specific parameters
824 @end example
825
826 @end itemize
827
828 @subsection TCL Variables Guide Line
829 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
830
831 Thus the rule we follow in OpenOCD is this: Variables that begin with
832 a leading underscore are temporal in nature, and can be modified and
833 used at will within a ?TARGET? configuration file
834
835 @b{EXAMPLE:} The user should be able to do this:
836
837 @example
838 # Board has 3 chips,
839 # PXA270 #1 network side, big endian
840 # PXA270 #2 video side, little endian
841 # Xilinx Glue logic
842 set CHIPNAME network
843 set ENDIAN big
844 source [find target/pxa270.cfg]
845 # variable: _TARGETNAME = network.cpu
846 # other commands can refer to the "network.cpu" tap.
847 $_TARGETNAME configure .... params for this cpu..
848
849 set ENDIAN little
850 set CHIPNAME video
851 source [find target/pxa270.cfg]
852 # variable: _TARGETNAME = video.cpu
853 # other commands can refer to the "video.cpu" tap.
854 $_TARGETNAME configure .... params for this cpu..
855
856 unset ENDIAN
857 set CHIPNAME xilinx
858 source [find target/spartan3.cfg]
859
860 # Since $_TARGETNAME is temporal..
861 # these names still work!
862 network.cpu configure ... params
863 video.cpu configure ... params
864
865 @end example
866
867 @subsection Default Value Boiler Plate Code
868
869 All target configuration files should start with this (or a modified form)
870
871 @example
872 # SIMPLE example
873 if @{ [info exists CHIPNAME] @} @{
874 set _CHIPNAME $CHIPNAME
875 @} else @{
876 set _CHIPNAME sam7x256
877 @}
878
879 if @{ [info exists ENDIAN] @} @{
880 set _ENDIAN $ENDIAN
881 @} else @{
882 set _ENDIAN little
883 @}
884
885 if @{ [info exists CPUTAPID ] @} @{
886 set _CPUTAPID $CPUTAPID
887 @} else @{
888 set _CPUTAPID 0x3f0f0f0f
889 @}
890
891 @end example
892
893 @subsection Creating Taps
894 After the ``defaults'' are choosen, [see above], the taps are created.
895
896 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
897
898 @example
899 # for an ARM7TDMI.
900 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
901 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
902 @end example
903
904 @b{COMPLEX example:}
905
906 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
907
908 @enumerate
909 @item @b{Unform tap names} - See: Tap Naming Convention
910 @item @b{_TARGETNAME} is created at the end where used.
911 @end enumerate
912
913 @example
914 if @{ [info exists FLASHTAPID ] @} @{
915 set _FLASHTAPID $FLASHTAPID
916 @} else @{
917 set _FLASHTAPID 0x25966041
918 @}
919 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
920
921 if @{ [info exists CPUTAPID ] @} @{
922 set _CPUTAPID $CPUTAPID
923 @} else @{
924 set _CPUTAPID 0x25966041
925 @}
926 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
927
928
929 if @{ [info exists BSTAPID ] @} @{
930 set _BSTAPID $BSTAPID
931 @} else @{
932 set _BSTAPID 0x1457f041
933 @}
934 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
935
936 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
937 @end example
938
939 @b{Tap Naming Convention}
940
941 See the command ``jtag newtap'' for detail, but in breif the names you should use are:
942
943 @itemize @bullet
944 @item @b{tap}
945 @item @b{cpu}
946 @item @b{flash}
947 @item @b{bs}
948 @item @b{jrc}
949 @item @b{unknownN} - it happens :-(
950 @end itemize
951
952 @subsection Reset Configuration
953
954 Some chips have specific ways the TRST and SRST signals are
955 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
956 @b{BOARD SPECIFIC} they go in the board file.
957
958 @subsection Work Areas
959
960 Work areas are small RAM areas used by OpenOCD to speed up downloads,
961 and to download small snippits of code to program flash chips.
962
963 If the chip includes an form of ``on-chip-ram'' - and many do - define
964 a reasonable work area and use the ``backup'' option.
965
966 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
967 inaccessable if/when the application code enables or disables the MMU.
968
969 @subsection ARM Core Specific Hacks
970
971 If the chip has a DCC, enable it. If the chip is an arm9 with some
972 special high speed download - enable it.
973
974 If the chip has an ARM ``vector catch'' feature - by defeault enable
975 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
976 user is really writing a handler for those situations - they can
977 easily disable it. Experiance has shown the ``vector catch'' is
978 helpful - for common programing errors.
979
980 If present, the MMU, the MPU and the CACHE should be disabled.
981
982 @subsection Internal Flash Configuration
983
984 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
985
986 @b{Never ever} in the ``target configuration file'' define any type of
987 flash that is external to the chip. (For example the BOOT flash on
988 Chip Select 0). The BOOT flash information goes in a board file - not
989 the TARGET (chip) file.
990
991 Examples:
992 @itemize @bullet
993 @item at91sam7x256 - has 256K flash YES enable it.
994 @item str912 - has flash internal YES enable it.
995 @item imx27 - uses boot flash on CS0 - it goes in the board file.
996 @item pxa270 - again - CS0 flash - it goes in the board file.
997 @end itemize
998
999 @node About JIM-Tcl
1000 @chapter About JIM-Tcl
1001 @cindex JIM Tcl
1002 @cindex tcl
1003
1004 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1005 learn more about JIM here: @url{http://jim.berlios.de}
1006
1007 @itemize @bullet
1008 @item @b{JIM vrs TCL}
1009 @* JIM-TCL is a stripped down version of the well known Tcl language,
1010 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1011 fewer features. JIM-Tcl is a single .C file and a single .H file and
1012 impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
1013 4.2MEG zip file containing 1540 files.
1014
1015 @item @b{Missing Features}
1016 @* Our practice has been: Add/clone the Real TCL feature if/when
1017 needed. We welcome JIM Tcl improvements, not bloat.
1018
1019 @item @b{Scripts}
1020 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1021 command interpretor today (28/nov/2008) is a mixture of (newer)
1022 JIM-Tcl commands, and (older) the orginal command interpretor.
1023
1024 @item @b{Commands}
1025 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1026 can type a Tcl for() loop, set variables, etc.
1027
1028 @item @b{Historical Note}
1029 @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
1030
1031 @item @b{Need a Crash Course In TCL?}
1032 @* See: @xref{TCL Crash Course}.
1033 @end itemize
1034
1035
1036 @node Daemon Configuration
1037 @chapter Daemon Configuration
1038 The commands here are commonly found in the openocd.cfg file and are
1039 used to specify what TCP/IP ports are used, and how GDB should be
1040 supported.
1041 @section init
1042 @cindex init
1043 This command terminates the configuration stage and
1044 enters the normal command mode. This can be useful to add commands to
1045 the startup scripts and commands such as resetting the target,
1046 programming flash, etc. To reset the CPU upon startup, add "init" and
1047 "reset" at the end of the config script or at the end of the OpenOCD
1048 command line using the @option{-c} command line switch.
1049
1050 If this command does not appear in any startup/configuration file
1051 OpenOCD executes the command for you after processing all
1052 configuration files and/or command line options.
1053
1054 @b{NOTE:} This command normally occurs at or near the end of your
1055 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1056 targets ready. For example: If your openocd.cfg file needs to
1057 read/write memory on your target - the init command must occur before
1058 the memory read/write commands.
1059
1060 @section TCP/IP Ports
1061 @itemize @bullet
1062 @item @b{telnet_port} <@var{number}>
1063 @cindex telnet_port
1064 @*Intended for a human. Port on which to listen for incoming telnet connections.
1065
1066 @item @b{tcl_port} <@var{number}>
1067 @cindex tcl_port
1068 @*Intended as a machine interface. Port on which to listen for
1069 incoming TCL syntax. This port is intended as a simplified RPC
1070 connection that can be used by clients to issue commands and get the
1071 output from the TCL engine.
1072
1073 @item @b{gdb_port} <@var{number}>
1074 @cindex gdb_port
1075 @*First port on which to listen for incoming GDB connections. The GDB port for the
1076 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1077 @end itemize
1078
1079 @section GDB Items
1080 @itemize @bullet
1081 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
1082 @cindex gdb_breakpoint_override
1083 @anchor{gdb_breakpoint_override}
1084 @*Force breakpoint type for gdb 'break' commands.
1085 The raison d'etre for this option is to support GDB GUI's without
1086 a hard/soft breakpoint concept where the default OpenOCD and
1087 GDB behaviour is not sufficient. Note that GDB will use hardware
1088 breakpoints if the memory map has been set up for flash regions.
1089
1090 This option replaces older arm7_9 target commands that addressed
1091 the same issue.
1092
1093 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1094 @cindex gdb_detach
1095 @*Configures what OpenOCD will do when gdb detaches from the daeman.
1096 Default behaviour is <@var{resume}>
1097
1098 @item @b{gdb_memory_map} <@var{enable|disable}>
1099 @cindex gdb_memory_map
1100 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
1101 requested. gdb will then know when to set hardware breakpoints, and program flash
1102 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
1103 for flash programming to work.
1104 Default behaviour is <@var{enable}>
1105 @xref{gdb_flash_program}.
1106
1107 @item @b{gdb_flash_program} <@var{enable|disable}>
1108 @cindex gdb_flash_program
1109 @anchor{gdb_flash_program}
1110 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1111 vFlash packet is received.
1112 Default behaviour is <@var{enable}>
1113 @comment END GDB Items
1114 @end itemize
1115
1116 @node Interface - Dongle Configuration
1117 @chapter Interface - Dongle Configuration
1118 Interface commands are normally found in an interface configuration
1119 file which is sourced by your openocd.cfg file. These commands tell
1120 OpenOCD what type of JTAG dongle you have and how to talk to it.
1121 @section Simple Complete Interface Examples
1122 @b{A Turtelizer FT2232 Based JTAG Dongle}
1123 @verbatim
1124 #interface
1125 interface ft2232
1126 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1127 ft2232_layout turtelizer2
1128 ft2232_vid_pid 0x0403 0xbdc8
1129 @end verbatim
1130 @b{A SEGGER Jlink}
1131 @verbatim
1132 # jlink interface
1133 interface jlink
1134 @end verbatim
1135 @b{A Raisonance RLink}
1136 @verbatim
1137 # rlink interface
1138 interface rlink
1139 @end verbatim
1140 @b{Parallel Port}
1141 @verbatim
1142 interface parport
1143 parport_port 0xc8b8
1144 parport_cable wiggler
1145 jtag_speed 0
1146 @end verbatim
1147 @section Interface Conmmand
1148
1149 The interface command tells OpenOCD what type of jtag dongle you are
1150 using. Depending upon the type of dongle, you may need to have one or
1151 more additional commands.
1152
1153 @itemize @bullet
1154
1155 @item @b{interface} <@var{name}>
1156 @cindex interface
1157 @*Use the interface driver <@var{name}> to connect to the
1158 target. Currently supported interfaces are
1159
1160 @itemize @minus
1161
1162 @item @b{parport}
1163 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1164
1165 @item @b{amt_jtagaccel}
1166 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1167 mode parallel port
1168
1169 @item @b{ft2232}
1170 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1171 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1172 platform. The libftdi uses libusb, and should be portable to all systems that provide
1173 libusb.
1174
1175 @item @b{ep93xx}
1176 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1177
1178 @item @b{presto}
1179 @* ASIX PRESTO USB JTAG programmer.
1180
1181 @item @b{usbprog}
1182 @* usbprog is a freely programmable USB adapter.
1183
1184 @item @b{gw16012}
1185 @* Gateworks GW16012 JTAG programmer.
1186
1187 @item @b{jlink}
1188 @* Segger jlink usb adapter
1189
1190 @item @b{rlink}
1191 @* Raisonance RLink usb adapter
1192
1193 @item @b{vsllink}
1194 @* vsllink is part of Versaloon which is a versatile USB programmer.
1195 @comment - End parameters
1196 @end itemize
1197 @comment - End Interface
1198 @end itemize
1199 @subsection parport options
1200
1201 @itemize @bullet
1202 @item @b{parport_port} <@var{number}>
1203 @cindex parport_port
1204 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1205 the @file{/dev/parport} device
1206
1207 When using PPDEV to access the parallel port, use the number of the parallel port:
1208 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1209 you may encounter a problem.
1210 @item @b{parport_cable} <@var{name}>
1211 @cindex parport_cable
1212 @*The layout of the parallel port cable used to connect to the target.
