fixed doc for GDB memory map and flash program defaults to follow code
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (openocd)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (openocd)
27 @subtitle Edition @value{EDITION} for openocd version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (openocd) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About Openocd.
46 * Developers:: Openocd developers
47 * Building:: Building Openocd
48 * Running:: Running Openocd
49 * Configuration:: Openocd Configuration.
50 * Target library:: Target library
51 * Commands:: Openocd Commands
52 * Sample Scripts:: Sample Target Scripts
53 * GDB and Openocd:: Using GDB and Openocd
54 * Upgrading:: Deprecated/Removed Commands
55 * FAQ:: Frequently Asked Questions
56 * License:: GNU Free Documentation License
57 * Index:: Main index.
58 @end menu
59
60 @node About
61 @unnumbered About
62 @cindex about
63
64 The Open On-Chip Debugger (openocd) aims to provide debugging, in-system programming
65 and boundary-scan testing for embedded target devices. The targets are interfaced
66 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
67 connection types in the future.
68
69 Openocd currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
70 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
71 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
72 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
73
74 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
75 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
76 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
77
78 @node Developers
79 @chapter Developers
80 @cindex developers
81
82 Openocd has been created by Dominic Rath as part of a diploma thesis written at the
83 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
84 Others interested in improving the state of free and open debug and testing technology
85 are welcome to participate.
86
87 Other developers have contributed support for additional targets and flashes as well
88 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
89
90 @node Building
91 @chapter Building
92 @cindex building openocd
93
94 You can download the current SVN version with SVN client of your choice from the
95 following repositories:
96
97 (@uref{svn://svn.berlios.de/openocd/trunk})
98
99 or
100
101 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
102
103 Using the SVN command line client, you could use the following command to fetch the
104 latest version (make sure there is no (non-svn) directory called "openocd" in the
105 current directory):
106
107 @smallexample
108 svn checkout svn://svn.berlios.de/openocd/trunk openocd
109 @end smallexample
110
111 Building the OpenOCD requires a recent version of the GNU autotools.
112 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
113 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
114 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
115 paths, resulting in obscure dependency errors (This is an observation I've gathered
116 from the logs of one user - correct me if I'm wrong).
117
118 You further need the appropriate driver files, if you want to build support for
119 a FTDI FT2232 based interface:
120 @itemize @bullet
121 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
122 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
123 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
124 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
125 @end itemize
126
127 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
128 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
129
130 In general, the D2XX driver provides superior performance (several times as fast),
131 but has the draw-back of being binary-only - though that isn't as worse, as it isn't
132 a kernel module, only a user space library.
133
134 To build OpenOCD (on both Linux and Cygwin), use the following commands:
135 @smallexample
136 ./bootstrap
137 @end smallexample
138 Bootstrap generates the configure script, and prepares building on your system.
139 @smallexample
140 ./configure
141 @end smallexample
142 Configure generates the Makefiles used to build OpenOCD.
143 @smallexample
144 make
145 @end smallexample
146 Make builds the OpenOCD, and places the final executable in ./src/.
147
148 The configure script takes several options, specifying which JTAG interfaces
149 should be included:
150
151 @itemize @bullet
152 @item
153 @option{--enable-parport}
154 @item
155 @option{--enable-parport_ppdev}
156 @item
157 @option{--enable-parport_giveio}
158 @item
159 @option{--enable-amtjtagaccel}
160 @item
161 @option{--enable-ft2232_ftd2xx}
162 @footnote{Using the latest D2XX drivers from FTDI and following their installation
163 instructions, I had to use @option{--enable-ft2232_libftd2xx} for the OpenOCD to
164 build properly.}
165 @item
166 @option{--enable-ft2232_libftdi}
167 @item
168 @option{--with-ftd2xx=/path/to/d2xx/}
169 @item
170 @option{--enable-gw16012}
171 @item
172 @option{--enable-usbprog}
173 @item
174 @option{--enable-presto_libftdi}
175 @item
176 @option{--enable-presto_ftd2xx}
177 @end itemize
178
179 If you want to access the parallel port using the PPDEV interface you have to specify
180 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
181 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
182 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
183
184 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
185 absolute path containing no spaces.
186
187 Linux users should copy the various parts of the D2XX package to the appropriate
188 locations, i.e. /usr/include, /usr/lib.
189
190 @node Running
191 @chapter Running
192 @cindex running openocd
193 @cindex --configfile
194 @cindex --debug_level
195 @cindex --logfile
196 @cindex --search
197 The OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
198 Run with @option{--help} or @option{-h} to view the available command line arguments.
199
200 It reads its configuration by default from the file openocd.cfg located in the current
201 working directory. This may be overwritten with the @option{-f <configfile>} command line
202 switch. @option{-f} can be specified multiple times, in which case the config files
203 are executed in order.
204
205 Also it is possible to interleave commands w/config scripts using the @option{-c}.
206
207 To enable debug output (when reporting problems or working on OpenOCD itself), use
208 the @option{-d} command line switch. This sets the debug_level to "3", outputting
209 the most information, including debug messages. The default setting is "2", outputting
210 only informational messages, warnings and errors. You can also change this setting
211 from within a telnet or gdb session (@option{debug_level <n>}).
212
213 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
214
215 Search paths for config/script files can be added to openocd by using
216 the @option{-s <search>} switch. The current directory and the OpenOCD target library
217 is in the search path by default.