1213 Currently supported cables are
1214 @itemize @minus
1215 @item @b{wiggler}
1216 @cindex wiggler
1217 The original Wiggler layout, also supported by several clones, such
1218 as the Olimex ARM-JTAG
1219 @item @b{wiggler2}
1220 @cindex wiggler2
1221 Same as original wiggler except an led is fitted on D5.
1222 @item @b{wiggler_ntrst_inverted}
1223 @cindex wiggler_ntrst_inverted
1224 Same as original wiggler except TRST is inverted.
1225 @item @b{old_amt_wiggler}
1226 @cindex old_amt_wiggler
1227 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1228 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1229 @item @b{chameleon}
1230 @cindex chameleon
1231 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1232 program the Chameleon itself, not a connected target.
1233 @item @b{dlc5}
1234 @cindex dlc5
1235 The Xilinx Parallel cable III.
1236 @item @b{triton}
1237 @cindex triton
1238 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1239 This is also the layout used by the HollyGates design
1240 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1241 @item @b{flashlink}
1242 @cindex flashlink
1243 The ST Parallel cable.
1244 @item @b{arm-jtag}
1245 @cindex arm-jtag
1246 Same as original wiggler except SRST and TRST connections reversed and
1247 TRST is also inverted.
1248 @item @b{altium}
1249 @cindex altium
1250 Altium Universal JTAG cable.
1251 @end itemize
1252 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1253 @cindex parport_write_on_exit
1254 @*This will configure the parallel driver to write a known value to the parallel
1255 interface on exiting OpenOCD
1256 @end itemize
1257
1258 @subsection amt_jtagaccel options
1259 @itemize @bullet
1260 @item @b{parport_port} <@var{number}>
1261 @cindex parport_port
1262 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1263 @file{/dev/parport} device
1264 @end itemize
1265 @subsection ft2232 options
1266
1267 @itemize @bullet
1268 @item @b{ft2232_device_desc} <@var{description}>
1269 @cindex ft2232_device_desc
1270 @*The USB device description of the FTDI FT2232 device. If not
1271 specified, the FTDI default value is used. This setting is only valid
1272 if compiled with FTD2XX support.
1273
1274 @b{TODO:} Confirm the following: On windows the name needs to end with
1275 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1276 this be added and when must it not be added? Why can't the code in the
1277 interface or in OpenOCD automatically add this if needed? -- Duane.
1278
1279 @item @b{ft2232_serial} <@var{serial-number}>
1280 @cindex ft2232_serial
1281 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1282 values are used.
1283 @item @b{ft2232_layout} <@var{name}>
1284 @cindex ft2232_layout
1285 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1286 signals. Valid layouts are
1287 @itemize @minus
1288 @item @b{usbjtag}
1289 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1290 @item @b{jtagkey}
1291 Amontec JTAGkey and JTAGkey-tiny
1292 @item @b{signalyzer}
1293 Signalyzer
1294 @item @b{olimex-jtag}
1295 Olimex ARM-USB-OCD
1296 @item @b{m5960}
1297 American Microsystems M5960
1298 @item @b{evb_lm3s811}
1299 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1300 SRST signals on external connector
1301 @item @b{comstick}
1302 Hitex STR9 comstick
1303 @item @b{stm32stick}
1304 Hitex STM32 Performance Stick
1305 @item @b{flyswatter}
1306 Tin Can Tools Flyswatter
1307 @item @b{turtelizer2}
1308 egnite Software turtelizer2
1309 @item @b{oocdlink}
1310 OOCDLink
1311 @item @b{axm0432_jtag}
1312 Axiom AXM-0432
1313 @end itemize
1314
1315 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1316 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1317 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
1318 @example
1319 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1320 @end example
1321 @item @b{ft2232_latency} <@var{ms}>
1322 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
1323 ft2232_read() fails to return the expected number of bytes. This can be caused by
1324 USB communication delays and has proved hard to reproduce and debug. Setting the
1325 FT2232 latency timer to a larger value increases delays for short USB packages but it
1326 also reduces the risk of timeouts before receiving the expected number of bytes.
1327 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1328 @end itemize
1329
1330 @subsection ep93xx options
1331 @cindex ep93xx options
1332 Currently, there are no options available for the ep93xx interface.
1333
1334 @section JTAG Speed
1335 @itemize @bullet
1336 @item @b{jtag_khz} <@var{reset speed kHz}>
1337 @cindex jtag_khz
1338
1339 It is debatable if this command belongs here - or in a board
1340 configuration file. In fact, in some situations the jtag speed is
1341 changed during the target initialization process (ie: (1) slow at
1342 reset, (2) program the cpu clocks, (3) run fast)
1343
1344 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1345
1346 Not all interfaces support ``rtck''. If the interface device can not
1347 support the rate asked for, or can not translate from kHz to
1348 jtag_speed, then an error is returned.
1349
1350 Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
1351 especially true for synthesized cores (-S). Also see RTCK.
1352
1353 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1354 please use the command: 'jtag_rclk FREQ'. This TCL proc (in
1355 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1356 the specified frequency.
1357
1358 @example
1359 # Fall back to 3mhz if RCLK is not supported
1360 jtag_rclk 3000
1361 @end example
1362
1363 @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
1364 @cindex jtag_speed
1365 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1366 speed. The actual effect of this option depends on the JTAG interface used.
1367
1368 The speed used during reset can be adjusted using setting jtag_speed during
1369 pre_reset and post_reset events.
1370 @itemize @minus
1371
1372 @item wiggler: maximum speed / @var{number}
1373 @item ft2232: 6MHz / (@var{number}+1)
1374 @item amt jtagaccel: 8 / 2**@var{number}
1375 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1376 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1377 @comment end speed list.
1378 @end itemize
1379
1380 @comment END command list
1381 @end itemize
1382
1383 @node Reset Configuration
1384 @chapter Reset Configuration
1385 @cindex reset configuration
1386
1387 Every system configuration may require a different reset
1388 configuration. This can also be quite confusing. Please see the
1389 various board files for example.
1390
1391 @section jtag_nsrst_delay <@var{ms}>
1392 @cindex jtag_nsrst_delay
1393 @*How long (in milliseconds) OpenOCD should wait after deasserting
1394 nSRST before starting new JTAG operations.
1395
1396 @section jtag_ntrst_delay <@var{ms}>
1397 @cindex jtag_ntrst_delay
1398 @*Same @b{jtag_nsrst_delay}, but for nTRST
1399
1400 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1401 big resistor/capacitor, reset supervisor, or on-chip features). This
1402 keeps the signal asserted for some time after the external reset got
1403 deasserted.
1404
1405 @section reset_config
1406
1407 @b{Note:} To maintainer types and integrators. Where exactly the
1408 ``reset configuration'' goes is a good question. It touches several
1409 things at once. In the end, if you have a board file - the board file
1410 should define it and assume 100% that the DONGLE supports
1411 anything. However, that does not mean the target should not also make
1412 not of something the silicon vendor has done inside the
1413 chip. @i{Grr.... nothing is every pretty.}
1414
1415 @* @b{Problems:}
1416 @enumerate
1417 @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
1418 @item Every board is also slightly different; some boards tie TRST and SRST together.
1419 @item Every chip is slightly different; some chips internally tie the two signals together.
1420 @item Some may not impliment all of the signals the same way.
1421 @item Some signals might be push-pull, others open-drain/collector.
1422 @end enumerate
1423 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1424 reset the TAP via TRST and send commands through the JTAG tap to halt
1425 the CPU at the reset vector before the 1st instruction is executed,
1426 and finally release the SRST signal.
1427 @*Depending upon your board vendor, your chip vendor, etc, these
1428 signals may have slightly different names.
1429
1430 OpenOCD defines these signals in these terms:
1431 @itemize @bullet
1432 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1433 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1434 @end itemize
1435
1436 The Command:
1437
1438 @itemize @bullet
1439 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1440 @cindex reset_config
1441 @* The @t{reset_config} command tells OpenOCD the reset configuration
1442 of your combination of Dongle, Board, and Chips.
1443 If the JTAG interface provides SRST, but the target doesn't connect
1444 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1445 be @option{none}, @option{trst_only}, @option{srst_only} or
1446 @option{trst_and_srst}.
1447
1448 [@var{combination}] is an optional value specifying broken reset
1449 signal implementations. @option{srst_pulls_trst} states that the
1450 testlogic is reset together with the reset of the system (e.g. Philips
1451 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1452 the system is reset together with the test logic (only hypothetical, I
1453 haven't seen hardware with such a bug, and can be worked around).
1454 @option{combined} imples both @option{srst_pulls_trst} and
1455 @option{trst_pulls_srst}. The default behaviour if no option given is
1456 @option{separate}.
1457
1458 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1459 driver type of the reset lines to be specified. Possible values are
1460 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1461 test reset signal, and @option{srst_open_drain} (default) and
1462 @option{srst_push_pull} for the system reset. These values only affect
1463 JTAG interfaces with support for different drivers, like the Amontec
1464 JTAGkey and JTAGAccelerator.
1465
1466 @comment - end command
1467 @end itemize
1468
1469
1470
1471 @node Tap Creation
1472 @chapter Tap Creation
1473 @cindex tap creation
1474 @cindex tap configuration
1475
1476 In order for OpenOCD to control a target, a JTAG tap must be
1477 defined/created.
1478
1479 Commands to create taps are normally found in a configuration file and
1480 are not normally typed by a human.
1481
1482 When a tap is created a @b{dotted.name} is created for the tap. Other
1483 commands use that dotted.name to manipulate or refer to the tap.
1484
1485 Tap Uses:
1486 @itemize @bullet
1487 @item @b{Debug Target} A tap can be used by a GDB debug target
1488 @item @b{Flash Programing} Some chips program the flash via JTAG
1489 @item @b{Boundry Scan} Some chips support boundry scan.
1490 @end itemize
1491
1492
1493 @section jtag newtap
1494 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1495 @cindex jtag_device
1496 @cindex jtag newtap
1497 @cindex tap
1498 @cindex tap order
1499 @cindex tap geometry
1500
1501 @comment START options
1502 @itemize @bullet
1503 @item @b{CHIPNAME}
1504 @* is a symbolic name of the chip.
1505 @item @b{TAPNAME}
1506 @* is a symbol name of a tap present on the chip.
1507 @item @b{Required configparams}
1508 @* Every tap has 3 required configparams, and several ``optional
1509 parameters'', the required parameters are:
1510 @comment START REQUIRED
1511 @itemize @bullet
1512 @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
1513 @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
1514 @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
1515 some devices, there are bits in the IR that aren't used. This lets you mask
1516 them off when doing comparisons. In general, this should just be all ones for
1517 the size of the IR.
1518 @comment END REQUIRED
1519 @end itemize
1520 An example of a FOOBAR Tap
1521 @example
1522 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1523 @end example
1524 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1525 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1526 [6,4,2,0] are checked.
1527
1528 @item @b{Optional configparams}
1529 @comment START Optional
1530 @itemize @bullet
1531 @item @b{-expected-id NUMBER}
1532 @* By default it is zero. If non-zero represents the
1533 expected tap ID used when the Jtag Chain is examined. See below.
1534 @item @b{-disable}
1535 @item @b{-enable}
1536 @* By default not specified the tap is enabled. Some chips have a
1537 jtag route controller (JRC) that is used to enable and/or disable
1538 specific jtag taps. You can later enable or disable any JTAG tap via
1539 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1540 DOTTED.NAME}
1541 @comment END Optional
1542 @end itemize
1543
1544 @comment END OPTIONS
1545 @end itemize
1546 @b{Notes:}
1547 @comment START NOTES
1548 @itemize @bullet
1549 @item @b{Technically}
1550 @* newtap is a sub command of the ``jtag'' command
1551 @item @b{Big Picture Background}
1552 @*GDB Talks to OpenOCD using the GDB protocol via
1553 tcpip. OpenOCD then uses the JTAG interface (the dongle) to
1554 control the JTAG chain on your board. Your board has one or more chips
1555 in a @i{daisy chain configuration}. Each chip may have one or more
1556 jtag taps. GDB ends up talking via OpenOCD to one of the taps.
1557 @item @b{NAME Rules}
1558 @*Names follow ``C'' symbol name rules (start with alpha ...)
1559 @item @b{TAPNAME - Conventions}
1560 @itemize @bullet
1561 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1562 @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1563 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1564 @item @b{bs} - for boundary scan if this is a seperate tap.
1565 @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
1566 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1567 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1568 @item @b{When in doubt} - use the chip makers name in their data sheet.
1569 @end itemize
1570 @item @b{DOTTED.NAME}
1571 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1572 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1573 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1574 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1575 numerous other places to refer to various taps.
1576 @item @b{ORDER}
1577 @* The order this command appears via the config files is
1578 important.
1579 @item @b{Multi Tap Example}
1580 @* This example is based on the ST Microsystems STR912. See the ST
1581 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1582 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
1583
1584 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1585 @*@b{checked: 28/nov/2008}
1586
1587 The diagram shows the TDO pin connects to the flash tap, flash TDI
1588 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1589 tap which then connects to the TDI pin.
1590
1591 @example
1592 # The order is...
1593 # create tap: 'str912.flash'
1594 jtag newtap str912 flash ... params ...
1595 # create tap: 'str912.cpu'
1596 jtag newtap str912 cpu ... params ...
1597 # create tap: 'str912.bs'
1598 jtag newtap str912 bs ... params ...
1599 @end example
1600
1601 @item @b{Note: Deprecated} - Index Numbers
1602 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1603 feature is still present, however its use is highly discouraged and
1604 should not be counted upon.
1605 @item @b{Multiple chips}
1606 @* If your board has multiple chips, you should be
1607 able to @b{source} two configuration files, in the proper order, and
1608 have the taps created in the proper order.
1609 @comment END NOTES
1610 @end itemize
1611 @comment at command level
1612 @comment DOCUMENT old command
1613 @section jtag_device - REMOVED
1614 @example
1615 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1616 @end example
1617 @cindex jtag_device
1618
1619 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1620 by the ``jtag newtap'' command. The documentation remains here so that
1621 one can easily convert the old syntax to the new syntax. About the old
1622 syntax: The old syntax is positional, ie: The 3rd parameter is the
1623 ``irmask''. The new syntax requires named prefixes, and supports
1624 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1625 @b{jtag newtap} command for details.
1626 @example
1627 OLD: jtag_device 8 0x01 0xe3 0xfe
1628 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1629 @end example
1630
1631 @section Enable/Disable Taps
1632 @b{Note:} These commands are intended to be used as a machine/script
1633 interface. Humans might find the ``scan_chain'' command more helpful
1634 when querying the state of the JTAG taps.
1635
1636 @b{By default, all taps are enabled}
1637
1638 @itemize @bullet
1639 @item @b{jtag tapenable} @var{DOTTED.NAME}
1640 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1641 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1642 @end itemize
1643 @cindex tap enable
1644 @cindex tap disable
1645 @cindex JRC
1646 @cindex route controller
1647
1648 These commands are used when your target has a JTAG Route controller
1649 that effectively adds or removes a tap from the jtag chain in a
1650 non-standard way.
1651
1652 The ``standard way'' to remove a tap would be to place the tap in
1653 bypass mode. But with the advent of modern chips, this is not always a
1654 good solution. Some taps operate slowly, others operate fast, and
1655 there are other JTAG clock syncronization problems one must face. To
1656 solve that problem, the JTAG Route controller was introduced. Rather
1657 then ``bypass'' the tap, the tap is completely removed from the
1658 circuit and skipped.
1659
1660
1661 From OpenOCD's view point, a JTAG TAP is in one of 3 states:
1662
1663 @itemize @bullet
1664 @item @b{Enabled - Not In ByPass} and has a variable bit length
1665 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1666 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1667 @end itemize
1668
1669 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1670 @b{Historical note:} this feature was added 28/nov/2008
1671
1672 @b{jtag tapisenabled DOTTED.NAME}
1673
1674 This command returns 1 if the named tap is currently enabled, 0 if not.
1675 This command exists so that scripts that manipulate a JRC (like the
1676 Omap3530 has) can determine if OpenOCD thinks a tap is presently
1677 enabled, or disabled.
1678
1679 @page
1680 @node Target Configuration
1681 @chapter Target Configuration
1682
1683 This chapter discusses how to create a GDB Debug Target. Before
1684 creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
1685
1686 @section targets [NAME]
1687 @b{Note:} This command name is PLURAL - not singular.
1688
1689 With NO parameter, this plural @b{targets} command lists all known
1690 targets in a human friendly form.
1691
1692 With a parameter, this pural @b{targets} command sets the current
1693 target to the given name. (ie: If there are multiple debug targets)
1694
1695 Example:
1696 @verbatim
1697 (gdb) mon targets
1698 CmdName Type Endian ChainPos State
1699 -- ---------- ---------- ---------- -------- ----------
1700 0: target0 arm7tdmi little 0 halted
1701 @end verbatim
1702
1703 @section target COMMANDS
1704 @b{Note:} This command name is SINGULAR - not plural. It is used to
1705 manipulate specific targets, to create targets and other things.
1706
1707 Once a target is created, a TARGETNAME (object) command is created;
1708 see below for details.
1709
1710 The TARGET command accepts these sub-commands:
1711 @itemize @bullet
1712 @item @b{create} .. parameters ..
1713 @* creates a new target, See below for details.
1714 @item @b{types}
1715 @* Lists all supported target types (perhaps some are not yet in this document).
1716 @item @b{names}
1717 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1718 @verbatim
1719 foreach t [target names] {
1720 puts [format "Target: %s\n" $t]
1721 }
1722 @end verbatim
1723 @item @b{current}
1724 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1725 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1726 @item @b{number} @b{NUMBER}
1727 @* Internally OpenOCD maintains a list of targets - in numerical index
1728 (0..N-1) this command returns the name of the target at index N.
1729 Example usage:
1730 @verbatim
1731 set thename [target number $x]
1732 puts [format "Target %d is: %s\n" $x $thename]
1733 @end verbatim
1734 @item @b{count}
1735 @* Returns the number of targets known to OpenOCD (see number above)
1736 Example:
1737 @verbatim
1738 set c [target count]
1739 for { set x 0 } { $x < $c } { incr x } {
1740 # Assuming you have created this function
1741 print_target_details $x
1742 }
1743 @end verbatim
1744
1745 @end itemize
1746
1747 @section TARGETNAME (object) commands
1748 @b{Use:} Once a target is created, an ``object name'' that represents the
1749 target is created. By convention, the target name is identical to the
1750 tap name. In a multiple target system, one can preceed many common
1751 commands with a specific target name and effect only that target.
1752 @example
1753 str912.cpu mww 0x1234 0x42
1754 omap3530.cpu mww 0x5555 123
1755 @end example
1756
1757 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1758 good example is a on screen button, once a button is created a button
1759 has a name (a path in TK terms) and that name is useable as a 1st
1760 class command. For example in TK, one can create a button and later
1761 configure it like this:
1762
1763 @example
1764 # Create
1765 button .foobar -background red -command @{ foo @}
1766 # Modify
1767 .foobar configure -foreground blue
1768 # Query
1769 set x [.foobar cget -background]
1770 # Report
1771 puts [format "The button is %s" $x]
1772 @end example
1773
1774 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1775 button. Commands avaialble as a ``target object'' are:
1776
1777 @comment START targetobj commands.
1778 @itemize @bullet
1779 @item @b{configure} - configure the target; see Target Config/Cget Options below
1780 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1781 @item @b{curstate} - current target state (running, halt, etc)
1782 @item @b{eventlist}
1783 @* Intended for a human to see/read the currently configure target events.
1784 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1785 @comment start memory
1786 @itemize @bullet
1787 @item @b{mww} ...
1788 @item @b{mwh} ...
1789 @item @b{mwb} ...
1790 @item @b{mdw} ...
1791 @item @b{mdh} ...
1792 @item @b{mdb} ...
1793 @comment end memory
1794 @end itemize
1795 @item @b{Memory To Array, Array To Memory}
1796 @* These are aimed at a machine interface to memory
1797 @itemize @bullet
1798 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1799 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1800 @* Where:
1801 @* @b{ARRAYNAME} is the name of an array variable
1802 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1803 @* @b{ADDRESS} is the target memory address
1804 @* @b{COUNT} is the number of elements to process
1805 @end itemize
1806 @item @b{Used during ``reset''}
1807 @* These commands are used internally by the OpenOCD scripts to deal
1808 with odd reset situations and are not documented here.
1809 @itemize @bullet
1810 @item @b{arp_examine}
1811 @item @b{arp_poll}
1812 @item @b{arp_reset}
1813 @item @b{arp_halt}
1814 @item @b{arp_waitstate}
1815 @end itemize
1816 @item @b{invoke-event} @b{EVENT-NAME}
1817 @* Invokes the specific event manually for the target
1818 @end itemize
1819
1820 @section Target Events
1821 At various times, certain things can happen, or you want them to happen.
1822
1823 Examples:
1824 @itemize @bullet
1825 @item What should happen when GDB connects? Should your target reset?
1826 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1827 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1828 @end itemize
1829
1830 All of the above items are handled by target events.
1831
1832 To specify an event action, either during target creation, or later
1833 via ``$_TARGETNAME configure'' see this example.
1834
1835 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1836 target event name, and BODY is a tcl procedure or string of commands
1837 to execute.
1838
1839 The programmers model is the ``-command'' option used in Tcl/Tk
1840 buttons and events. Below are two identical examples, the first
1841 creates and invokes small procedure. The second inlines the procedure.
1842
1843 @example
1844 proc my_attach_proc @{ @} @{
1845 puts "RESET...."
1846 reset halt
1847 @}
1848 mychip.cpu configure -event gdb-attach my_attach_proc
1849 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1850 @end example
1851
1852 @section Current Events
1853 The following events are available:
1854 @itemize @bullet
1855 @item @b{debug-halted}
1856 @* The target has halted for debug reasons (ie: breakpoint)
1857 @item @b{debug-resumed}
1858 @* The target has resumed (ie: gdb said run)
1859 @item @b{early-halted}
1860 @* Occurs early in the halt process
1861 @item @b{examine-end}
1862 @* Currently not used (goal: when JTAG examine completes)
1863 @item @b{examine-start}
1864 @* Currently not used (goal: when JTAG examine starts)
1865 @item @b{gdb-attach}
1866 @* When GDB connects
1867 @item @b{gdb-detach}
1868 @* When GDB disconnects
1869 @item @b{gdb-end}
1870 @* When the taret has halted and GDB is not doing anything (see early halt)
1871 @item @b{gdb-flash-erase-start}
1872 @* Before the GDB flash process tries to erase the flash
1873 @item @b{gdb-flash-erase-end}
1874 @* After the GDB flash process has finished erasing the flash
1875 @item @b{gdb-flash-write-start}
1876 @* Before GDB writes to the flash
1877 @item @b{gdb-flash-write-end}
1878 @* After GDB writes to the flash
1879 @item @b{gdb-start}
1880 @* Before the taret steps, gdb is trying to start/resume the tarfget
1881 @item @b{halted}
1882 @* The target has halted
1883 @item @b{old-gdb_program_config}
1884 @* DO NOT USE THIS: Used internally
1885 @item @b{old-pre_resume}
1886 @* DO NOT USE THIS: Used internally
1887 @item @b{reset-assert-pre}
1888 @* Before reset is asserted on the tap.
1889 @item @b{reset-assert-post}
1890 @* Reset is now asserted on the tap.
1891 @item @b{reset-deassert-pre}
1892 @* Reset is about to be released on the tap
1893 @item @b{reset-deassert-post}
1894 @* Reset has been released on the tap
1895 @item @b{reset-end}
1896 @* Currently not used.
1897 @item @b{reset-halt-post}
1898 @* Currently not usd
1899 @item @b{reset-halt-pre}
1900 @* Currently not used
1901 @item @b{reset-init}
1902 @* Currently not used
1903 @item @b{reset-start}
1904 @* Currently not used
1905 @item @b{reset-wait-pos}
1906 @* Currently not used
1907 @item @b{reset-wait-pre}
1908 @* Currently not used
1909 @item @b{resume-start}
1910 @* Before any target is resumed
1911 @item @b{resume-end}
1912 @* After all targets have resumed
1913 @item @b{resume-ok}
1914 @* Success
1915 @item @b{resumed}
1916 @* Target has resumed
1917 @item @b{tap-enable}
1918 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
1919 @example
1920 jtag configure DOTTED.NAME -event tap-enable @{
1921 puts "Enabling CPU"
1922 ...
1923 @}
1924 @end example
1925 @item @b{tap-disable}
1926 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
1927 @example
1928 jtag configure DOTTED.NAME -event tap-disable @{
1929 puts "Disabling CPU"
1930 ...
1931 @}
1932 @end example
1933 @end itemize
1934
1935
1936 @section target create
1937 @cindex target
1938 @cindex target creation
1939
1940 @example
1941 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1942 @end example
1943 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1944 @comment START params
1945 @itemize @bullet
1946 @item @b{NAME}
1947 @* Is the name of the debug target. By convention it should be the tap
1948 DOTTED.NAME, this name is also used to create the target object
1949 command.
1950 @item @b{TYPE}
1951 @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
1952 @comment START types
1953 @itemize @minus
1954 @item @b{arm7tdmi}
1955 @item @b{arm720t}
1956 @item @b{arm9tdmi}
1957 @item @b{arm920t}
1958 @item @b{arm922t}
1959 @item @b{arm926ejs}
1960 @item @b{arm966e}
1961 @item @b{cortex_m3}
1962 @item @b{feroceon}
1963 @item @b{xscale}
1964 @item @b{arm11}
1965 @item @b{mips_m4k}
1966 @comment end TYPES
1967 @end itemize
1968 @item @b{PARAMS}
1969 @*PARAMs are various target configure parameters, the following are mandatory
1970 at configuration:
1971 @comment START mandatory
1972 @itemize @bullet
1973 @item @b{-endian big|little}
1974 @item @b{-chain-position DOTTED.NAME}
1975 @comment end MANDATORY
1976 @end itemize
1977 @comment END params
1978 @end itemize
1979
1980 @section Target Config/Cget Options
1981 These options can be specified when the target is created, or later
1982 via the configure option or to query the target via cget.
1983 @itemize @bullet
1984 @item @b{-type} - returns the target type
1985 @item @b{-event NAME BODY} see Target events
1986 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
1987 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
1988 @item @b{-work-area-size [ADDRESS]} specify/set the work area
1989 @item @b{-work-area-backup [0|1]} does the work area get backed up
1990 @item @b{-endian [big|little]}
1991 @item @b{-variant [NAME]} some chips have varients OpenOCD needs to know about
1992 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
1993 @end itemize
1994 Example:
1995 @example
1996 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
1997 set name [target number $x]
1998 set y [$name cget -endian]
1999 set z [$name cget -type]
2000 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
2001 @}
2002 @end example
2003
2004 @section Target Varients
2005 @itemize @bullet
2006 @item @b{arm7tdmi}
2007 @* Unknown (please write me)
2008 @item @b{arm720t}
2009 @* Unknown (please write me) (simular to arm7tdmi)
2010 @item @b{arm9tdmi}
2011 @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
2012 This enables the hardware single-stepping support found on these
2013 cores.
2014 @item @b{arm920t}
2015 @* None.
2016 @item @b{arm966e}
2017 @* None (this is also used as the ARM946)
2018 @item @b{cortex_m3}
2019 @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
2020 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2021 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2022 be detected and the normal reset behaviour used.
2023 @item @b{xscale}
2024 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2025 @item @b{arm11}
2026 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2027 @item @b{mips_m4k}
2028 @* Use variant @option{ejtag_srst} when debugging targets that do not
2029 provide a functional SRST line on the EJTAG connector. This causes
2030 OpenOCD to instead use an EJTAG software reset command to reset the
2031 processor. You still need to enable @option{srst} on the reset
2032 configuration command to enable OpenOCD hardware reset functionality.
2033 @comment END varients
2034 @end itemize
2035 @section working_area - Command Removed
2036 @cindex working_area
2037 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2038 @* This documentation remains because there are existing scripts that
2039 still use this that need to be converted.
2040 @example
2041 working_area target# address size backup| [virtualaddress]
2042 @end example
2043 @* The target# is a the 0 based target numerical index.
2044
2045 This command specifies a working area for the debugger to use. This
2046 may be used to speed-up downloads to target memory and flash
2047 operations, or to perform otherwise unavailable operations (some
2048 coprocessor operations on ARM7/9 systems, for example). The last
2049 parameter decides whether the memory should be preserved
2050 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
2051 possible, use a working_area that doesn't need to be backed up, as
2052 performing a backup slows down operation.
2053
2054 @node Flash Configuration
2055 @chapter Flash Programing
2056 @cindex Flash Configuration
2057
2058 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2059 flash that a micro may boot from. Perhaps you the reader would like to
2060 contribute support for this.
2061
2062 Flash Steps:
2063 @enumerate
2064 @item Configure via the command @b{flash bank}
2065 @* Normally this is done in a configuration file.
2066 @item Operate on the flash via @b{flash SOMECOMMAND}
2067 @* Often commands to manipulate the flash are typed by a human, or run
2068 via a script in some automated way. For example: To program the boot
2069 flash on your board.
2070 @item GDB Flashing
2071 @* Flashing via GDB requires the flash be configured via ``flash
2072 bank'', and the GDB flash features be enabled. See the Daemon
2073 configuration section for more details.
2074 @end enumerate
2075
2076 @section Flash commands
2077 @cindex Flash commands
2078 @subsection flash banks
2079 @b{flash banks}
2080 @cindex flash banks
2081 @*List configured flash banks
2082 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2083 @subsection flash info
2084 @b{flash info} <@var{num}>
2085 @cindex flash info
2086 @*Print info about flash bank <@option{num}>
2087 @subsection flash probe
2088 @b{flash probe} <@var{num}>
2089 @cindex flash probe
2090 @*Identify the flash, or validate the parameters of the configured flash. Operation
2091 depends on the flash type.
2092 @subsection flash erase_check
2093 @b{flash erase_check} <@var{num}>
2094 @cindex flash erase_check
2095 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2096 updates the erase state information displayed by @option{flash info}. That means you have
2097 to issue an @option{erase_check} command after erasing or programming the device to get
2098 updated information.
2099 @subsection flash protect_check
2100 @b{flash protect_check} <@var{num}>
2101 @cindex flash protect_check
2102 @*Check protection state of sectors in flash bank <num>.
2103 @option{flash erase_sector} using the same syntax.
2104 @subsection flash erase_sector
2105 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2106 @cindex flash erase_sector
2107 @anchor{flash erase_sector}
2108 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2109 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2110 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2111 the CFI driver).
2112 @subsection flash erase_address
2113 @b{flash erase_address} <@var{address}> <@var{length}>
2114 @cindex flash erase_address
2115 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2116 @subsection flash write_bank
2117 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2118 @cindex flash write_bank
2119 @anchor{flash write_bank}
2120 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2121 <@option{offset}> bytes from the beginning of the bank.
2122 @subsection flash write_image
2123 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2124 @cindex flash write_image
2125 @anchor{flash write_image}
2126 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2127 [@var{offset}] can be specified and the file [@var{type}] can be specified
2128 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2129 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2130 if the @option{erase} parameter is given.
2131 @subsection flash protect
2132 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2133 @cindex flash protect
2134 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2135 <@var{last}> of @option{flash bank} <@var{num}>.
2136
2137 @subsection mFlash commands
2138 @cindex mFlash commands
2139 @itemize @bullet
2140 @item @b{mflash probe}
2141 @cindex mflash probe
2142 Probe mflash.
2143 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2144 @cindex mflash write
2145 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2146 <@var{offset}> bytes from the beginning of the bank.
2147 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2148 @cindex mflash dump
2149 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2150 to a <@var{file}>.
2151 @end itemize
2152
2153 @section flash bank command
2154 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2155
2156 @example
2157 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2158 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2159 @end example
2160 @cindex flash bank
2161 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2162 and <@var{bus_width}> bytes using the selected flash <driver>.
2163
2164 @subsection External Flash - cfi options
2165 @cindex cfi options
2166 CFI flash are external flash chips - often they are connected to a
2167 specific chip select on the micro. By default at hard reset most
2168 micros have the ablity to ``boot'' from some flash chip - typically
2169 attached to the chips CS0 pin.
2170
2171 For other chip selects: OpenOCD does not know how to configure, or
2172 access a specific chip select. Instead you the human might need to via
2173 other commands (like: mww) configure additional chip selects, or
2174 perhaps configure a GPIO pin that controls the ``write protect'' pin
2175 on the FLASH chip.
2176
2177 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2178 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2179 @*CFI flashes require the number of the target they're connected to as an additional
2180 argument. The CFI driver makes use of a working area (specified for the target)
2181 to significantly speed up operation.
2182
2183 @var{chip_width} and @var{bus_width} are specified in bytes.
2184
2185 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
2186
2187 @var{x16_as_x8} ???
2188
2189 @subsection Internal Flash (Micro Controllers)
2190 @subsubsection lpc2000 options
2191 @cindex lpc2000 options
2192
2193 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2194 <@var{clock}> [@var{calc_checksum}]
2195 @*LPC flashes don't require the chip and bus width to be specified. Additional
2196 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2197 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2198 of the target this flash belongs to (first is 0), the frequency at which the core
2199 is currently running (in kHz - must be an integral number), and the optional keyword
2200 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2201 vector table.
2202
2203
2204 @subsubsection at91sam7 options
2205 @cindex at91sam7 options
2206
2207 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2208 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2209 reading the chip-id and type.
2210
2211 @subsubsection str7 options
2212 @cindex str7 options
2213
2214 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2215 @*variant can be either STR71x, STR73x or STR75x.
2216
2217 @subsubsection str9 options
2218 @cindex str9 options
2219
2220 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2221 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
2222 @example
2223 str9x flash_config 0 4 2 0 0x80000
2224 @end example
2225 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2226
2227 @subsubsection str9 options (str9xpec driver)
2228
2229 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2230 @*Before using the flash commands the turbo mode will need enabling using str9xpec
2231 @option{enable_turbo} <@var{num>.}
2232
2233 Only use this driver for locking/unlocking the device or configuring the option bytes.
2234 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2235
2236 @subsubsection stellaris (LM3Sxxx) options
2237 @cindex stellaris (LM3Sxxx) options
2238
2239 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2240 @*stellaris flash plugin only require the @var{target#}.
2241
2242 @subsubsection stm32x options
2243 @cindex stm32x options
2244
2245 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2246 @*stm32x flash plugin only require the @var{target#}.
2247
2248 @subsubsection aduc702x options
2249 @cindex aduc702x options
2250
2251 @b{flash bank aduc702x} 0 0 0 0 <@var{target#}>
2252 @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target#} argument (all devices in this family have the same memory layout).
2253
2254 @subsection mFlash configuration
2255 @cindex mFlash configuration
2256 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2257 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2258 @cindex mflash bank
2259 @*Configures a mflash for <@var{soc}> host bank at
2260 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2261 order. Pin number format is dependent on host GPIO calling convention.
2262 If WP or DPD pin was not used, write -1. Currently, mflash bank
2263 support s3c2440 and pxa270.
2264
2265 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2266 @example
2267 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2268 @end example
2269 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2270 @example
2271 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2272 @end example
2273
2274 @section Micro Controller Specific Flash Commands
2275
2276 @subsection AT91SAM7 specific commands
2277 @cindex AT91SAM7 specific commands
2278 The flash configuration is deduced from the chip identification register. The flash
2279 controller handles erases automatically on a page (128/265 byte) basis so erase is
2280 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2281 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2282 that can be erased separatly. Only an EraseAll command is supported by the controller
2283 for each flash plane and this is called with
2284 @itemize @bullet
2285 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2286 @*bulk erase flash planes first_plane to last_plane.
2287 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2288 @cindex at91sam7 gpnvm
2289 @*set or clear a gpnvm bit for the processor
2290 @end itemize
2291
2292 @subsection STR9 specific commands
2293 @cindex STR9 specific commands
2294 @anchor{STR9 specific commands}
2295 These are flash specific commands when using the str9xpec driver.
2296 @itemize @bullet
2297 @item @b{str9xpec enable_turbo} <@var{num}>
2298 @cindex str9xpec enable_turbo
2299 @*enable turbo mode, simply this will remove the str9 from the chain and talk
2300 directly to the embedded flash controller.
2301 @item @b{str9xpec disable_turbo} <@var{num}>
2302 @cindex str9xpec disable_turbo
2303 @*restore the str9 into jtag chain.
2304 @item @b{str9xpec lock} <@var{num}>
2305 @cindex str9xpec lock
2306 @*lock str9 device. The str9 will only respond to an unlock command that will
2307 erase the device.
2308 @item @b{str9xpec unlock} <@var{num}>
2309 @cindex str9xpec unlock
2310 @*unlock str9 device.
2311 @item @b{str9xpec options_read} <@var{num}>
2312 @cindex str9xpec options_read
2313 @*read str9 option bytes.
2314 @item @b{str9xpec options_write} <@var{num}>
2315 @cindex str9xpec options_write
2316 @*write str9 option bytes.
2317 @end itemize
2318
2319 Note: Before using the str9xpec driver here is some background info to help
2320 you better understand how the drivers works. OpenOCD has two flash drivers for
2321 the str9.
2322 @enumerate
2323 @item
2324 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2325 flash programming as it is faster than the @option{str9xpec} driver.
2326 @item
2327 Direct programming @option{str9xpec} using the flash controller, this is
2328 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2329 core does not need to be running to program using this flash driver. Typical use
2330 for this driver is locking/unlocking the target and programming the option bytes.
2331 @end enumerate
2332
2333 Before we run any cmds using the @option{str9xpec} driver we must first disable
2334 the str9 core. This example assumes the @option{str9xpec} driver has been
2335 configured for flash bank 0.
2336 @example
2337 # assert srst, we do not want core running
2338 # while accessing str9xpec flash driver
2339 jtag_reset 0 1
2340 # turn off target polling
2341 poll off
2342 # disable str9 core
2343 str9xpec enable_turbo 0
2344 # read option bytes
2345 str9xpec options_read 0
2346 # re-enable str9 core
2347 str9xpec disable_turbo 0
2348 poll on
2349 reset halt
2350 @end example
2351 The above example will read the str9 option bytes.
2352 When performing a unlock remember that you will not be able to halt the str9 - it
2353 has been locked. Halting the core is not required for the @option{str9xpec} driver
2354 as mentioned above, just issue the cmds above manually or from a telnet prompt.
2355
2356 @subsection STR9 configuration
2357 @cindex STR9 configuration
2358 @itemize @bullet
2359 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2360 <@var{BBADR}> <@var{NBBADR}>
2361 @cindex str9x flash_config
2362 @*Configure str9 flash controller.
2363 @example
2364 eg. str9x flash_config 0 4 2 0 0x80000
2365 This will setup
2366 BBSR - Boot Bank Size register
2367 NBBSR - Non Boot Bank Size register
2368 BBADR - Boot Bank Start Address register
2369 NBBADR - Boot Bank Start Address register
2370 @end example
2371 @end itemize
2372
2373 @subsection STR9 option byte configuration
2374 @cindex STR9 option byte configuration
2375 @itemize @bullet
2376 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2377 @cindex str9xpec options_cmap
2378 @*configure str9 boot bank.
2379 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2380 @cindex str9xpec options_lvdthd
2381 @*configure str9 lvd threshold.
2382 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2383 @cindex str9xpec options_lvdsel
2384 @*configure str9 lvd source.
2385 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2386 @cindex str9xpec options_lvdwarn
2387 @*configure str9 lvd reset warning source.
2388 @end itemize
2389
2390 @subsection STM32x specific commands
2391 @cindex STM32x specific commands
2392
2393 These are flash specific commands when using the stm32x driver.
2394 @itemize @bullet
2395 @item @b{stm32x lock} <@var{num}>
2396 @cindex stm32x lock
2397 @*lock stm32 device.
2398 @item @b{stm32x unlock} <@var{num}>
2399 @cindex stm32x unlock
2400 @*unlock stm32 device.
2401 @item @b{stm32x options_read} <@var{num}>
2402 @cindex stm32x options_read
2403 @*read stm32 option bytes.
2404 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2405 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2406 @cindex stm32x options_write
2407 @*write stm32 option bytes.
2408 @item @b{stm32x mass_erase} <@var{num}>
2409 @cindex stm32x mass_erase
2410 @*mass erase flash memory.
2411 @end itemize
2412
2413 @subsection Stellaris specific commands
2414 @cindex Stellaris specific commands
2415
2416 These are flash specific commands when using the Stellaris driver.
2417 @itemize @bullet
2418 @item @b{stellaris mass_erase} <@var{num}>
2419 @cindex stellaris mass_erase
2420 @*mass erase flash memory.
2421 @end itemize
2422
2423
2424 @node General Commands
2425 @chapter General Commands
2426 @cindex commands
2427
2428 The commands documented in this chapter here are common commands that
2429 you a human may want to type and see the output of. Configuration type
2430 commands are documented elsewhere.
2431
2432 Intent:
2433 @itemize @bullet
2434 @item @b{Source Of Commands}
2435 @* OpenOCD commands can occur in a configuration script (discussed
2436 elsewhere) or typed manually by a human or supplied programatically,
2437 or via one of several Tcp/Ip Ports.
2438
2439 @item @b{From the human}
2440 @* A human should interact with the Telnet interface (default port: 4444,
2441 or via GDB, default port 3333)
2442
2443 To issue commands from within a GDB session, use the @option{monitor}
2444 command, e.g. use @option{monitor poll} to issue the @option{poll}
2445 command. All output is relayed through the GDB session.
2446
2447 @item @b{Machine Interface}
2448 The TCL interface intent is to be a machine interface. The default TCL
2449 port is 5555.
2450 @end itemize
2451
2452
2453 @section Daemon Commands
2454
2455 @subsection sleep [@var{msec}]
2456 @cindex sleep
2457 @*Wait for n milliseconds before resuming. Useful in connection with script files
2458 (@var{script} command and @var{target_script} configuration).
2459
2460 @subsection shutdown
2461 @cindex shutdown
2462 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
2463
2464 @subsection debug_level [@var{n}]
2465 @cindex debug_level
2466 @anchor{debug_level}
2467 @*Display or adjust debug level to n<0-3>
2468
2469 @subsection fast [@var{enable|disable}]
2470 @cindex fast
2471 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2472 downloads and fast memory access will work if the JTAG interface isn't too fast and
2473 the core doesn't run at a too low frequency. Note that this option only changes the default
2474 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2475 individually.
2476
2477 The target specific "dangerous" optimisation tweaking options may come and go
2478 as more robust and user friendly ways are found to ensure maximum throughput
2479 and robustness with a minimum of configuration.
2480
2481 Typically the "fast enable" is specified first on the command line:
2482
2483 @example
2484 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2485 @end example
2486
2487 @subsection log_output <@var{file}>
2488 @cindex log_output
2489 @*Redirect logging to <file> (default: stderr)
2490
2491 @subsection script <@var{file}>
2492 @cindex script
2493 @*Execute commands from <file>
2494 Also see: ``source [find FILENAME]''
2495
2496 @section Target state handling
2497 @subsection power <@var{on}|@var{off}>
2498 @cindex reg
2499 @*Turn power switch to target on/off.
2500 No arguments: print status.
2501 Not all interfaces support this.
2502
2503 @subsection reg [@option{#}|@option{name}] [value]
2504 @cindex reg
2505 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2506 No arguments: list all available registers for the current target.
2507 Number or name argument: display a register
2508 Number or name and value arguments: set register value
2509
2510 @subsection poll [@option{on}|@option{off}]
2511 @cindex poll
2512 @*Poll the target for its current state. If the target is in debug mode, architecture
2513 specific information about the current state is printed. An optional parameter
2514 allows continuous polling to be enabled and disabled.
2515
2516 @subsection halt [@option{ms}]
2517 @cindex halt
2518 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2519 Default [@option{ms}] is 5 seconds if no arg given.
2520 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2521 will stop OpenOCD from waiting.
2522
2523 @subsection wait_halt [@option{ms}]
2524 @cindex wait_halt
2525 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2526 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2527 arg given.
2528
2529 @subsection resume [@var{address}]
2530 @cindex resume
2531 @*Resume the target at its current code position, or at an optional address.
2532 OpenOCD will wait 5 seconds for the target to resume.
2533
2534 @subsection step [@var{address}]
2535 @cindex step
2536 @*Single-step the target at its current code position, or at an optional address.
2537
2538 @subsection reset [@option{run}|@option{halt}|@option{init}]
2539 @cindex reset
2540 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2541
2542 With no arguments a "reset run" is executed
2543 @itemize @minus
2544 @item @b{run}
2545 @cindex reset run
2546 @*Let the target run.
2547 @item @b{halt}
2548 @cindex reset halt
2549 @*Immediately halt the target (works only with certain configurations).
2550 @item @b{init}
2551 @cindex reset init
2552 @*Immediately halt the target, and execute the reset script (works only with certain
2553 configurations)
2554 @end itemize
2555
2556 @subsection soft_reset_halt
2557 @cindex reset
2558 @*Requesting target halt and executing a soft reset. This often used
2559 when a target cannot be reset and halted. The target, after reset is
2560 released begins to execute code. OpenOCD attempts to stop the CPU and
2561 then sets the Program counter back at the reset vector. Unfortunatlly
2562 that code that was executed may have left hardware in an unknown
2563 state.
2564
2565
2566 @section Memory access commands
2567 @subsection meminfo
2568 display available ram memory.
2569 @subsection Memory Peek/Poke type commands
2570 These commands allow accesses of a specific size to the memory
2571 system. Often these are used to configure the current target in some
2572 special way. For example - one may need to write certian values to the
2573 SDRAM controller to enable SDRAM.
2574
2575 @enumerate
2576 @item To change the current target see the ``targets'' (plural) command
2577 @item In system level scripts these commands are depricated, please use the TARGET object versions.
2578 @end enumerate
2579
2580 @itemize @bullet
2581 @item @b{mdw} <@var{addr}> [@var{count}]
2582 @cindex mdw
2583 @*display memory words (32bit)
2584 @item @b{mdh} <@var{addr}> [@var{count}]
2585 @cindex mdh
2586 @*display memory half-words (16bit)
2587 @item @b{mdb} <@var{addr}> [@var{count}]
2588 @cindex mdb
2589 @*display memory bytes (8bit)
2590 @item @b{mww} <@var{addr}> <@var{value}>
2591 @cindex mww
2592 @*write memory word (32bit)
2593 @item @b{mwh} <@var{addr}> <@var{value}>
2594 @cindex mwh
2595 @*write memory half-word (16bit)
2596 @item @b{mwb} <@var{addr}> <@var{value}>
2597 @cindex mwb
2598 @*write memory byte (8bit)
2599 @end itemize
2600
2601 @section Image Loading Commands
2602 @subsection load_image
2603 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2604 @cindex load_image
2605 @anchor{load_image}
2606 @*Load image <@var{file}> to target memory at <@var{address}>
2607 @subsection fast_load_image
2608 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2609 @cindex fast_load_image
2610 @anchor{fast_load_image}
2611 @*Normally you should be using @b{load_image} or GDB load. However, for
2612 testing purposes or when IO overhead is significant(OpenOCD running on embedded
2613 host), then storing the image in memory and uploading the image to the target
2614 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2615 Arguments as @b{load_image}, but image is stored in OpenOCD host
2616 memory, i.e. does not affect target. This approach is also useful when profiling
2617 target programming performance as IO and target programming can easily be profiled
2618 seperately.
2619 @subsection fast_load
2620 @b{fast_load}
2621 @cindex fast_image
2622 @anchor{fast_image}
2623 @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
2624 @subsection dump_image
2625 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2626 @cindex dump_image
2627 @anchor{dump_image}
2628 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2629 (binary) <@var{file}>.
2630 @subsection verify_image
2631 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2632 @cindex verify_image
2633 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2634 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
2635
2636
2637 @section Breakpoint commands
2638 @cindex Breakpoint commands
2639 @itemize @bullet
2640 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2641 @cindex bp
2642 @*set breakpoint <address> <length> [hw]
2643 @item @b{rbp} <@var{addr}>
2644 @cindex rbp
2645 @*remove breakpoint <adress>
2646 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2647 @cindex wp
2648 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2649 @item @b{rwp} <@var{addr}>
2650 @cindex rwp
2651 @*remove watchpoint <adress>
2652 @end itemize
2653
2654 @section Misc Commands
2655 @cindex Other Target Commands
2656 @itemize
2657 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2658
2659 Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
2660 @end itemize
2661
2662 @section Target Specific Commands
2663 @cindex Target Specific Commands
2664
2665
2666 @page
2667 @section Architecture Specific Commands
2668 @cindex Architecture Specific Commands
2669
2670 @subsection ARMV4/5 specific commands
2671 @cindex ARMV4/5 specific commands
2672
2673 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2674 or Intel XScale (XScale isn't supported yet).
2675 @itemize @bullet
2676 @item @b{armv4_5 reg}
2677 @cindex armv4_5 reg
2678 @*Display a list of all banked core registers, fetching the current value from every
2679 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2680 register value.
2681 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2682 @cindex armv4_5 core_mode
2683 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2684 The target is resumed in the currently set @option{core_mode}.
2685 @end itemize
2686
2687 @subsection ARM7/9 specific commands
2688 @cindex ARM7/9 specific commands
2689
2690 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2691 ARM920t or ARM926EJ-S.
2692 @itemize @bullet
2693 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2694 @cindex arm7_9 dbgrq
2695 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2696 safe for all but ARM7TDMI--S cores (like Philips LPC).
2697 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2698 @cindex arm7_9 fast_memory_access
2699 @anchor{arm7_9 fast_memory_access}
2700 @*Allow OpenOCD to read and write memory without checking completion of
2701 the operation. This provides a huge speed increase, especially with USB JTAG
2702 cables (FT2232), but might be unsafe if used with targets running at a very low
2703 speed, like the 32kHz startup clock of an AT91RM9200.
2704 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2705 @cindex arm7_9 dcc_downloads
2706 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2707 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2708 unsafe, especially with targets running at a very low speed. This command was introduced
2709 with OpenOCD rev. 60.
2710 @end itemize
2711
2712 @subsection ARM720T specific commands
2713 @cindex ARM720T specific commands
2714
2715 @itemize @bullet
2716 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2717 @cindex arm720t cp15
2718 @*display/modify cp15 register <@option{num}> [@option{value}].
2719 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2720 @cindex arm720t md<bhw>_phys
2721 @*Display memory at physical address addr.
2722 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2723 @cindex arm720t mw<bhw>_phys
2724 @*Write memory at physical address addr.
2725 @item @b{arm720t virt2phys} <@var{va}>
2726 @cindex arm720t virt2phys
2727 @*Translate a virtual address to a physical address.
2728 @end itemize
2729
2730 @subsection ARM9TDMI specific commands
2731 @cindex ARM9TDMI specific commands
2732
2733 @itemize @bullet
2734 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2735 @cindex arm9tdmi vector_catch
2736 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2737 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2738 @option{irq} @option{fiq}.
2739
2740 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
2741 @end itemize
2742
2743 @subsection ARM966E specific commands
2744 @cindex ARM966E specific commands
2745
2746 @itemize @bullet
2747 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2748 @cindex arm966e cp15
2749 @*display/modify cp15 register <@option{num}> [@option{value}].
2750 @end itemize
2751
2752 @subsection ARM920T specific commands
2753 @cindex ARM920T specific commands
2754
2755 @itemize @bullet
2756 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2757 @cindex arm920t cp15
2758 @*display/modify cp15 register <@option{num}> [@option{value}].
2759 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2760 @cindex arm920t cp15i
2761 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2762 @item @b{arm920t cache_info}
2763 @cindex arm920t cache_info
2764 @*Print information about the caches found. This allows you to see if your target
2765 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2766 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2767 @cindex arm920t md<bhw>_phys
2768 @*Display memory at physical address addr.
2769 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2770 @cindex arm920t mw<bhw>_phys
2771 @*Write memory at physical address addr.
2772 @item @b{arm920t read_cache} <@var{filename}>
2773 @cindex arm920t read_cache
2774 @*Dump the content of ICache and DCache to a file.
2775 @item @b{arm920t read_mmu} <@var{filename}>
2776 @cindex arm920t read_mmu
2777 @*Dump the content of the ITLB and DTLB to a file.
2778 @item @b{arm920t virt2phys} <@var{va}>
2779 @cindex arm920t virt2phys
2780 @*Translate a virtual address to a physical address.
2781 @end itemize
2782
2783 @subsection ARM926EJS specific commands
2784 @cindex ARM926EJS specific commands
2785
2786 @itemize @bullet
2787 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2788 @cindex arm926ejs cp15
2789 @*display/modify cp15 register <@option{num}> [@option{value}].
2790 @item @b{arm926ejs cache_info}
2791 @cindex arm926ejs cache_info
2792 @*Print information about the caches found.
2793 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2794 @cindex arm926ejs md<bhw>_phys
2795 @*Display memory at physical address addr.
2796 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2797 @cindex arm926ejs mw<bhw>_phys
2798 @*Write memory at physical address addr.
2799 @item @b{arm926ejs virt2phys} <@var{va}>
2800 @cindex arm926ejs virt2phys
2801 @*Translate a virtual address to a physical address.
2802 @end itemize
2803
2804 @subsection CORTEX_M3 specific commands
2805 @cindex CORTEX_M3 specific commands
2806
2807 @itemize @bullet
2808 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2809 @cindex cortex_m3 maskisr
2810 @*Enable masking (disabling) interrupts during target step/resume.
2811 @end itemize
2812
2813 @page
2814 @section Debug commands
2815 @cindex Debug commands
2816 The following commands give direct access to the core, and are most likely
2817 only useful while debugging OpenOCD.
2818 @itemize @bullet
2819 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2820 @cindex arm7_9 write_xpsr
2821 @*Immediately write either the current program status register (CPSR) or the saved
2822 program status register (SPSR), without changing the register cache (as displayed
2823 by the @option{reg} and @option{armv4_5 reg} commands).
2824 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2825 <@var{0=cpsr},@var{1=spsr}>
2826 @cindex arm7_9 write_xpsr_im8
2827 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2828 operation (similar to @option{write_xpsr}).
2829 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2830 @cindex arm7_9 write_core_reg
2831 @*Write a core register, without changing the register cache (as displayed by the
2832 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2833 encoding of the [M4:M0] bits of the PSR.
2834 @end itemize
2835
2836 @section Target Requests
2837 @cindex Target Requests
2838 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2839 See libdcc in the contrib dir for more details.
2840 @itemize @bullet
2841 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
2842 @cindex target_request debugmsgs
2843 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
2844 @end itemize
2845
2846 @node JTAG Commands
2847 @chapter JTAG Commands
2848 @cindex JTAG commands
2849 Generally most people will not use the bulk of these commands. They
2850 are mostly used by the OpenOCD developers or those who need to
2851 directly manipulate the JTAG taps.
2852
2853 In general these commands control JTAG taps at a very low level. For
2854 example if you need to control a JTAG Route Controller (ie: the
2855 OMAP3530 on the Beagle Board has one) you might use these commands in
2856 a script or an event procedure.
2857 @section Commands
2858 @cindex Commands
2859 @itemize @bullet
2860 @item @b{scan_chain}
2861 @cindex scan_chain
2862 @*Print current scan chain configuration.
2863 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2864 @cindex jtag_reset
2865 @*Toggle reset lines.
2866 @item @b{endstate} <@var{tap_state}>
2867 @cindex endstate
2868 @*Finish JTAG operations in <@var{tap_state}>.
2869 @item @b{runtest} <@var{num_cycles}>
2870 @cindex runtest
2871 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2872 @item @b{statemove} [@var{tap_state}]
2873 @cindex statemove
2874 @*Move to current endstate or [@var{tap_state}]
2875 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2876 @cindex irscan
2877 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2878 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2879 @cindex drscan
2880 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2881 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2882 @cindex verify_ircapture
2883 @*Verify value captured during Capture-IR. Default is enabled.
2884 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2885 @cindex var
2886 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2887 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2888 @cindex field
2889 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2890 @end itemize
2891
2892 @section Tap states
2893 @cindex Tap states
2894 Available tap_states are:
2895 @itemize @bullet
2896 @item @b{RESET}
2897 @cindex RESET
2898 @item @b{IDLE}
2899 @cindex IDLE
2900 @item @b{DRSELECT}
2901 @cindex DRSELECT
2902 @item @b{DRCAPTURE}
2903 @cindex DRCAPTURE
2904 @item @b{DRSHIFT}
2905 @cindex DRSHIFT
2906 @item @b{DREXIT1}
2907 @cindex DREXIT1
2908 @item @b{DRPAUSE}
2909 @cindex DRPAUSE
2910 @item @b{DREXIT2}
2911 @cindex DREXIT2
2912 @item @b{DRUPDATE}
2913 @cindex DRUPDATE
2914 @item @b{IRSELECT}
2915 @cindex IRSELECT
2916 @item @b{IRCAPTURE}
2917 @cindex IRCAPTURE
2918 @item @b{IRSHIFT}
2919 @cindex IRSHIFT
2920 @item @b{IREXIT1}
2921 @cindex IREXIT1
2922 @item @b{IRPAUSE}
2923 @cindex IRPAUSE
2924 @item @b{IREXIT2}
2925 @cindex IREXIT2
2926 @item @b{IRUPDATE}
2927 @cindex IRUPDATE
2928 @end itemize
2929
2930
2931 @node TFTP
2932 @chapter TFTP
2933 @cindex TFTP
2934 If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
2935 be used to access files on PCs(either developer PC or some other PC).
2936
2937 The way this works on the ZY1000 is to prefix a filename by
2938 "/tftp/ip/" and append the tftp path on the tftp
2939 server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2940 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2941 if the file was hosted on the embedded host.
2942
2943 In order to achieve decent performance, you must choose a tftp server
2944 that supports a packet size bigger than the default packet size(512 bytes). There
2945 are numerous tftp servers out there(free and commercial) and you will have to do
2946 a bit of googling to find something that fits your requirements.
2947
2948 @node Sample Scripts
2949 @chapter Sample Scripts
2950 @cindex scripts
2951
2952 This page shows how to use the target library.
2953
2954 The configuration script can be divided in the following section:
2955 @itemize @bullet
2956 @item daemon configuration
2957 @item interface
2958 @item jtag scan chain
2959 @item target configuration
2960 @item flash configuration
2961 @end itemize
2962
2963 Detailed information about each section can be found at OpenOCD configuration.
2964
2965 @section AT91R40008 example
2966 @cindex AT91R40008 example
2967 To start OpenOCD with a target script for the AT91R40008 CPU and reset
2968 the CPU upon startup of the OpenOCD daemon.
2969 @example
2970 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
2971 @end example
2972
2973
2974 @node GDB and OpenOCD
2975 @chapter GDB and OpenOCD
2976 @cindex GDB and OpenOCD
2977 OpenOCD complies with the remote gdbserver protocol, and as such can be used
2978 to debug remote targets.
2979
2980 @section Connecting to GDB
2981 @cindex Connecting to GDB
2982 @anchor{Connecting to GDB}
2983 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
2984 instance 6.3 has a known bug where it produces bogus memory access
2985 errors, which has since been fixed: look up 1836 in
2986 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
2987
2988 @*OpenOCD can communicate with GDB in two ways:
2989 @enumerate
2990 @item
2991 A socket (tcp) connection is typically started as follows:
2992 @example
2993 target remote localhost:3333
2994 @end example
2995 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
2996 @item
2997 A pipe connection is typically started as follows:
2998 @example
2999 target remote | openocd --pipe
3000 @end example
3001 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
3002 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
3003 session.
3004 @end enumerate
3005
3006 @*To see a list of available OpenOCD commands type @option{monitor help} on the
3007 GDB commandline.
3008
3009 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3010 to be sent by the gdb server (OpenOCD) to GDB. Typical information includes
3011 packet size and device memory map.
3012
3013 Previous versions of OpenOCD required the following GDB options to increase
3014 the packet size and speed up GDB communication.
3015 @example
3016 set remote memory-write-packet-size 1024
3017 set remote memory-write-packet-size fixed
3018 set remote memory-read-packet-size 1024
3019 set remote memory-read-packet-size fixed
3020 @end example
3021 This is now handled in the @option{qSupported} PacketSize and should not be required.
3022
3023 @section Programming using GDB
3024 @cindex Programming using GDB
3025
3026 By default the target memory map is sent to GDB, this can be disabled by
3027 the following OpenOCD config option:
3028 @example
3029 gdb_memory_map disable
3030 @end example
3031 For this to function correctly a valid flash config must also be configured
3032 in OpenOCD. For faster performance you should also configure a valid
3033 working area.
3034
3035 Informing GDB of the memory map of the target will enable GDB to protect any
3036 flash area of the target and use hardware breakpoints by default. This means
3037 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3038 using a memory map. @xref{gdb_breakpoint_override}.
3039
3040 To view the configured memory map in GDB, use the gdb command @option{info mem}
3041 All other unasigned addresses within GDB are treated as RAM.
3042
3043 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
3044 this can be changed to the old behaviour by using the following GDB command.
3045 @example
3046 set mem inaccessible-by-default off
3047 @end example
3048
3049 If @option{gdb_flash_program enable} is also used, GDB will be able to
3050 program any flash memory using the vFlash interface.
3051
3052 GDB will look at the target memory map when a load command is given, if any
3053 areas to be programmed lie within the target flash area the vFlash packets
3054 will be used.
3055
3056 If the target needs configuring before GDB programming, an event
3057 script can be executed.
3058 @example
3059 $_TARGETNAME configure -event EVENTNAME BODY
3060 @end example
3061
3062 To verify any flash programming the GDB command @option{compare-sections}
3063 can be used.
3064
3065 @node TCL scripting API
3066 @chapter TCL scripting API
3067 @cindex TCL scripting API
3068 API rules
3069
3070 The commands are stateless. E.g. the telnet command line has a concept
3071 of currently active target, the Tcl API proc's take this sort of state
3072 information as an argument to each proc.
3073
3074 There are three main types of return values: single value, name value
3075 pair list and lists.
3076
3077 Name value pair. The proc 'foo' below returns a name/value pair
3078 list.
3079
3080 @verbatim
3081
3082 > set foo(me) Duane
3083 > set foo(you) Oyvind
3084 > set foo(mouse) Micky
3085 > set foo(duck) Donald
3086
3087 If one does this:
3088
3089 > set foo
3090
3091 The result is:
3092
3093 me Duane you Oyvind mouse Micky duck Donald
3094
3095 Thus, to get the names of the associative array is easy:
3096
3097 foreach { name value } [set foo] {
3098 puts "Name: $name, Value: $value"
3099 }
3100 @end verbatim
3101
3102 Lists returned must be relatively small. Otherwise a range
3103 should be passed in to the proc in question.
3104
3105 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
3106 is the low level API upon which "flash banks" is implemented.
3107
3108 @itemize @bullet
3109 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3110
3111 Read memory and return as a TCL array for script processing
3112 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3113
3114 Convert a TCL array to memory locations and write the values
3115 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3116
3117 Return information about the flash banks
3118 @end itemize
3119
3120 OpenOCD commands can consist of two words, e.g. "flash banks". The
3121 startup.tcl "unknown" proc will translate this into a tcl proc
3122 called "flash_banks".
3123
3124
3125 @node Upgrading
3126 @chapter Deprecated/Removed Commands
3127 @cindex Deprecated/Removed Commands
3128 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3129
3130 @itemize @bullet
3131 @item @b{arm7_9 fast_writes}
3132 @cindex arm7_9 fast_writes
3133 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3134 @item @b{arm7_9 force_hw_bkpts}
3135 @cindex arm7_9 force_hw_bkpts
3136 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3137 for flash if the gdb memory map has been set up(default when flash is declared in
3138 target configuration). @xref{gdb_breakpoint_override}.
3139 @item @b{arm7_9 sw_bkpts}
3140 @cindex arm7_9 sw_bkpts
3141 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3142 @item @b{daemon_startup}
3143 @cindex daemon_startup
3144 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3145 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3146 and @option{target cortex_m3 little reset_halt 0}.
3147 @item @b{dump_binary}
3148 @cindex dump_binary
3149 @*use @option{dump_image} command with same args. @xref{dump_image}.
3150 @item @b{flash erase}
3151 @cindex flash erase
3152 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3153 @item @b{flash write}
3154 @cindex flash write
3155 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3156 @item @b{flash write_binary}
3157 @cindex flash write_binary
3158 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3159 @item @b{flash auto_erase}
3160 @cindex flash auto_erase
3161 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3162 @item @b{load_binary}
3163 @cindex load_binary
3164 @*use @option{load_image} command with same args. @xref{load_image}.
3165 @item @b{run_and_halt_time}
3166 @cindex run_and_halt_time
3167 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3168 following commands:
3169 @smallexample
3170 reset run
3171 sleep 100
3172 halt
3173 @end smallexample
3174 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3175 @cindex target
3176 @*use the create subcommand of @option{target}.
3177 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3178 @cindex target_script
3179 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3180 @item @b{working_area}
3181 @cindex working_area
3182 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3183 @end itemize
3184
3185 @node FAQ
3186 @chapter FAQ
3187 @cindex faq
3188 @enumerate
3189 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3190 @cindex RTCK
3191 @cindex adaptive clocking
3192 @*
3193
3194 In digital circuit design it is often refered to as ``clock
3195 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
3196 operating at some speed, your target is operating at another. The two
3197 clocks are not synchronised, they are ``asynchronous''
3198
3199 In order for the two to work together they must be synchronised. Otherwise
3200 the two systems will get out of sync with each other and nothing will
3201 work. There are 2 basic options.
3202 @enumerate
3203 @item
3204 Use a special circuit.
3205 @item
3206 One clock must be some multiple slower the the other.
3207 @end enumerate
3208
3209 @b{Does this really matter?} For some chips and some situations, this
3210 is a non-issue (ie: A 500MHz ARM926) but for others - for example some
3211 ATMEL SAM7 and SAM9 chips start operation from reset at 32kHz -
3212 program/enable the oscillators and eventually the main clock. It is in
3213 those critical times you must slow the jtag clock to sometimes 1 to
3214 4kHz.
3215
3216 Imagine debugging that 500MHz ARM926 hand held battery powered device
3217 that ``deep sleeps'' at 32kHz between every keystroke. It can be
3218 painful.
3219
3220 @b{Solution #1 - A special circuit}
3221
3222 In order to make use of this your jtag dongle must support the RTCK
3223 feature. Not all dongles support this - keep reading!
3224
3225 The RTCK signal often found in some ARM chips is used to help with
3226 this problem. ARM has a good description of the problem described at
3227 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3228 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
3229 work? / how does adaptive clocking work?''.
3230
3231 The nice thing about adaptive clocking is that ``battery powered hand
3232 held device example'' - the adaptiveness works perfectly all the
3233 time. One can set a break point or halt the system in the deep power
3234 down code, slow step out until the system speeds up.
3235
3236 @b{Solution #2 - Always works - but may be slower}
3237
3238 Often this is a perfectly acceptable solution.
3239
3240 In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3241 the target clock speed. But what is that ``magic division'' it varies
3242 depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
3243 based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
3244 1/12 the clock speed.
3245
3246 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
3247
3248 You can still debug the 'lower power' situations - you just need to
3249 manually adjust the clock speed at every step. While painful and
3250 teadious, it is not always practical.
3251
3252 It is however easy to ``code your way around it'' - ie: Cheat a little
3253 have a special debug mode in your application that does a ``high power
3254 sleep''. If you are careful - 98% of your problems can be debugged
3255 this way.
3256
3257 To set the JTAG frequency use the command:
3258
3259 @example
3260 # Example: 1.234MHz
3261 jtag_khz 1234
3262 @end example
3263
3264
3265 @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
3266
3267 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3268 around Windows filenames.
3269
3270 @example
3271 > echo \a
3272
3273 > echo @{\a@}
3274 \a
3275 > echo "\a"
3276
3277 >
3278 @end example
3279
3280
3281 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3282
3283 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3284 claims to come with all the necessary dlls. When using Cygwin, try launching
3285 OpenOCD from the Cygwin shell.
3286
3287 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3288 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3289 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3290
3291 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3292 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
3293 software breakpoints consume one of the two available hardware breakpoints.
3294
3295 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
3296 and works sometimes fine.
3297
3298 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3299 clock at the time you're programming the flash. If you've specified the crystal's
3300 frequency, make sure the PLL is disabled, if you've specified the full core speed
3301 (e.g. 60MHz), make sure the PLL is enabled.
3302
3303 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3304 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3305 out while waiting for end of scan, rtck was disabled".
3306
3307 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3308 settings in your PC BIOS (ECP, EPP, and different versions of those).
3309
3310 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3311 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3312 memory read caused data abort".
3313
3314 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3315 beyond the last valid frame. It might be possible to prevent this by setting up
3316 a proper "initial" stack frame, if you happen to know what exactly has to
3317 be done, feel free to add this here.
3318
3319 @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
3320 stack before calling main(). What GDB is doing is ``climbing'' the run
3321 time stack by reading various values on the stack using the standard
3322 call frame for the target. GDB keeps going - until one of 2 things
3323 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3324 stackframes have been processed. By pushing ZEROs on the stack, GDB
3325 gracefully stops.
3326
3327 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3328 your C code, do the same, artifically push some zeros on to the stack,
3329 remember to pop them off when the ISR is done.
3330
3331 @b{Also note:} If you have a multi-threaded operating system, they
3332 often do not @b{in the intrest of saving memory} waste these few
3333 bytes. Painful...
3334
3335
3336 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3337 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3338
3339 This warning doesn't indicate any serious problem, as long as you don't want to
3340 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3341 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3342 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3343 independently. With this setup, it's not possible to halt the core right out of
3344 reset, everything else should work fine.
3345
3346 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3347 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3348 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3349 quit with an error message. Is there a stability issue with OpenOCD?
3350
3351 No, this is not a stability issue concerning OpenOCD. Most users have solved
3352 this issue by simply using a self-powered USB hub, which they connect their
3353 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3354 supply stable enough for the Amontec JTAGkey to be operated.
3355
3356 @b{Laptops running on battery have this problem too...}
3357
3358 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3359 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3360 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3361 What does that mean and what might be the reason for this?
3362
3363 First of all, the reason might be the USB power supply. Try using a self-powered
3364 hub instead of a direct connection to your computer. Secondly, the error code 4
3365 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3366 chip ran into some sort of error - this points us to a USB problem.
3367
3368 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3369 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3370 What does that mean and what might be the reason for this?
3371
3372 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3373 has closed the connection to OpenOCD. This might be a GDB issue.
3374
3375 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3376 are described, there is a parameter for specifying the clock frequency
3377 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3378 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3379 specified in kilohertz. However, I do have a quartz crystal of a
3380 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3381 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3382 clock frequency?
3383
3384 No. The clock frequency specified here must be given as an integral number.
3385 However, this clock frequency is used by the In-Application-Programming (IAP)
3386 routines of the LPC2000 family only, which seems to be very tolerant concerning
3387 the given clock frequency, so a slight difference between the specified clock
3388 frequency and the actual clock frequency will not cause any trouble.
3389
3390 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3391
3392 Well, yes and no. Commands can be given in arbitrary order, yet the
3393 devices listed for the JTAG scan chain must be given in the right
3394 order (jtag newdevice), with the device closest to the TDO-Pin being
3395 listed first. In general, whenever objects of the same type exist
3396 which require an index number, then these objects must be given in the
3397 right order (jtag newtap, targets and flash banks - a target
3398 references a jtag newtap and a flash bank references a target).
3399
3400 You can use the ``scan_chain'' command to verify and display the tap order.
3401
3402 @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
3403
3404 Many newer devices have multiple JTAG taps. For example: ST
3405 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3406 ``CortexM3'' tap. Example: The STM32 reference manual, Document ID:
3407 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3408 connected to the Boundary Scan Tap, which then connects to the
3409 CortexM3 Tap, which then connects to the TDO pin.
3410
3411 Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
3412 (2) The Boundary Scan Tap. If your board includes an additional JTAG
3413 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3414 place it before or after the stm32 chip in the chain. For example:
3415
3416 @itemize @bullet
3417 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3418 @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
3419 @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
3420 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3421 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3422 @end itemize
3423
3424 The ``jtag device'' commands would thus be in the order shown below. Note
3425
3426 @itemize @bullet
3427 @item jtag newtap Xilinx tap -irlen ...
3428 @item jtag newtap stm32 cpu -irlen ...
3429 @item jtag newtap stm32 bs -irlen ...
3430 @item # Create the debug target and say where it is
3431 @item target create stm32.cpu -chain-position stm32.cpu ...
3432 @end itemize
3433
3434
3435 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3436 log file, I can see these error messages: Error: arm7_9_common.c:561
3437 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3438
3439 TODO.
3440
3441 @end enumerate
3442
3443 @node TCL Crash Course
3444 @chapter TCL Crash Course
3445 @cindex TCL
3446
3447 Not everyone knows TCL - this is not intended to be a replacement for
3448 learning TCL, the intent of this chapter is to give you some idea of
3449 how the TCL Scripts work.
3450
3451 This chapter is written with two audiences in mind. (1) OpenOCD users
3452 who need to understand a bit more of how JIM-Tcl works so they can do
3453 something useful, and (2) those that want to add a new command to
3454 OpenOCD.
3455
3456 @section TCL Rule #1
3457 There is a famous joke, it goes like this:
3458 @enumerate
3459 @item Rule #1: The wife is always correct
3460 @item Rule #2: If you think otherwise, See Rule #1
3461 @end enumerate
3462
3463 The TCL equal is this:
3464
3465 @enumerate
3466 @item Rule #1: Everything is a string
3467 @item Rule #2: If you think otherwise, See Rule #1
3468 @end enumerate
3469
3470 As in the famous joke, the consequences of Rule #1 are profound. Once
3471 you understand Rule #1, you will understand TCL.
3472
3473 @section TCL Rule #1b
3474 There is a second pair of rules.
3475 @enumerate
3476 @item Rule #1: Control flow does not exist. Only commands
3477 @* For example: the classic FOR loop or IF statement is not a control
3478 flow item, they are commands, there is no such thing as control flow
3479 in TCL.
3480 @item Rule #2: If you think otherwise, See Rule #1
3481 @* Actually what happens is this: There are commands that by
3482 convention, act like control flow key words in other languages. One of
3483 those commands is the word ``for'', another command is ``if''.
3484 @end enumerate
3485
3486 @section Per Rule #1 - All Results are strings
3487 Every TCL command results in a string. The word ``result'' is used
3488 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3489 Everything is a string}
3490
3491 @section TCL Quoting Operators
3492 In life of a TCL script, there are two important periods of time, the
3493 difference is subtle.
3494 @enumerate
3495 @item Parse Time
3496 @item Evaluation Time
3497 @end enumerate
3498
3499 The two key items here are how ``quoted things'' work in TCL. TCL has
3500 three primary quoting constructs, the [square-brackets] the
3501 @{curly-braces@} and ``double-quotes''
3502
3503 By now you should know $VARIABLES always start with a $DOLLAR
3504 sign. BTW, to set a variable, you actually use the command ``set'', as
3505 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3506 = 1'' statement, but without the equal sign.
3507
3508 @itemize @bullet
3509 @item @b{[square-brackets]}
3510 @* @b{[square-brackets]} are command subsitution. It operates much
3511 like Unix Shell `back-ticks`. The result of a [square-bracket]
3512 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3513 string}. These two statments are roughly identical.
3514 @example
3515 # bash example
3516 X=`date`
3517 echo "The Date is: $X"
3518 # TCL example
3519 set X [date]
3520 puts "The Date is: $X"
3521 @end example
3522 @item @b{``double-quoted-things''}
3523 @* @b{``double-quoted-things''} are just simply quoted
3524 text. $VARIABLES and [square-brackets] are expanded in place - the
3525 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3526 is a string}
3527 @example
3528 set x "Dinner"
3529 puts "It is now \"[date]\", $x is in 1 hour"
3530 @end example
3531 @item @b{@{Curly-Braces@}}
3532 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3533 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3534 'single-quote' operators in BASH shell scripts, with the added
3535 feature: @{curly-braces@} nest, single quotes can not. @{@{@{this is
3536 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3537 28/nov/2008, Jim/OpenOCD does not have a date command.
3538 @end itemize
3539
3540 @section Consequences of Rule 1/2/3/4
3541
3542 The consequences of Rule 1 is profound.
3543
3544 @subsection Tokenizing & Execution.
3545
3546 Of course, whitespace, blank lines and #comment lines are handled in
3547 the normal way.
3548
3549 As a script is parsed, each (multi) line in the script file is
3550 tokenized and according to the quoting rules. After tokenizing, that
3551 line is immedatly executed.
3552
3553 Multi line statements end with one or more ``still-open''
3554 @{curly-braces@} which - eventually - a few lines later closes.
3555
3556 @subsection Command Execution
3557
3558 Remember earlier: There is no such thing as ``control flow''
3559 statements in TCL. Instead there are COMMANDS that simpily act like
3560 control flow operators.
3561
3562 Commands are executed like this:
3563
3564 @enumerate
3565 @item Parse the next line into (argc) and (argv[]).
3566 @item Look up (argv[0]) in a table and call its function.
3567 @item Repeat until End Of File.
3568 @end enumerate
3569
3570 It sort of works like this:
3571 @example
3572 for(;;)@{
3573 ReadAndParse( &argc, &argv );
3574
3575 cmdPtr = LookupCommand( argv[0] );
3576
3577 (*cmdPtr->Execute)( argc, argv );
3578 @}
3579 @end example
3580
3581 When the command ``proc'' is parsed (which creates a procedure
3582 function) it gets 3 parameters on the command line. @b{1} the name of
3583 the proc (function), @b{2} the list of parameters, and @b{3} the body
3584 of the function. Not the choice of words: LIST and BODY. The PROC
3585 command stores these items in a table somewhere so it can be found by
3586 ``LookupCommand()''
3587
3588 @subsection The FOR Command
3589
3590 The most interesting command to look at is the FOR command. In TCL,
3591 the FOR command is normally implimented in C. Remember, FOR is a
3592 command just like any other command.
3593
3594 When the ascii text containing the FOR command is parsed, the parser
3595 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3596 are:
3597
3598 @enumerate 0
3599 @item The ascii text 'for'
3600 @item The start text
3601 @item The test expression
3602 @item The next text
3603 @item The body text
3604 @end enumerate
3605
3606 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3607 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3608 Often many of those parameters are in @{curly-braces@} - thus the
3609 variables inside are not expanded or replaced until later.
3610
3611 Remember that every TCL command looks like the classic ``main( argc,
3612 argv )'' function in C. In JimTCL - they actually look like this:
3613
3614 @example
3615 int
3616 MyCommand( Jim_Interp *interp,
3617 int *argc,
3618 Jim_Obj * const *argvs );
3619 @end example
3620
3621 Real TCL is nearly identical. Although the newer versions have
3622 introduced a byte-code parser and intepreter, but at the core, it
3623 still operates in the same basic way.
3624
3625 @subsection FOR Command Implimentation
3626
3627 To understand TCL it is perhaps most helpful to see the FOR
3628 command. Remember, it is a COMMAND not a control flow structure.
3629
3630 In TCL there are two underying C helper functions.
3631
3632 Remember Rule #1 - You are a string.
3633
3634 The @b{first} helper parses and executes commands found in an ascii
3635 string. Commands can be seperated by semi-colons, or newlines. While
3636 parsing, variables are expanded per the quoting rules
3637
3638 The @b{second} helper evaluates an ascii string as a numerical
3639 expression and returns a value.
3640
3641 Here is an example of how the @b{FOR} command could be
3642 implimented. The pseudo code below does not show error handling.
3643 @example
3644 void Execute_AsciiString( void *interp, const char *string );
3645
3646 int Evaluate_AsciiExpression( void *interp, const char *string );
3647
3648 int
3649 MyForCommand( void *interp,
3650 int argc,
3651 char **argv )
3652 @{
3653 if( argc != 5 )@{
3654 SetResult( interp, "WRONG number of parameters");
3655 return ERROR;
3656 @}
3657
3658 // argv[0] = the ascii string just like C
3659
3660 // Execute the start statement.
3661 Execute_AsciiString( interp, argv[1] );
3662
3663 // Top of loop test
3664 for(;;)@{
3665 i = Evaluate_AsciiExpression(interp, argv[2]);
3666 if( i == 0 )
3667 break;
3668
3669 // Execute the body
3670 Execute_AsciiString( interp, argv[3] );
3671
3672 // Execute the LOOP part
3673 Execute_AsciiString( interp, argv[4] );
3674 @}
3675
3676 // Return no error
3677 SetResult( interp, "" );
3678 return SUCCESS;
3679 @}
3680 @end example
3681
3682 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3683 in the same basic way.
3684
3685 @section OpenOCD TCL Usage
3686
3687 @subsection source and find commands
3688 @b{Where:} In many configuration files
3689 @* Example: @b{ source [find FILENAME] }
3690 @*Remember the parsing rules
3691 @enumerate
3692 @item The FIND command is in square brackets.
3693 @* The FIND command is executed with the parameter FILENAME. It should
3694 find the full path to the named file. The RESULT is a string, which is
3695 subsituted on the orginal command line.
3696 @item The command source is executed with the resulting filename.
3697 @* SOURCE reads a file and executes as a script.
3698 @end enumerate
3699 @subsection format command
3700 @b{Where:} Generally occurs in numerous places.
3701 @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
3702 @b{sprintf()}.
3703 @b{Example}
3704 @example
3705 set x 6
3706 set y 7
3707 puts [format "The answer: %d" [expr $x * $y]]
3708 @end example
3709 @enumerate
3710 @item The SET command creates 2 variables, X and Y.
3711 @item The double [nested] EXPR command performs math
3712 @* The EXPR command produces numerical result as a string.
3713 @* Refer to Rule #1
3714 @item The format command is executed, producing a single string
3715 @* Refer to Rule #1.
3716 @item The PUTS command outputs the text.
3717 @end enumerate
3718 @subsection Body Or Inlined Text
3719 @b{Where:} Various TARGET scripts.
3720 @example
3721 #1 Good
3722 proc someproc @{@} @{
3723 ... multiple lines of stuff ...
3724 @}
3725 $_TARGETNAME configure -event FOO someproc
3726 #2 Good - no variables
3727 $_TARGETNAME confgure -event foo "this ; that;"
3728 #3 Good Curly Braces
3729 $_TARGETNAME configure -event FOO @{
3730 puts "Time: [date]"
3731 @}
3732 #4 DANGER DANGER DANGER
3733 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3734 @end example
3735 @enumerate
3736 @item The $_TARGETNAME is an OpenOCD variable convention.
3737 @*@b{$_TARGETNAME} represents the last target created, the value changes
3738 each time a new target is created. Remember the parsing rules. When
3739 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3740 the name of the target which happens to be a TARGET (object)
3741 command.
3742 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3743 @*There are 4 examples:
3744 @enumerate
3745 @item The TCLBODY is a simple string that happens to be a proc name
3746 @item The TCLBODY is several simple commands semi-colon seperated
3747 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3748 @item The TCLBODY is a string with variables that get expanded.
3749 @end enumerate
3750
3751 In the end, when the target event FOO occurs the TCLBODY is
3752 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3753 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3754
3755 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3756 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3757 and the text is evaluated. In case #4, they are replaced before the
3758 ``Target Object Command'' is executed. This occurs at the same time
3759 $_TARGETNAME is replaced. In case #4 the date will never
3760 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3761 Jim/OpenOCD does not have a date command@}
3762 @end enumerate
3763 @subsection Global Variables
3764 @b{Where:} You might discover this when writing your own procs @* In
3765 simple terms: Inside a PROC, if you need to access a global variable
3766 you must say so. Also see ``upvar''. Example:
3767 @example
3768 proc myproc @{ @} @{
3769 set y 0 #Local variable Y
3770 global x #Global variable X
3771 puts [format "X=%d, Y=%d" $x $y]
3772 @}
3773 @end example
3774 @section Other Tcl Hacks
3775 @b{Dynamic Variable Creation}
3776 @example
3777 # Dynamically create a bunch of variables.
3778 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3779 # Create var name
3780 set vn [format "BIT%d" $x]
3781 # Make it a global
3782 global $vn
3783 # Set it.
3784 set $vn [expr (1 << $x)]
3785 @}
3786 @end example
3787 @b{Dynamic Proc/Command Creation}
3788 @example
3789 # One "X" function - 5 uart functions.
3790 foreach who @{A B C D E@}
3791 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3792 @}
3793 @end example
3794
3795 @node Target library
3796 @chapter Target library
3797 @cindex Target library
3798
3799 OpenOCD comes with a target configuration script library. These scripts can be
3800 used as-is or serve as a starting point.
3801
3802 The target library is published together with the OpenOCD executable and
3803 the path to the target library is in the OpenOCD script search path.
3804 Similarly there are example scripts for configuring the JTAG interface.
3805
3806 The command line below uses the example parport configuration scripts
3807 that ship with OpenOCD, then configures the str710.cfg target and
3808 finally issues the init and reset command. The communication speed
3809 is set to 10kHz for reset and 8MHz for post reset.
3810
3811
3812 @example
3813 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3814 @end example
3815
3816
3817 To list the target scripts available:
3818
3819 @example
3820 $ ls /usr/local/lib/openocd/target
3821
3822 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3823 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3824 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3825 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3826 @end example
3827
3828
3829
3830 @include fdl.texi
3831
3832 @node OpenOCD Index
3833 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3834 @comment case issue with ``Index.html'' and ``index.html''
3835 @comment Occurs when creating ``--html --no-split'' output
3836 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3837 @unnumbered OpenOCD Index
3838
3839 @printindex cp
3840
3841 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)