218
219 NB! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
220 with the target. In general, it is possible for the JTAG controller to be unresponsive until
221 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
222
223 @node Configuration
224 @chapter Configuration
225 @cindex configuration
226 The Open On-Chip Debugger (OpenOCD) runs as a daemon, and reads it current configuration
227 by default from the file openocd.cfg in the current directory. A different configuration
228 file can be specified with the @option{-f <conf.file>} given at the openocd command line.
229
230 The configuration file is used to specify on which ports the daemon listens for new
231 connections, the JTAG interface used to connect to the target, the layout of the JTAG
232 chain, the targets that should be debugged, and connected flashes.
233
234 @section Daemon configuration
235
236 @itemize @bullet
237 @item @b{init} This command terminates the configuration stage and enters the normal
238 command mode. This can be useful to add commands to the startup scripts and commands
239 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
240 add "init" and "reset" at the end of the config script or at the end of the
241 openocd command line using the -c option.
242 @cindex init
243 @item @b{telnet_port} <@var{number}>
244 @cindex telnet_port
245 Port on which to listen for incoming telnet connections
246 @item @b{gdb_port} <@var{number}>
247 @cindex gdb_port
248 First port on which to listen for incoming GDB connections. The GDB port for the
249 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
250 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
251 @cindex gdb_detach
252 Configures what openocd will do when gdb detaches from the daeman.
253 Default behaviour is <@var{resume}>
254 @item @b{gdb_memory_map} <@var{enable|disable}>
255 @cindex gdb_memory_map
256 Set to <@var{enable}> so that openocd will send the memory configuration to gdb when
257 requested. gdb will then know when to set hardware breakpoints, and program flash
258 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
259 for flash programming to work.
260 Default behaviour is <@var{disable}>
261 @item @b{gdb_flash_program} <@var{enable|disable}>
262 @cindex gdb_flash_program
263 Set to <@var{enable}> so that openocd will program the flash memory when a
264 vFlash packet is received.
265 Default behaviour is <@var{enable}>
266 @item @b{daemon_startup} <@var{mode}>
267 @cindex daemon_startup
268 @option{mode} can either @option{attach} or @option{reset}
269 This is equivalent to adding "init" and "reset" to the end of the config script.
270
271 It is availble as a command mainly for backwards compatibility.
272 @end itemize
273
274 @section JTAG interface configuration
275
276 @itemize @bullet
277 @item @b{interface} <@var{name}>
278 @cindex interface
279 Use the interface driver <@var{name}> to connect to the target. Currently supported
280 interfaces are
281 @itemize @minus
282 @item @b{parport}
283 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
284 @end itemize
285 @itemize @minus
286 @item @b{amt_jtagaccel}
287 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
288 mode parallel port
289 @end itemize
290 @itemize @minus
291 @item @b{ft2232}
292 FTDI FT2232 based devices using either the open-source libftdi or the binary only
293 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
294 platform. The libftdi uses libusb, and should be portable to all systems that provide
295 libusb.
296 @end itemize
297 @itemize @minus
298 @item @b{ep93xx}
299 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
300 @end itemize
301 @itemize @minus
302 @item @b{presto}
303 ASIX PRESTO USB JTAG programmer.
304 @end itemize
305 @itemize @minus
306 @item @b{usbprog}
307 usbprog is a freely programmable USB adapter.
308 @end itemize
309 @itemize @minus
310 @item @b{gw16012}
311 Gateworks GW16012 JTAG programmer.
312 @end itemize
313 @end itemize
314
315 @itemize @bullet
316 @item @b{jtag_speed} <@var{reset speed}> <@var{post reset speed}>
317 @cindex jtag_speed
318 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
319 speed. The actual effect of this option depends on the JTAG interface used. Reset
320 speed is used during reset and post reset speed after reset. post reset speed
321 is optional, in which case the reset speed is used.
322 @itemize @minus
323
324 @item wiggler: maximum speed / @var{number}
325 @item ft2232: 6MHz / (@var{number}+1)
326 @item amt jtagaccel: 8 / 2**@var{number}
327 @end itemize
328
329 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
330 especially true for synthesized cores (-S).
331
332 @item @b{jtag_khz} <@var{reset speed kHz}> <@var{post reset speed kHz}>
333 @cindex jtag_khz
334 Same as jtag_speed, except that the speed is specified in maximum kHz. If
335 the device can not support the rate asked for, or can not translate from
336 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
337 is not supported, then an error is reported.
338
339 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
340 @cindex reset_config
341 The configuration of the reset signals available on the JTAG interface AND the target.
342 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
343 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
344 @option{srst_only} or @option{trst_and_srst}.
345
346 [@var{combination}] is an optional value specifying broken reset signal implementations.
347 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
348 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
349 that the system is reset together with the test logic (only hypothetical, I haven't
350 seen hardware with such a bug, and can be worked around).
351 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
352 The default behaviour if no option given is @option{separate}.
353
354 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
355 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
356 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
357 (default) and @option{srst_push_pull} for the system reset. These values only affect
358 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
359
360 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
361 @cindex jtag_device
362 Describes the devices that form the JTAG daisy chain, with the first device being
363 the one closest to TDO. The parameters are the length of the instruction register
364 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
365 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
366 The IDCODE instruction will in future be used to query devices for their JTAG
367 identification code. This line is the same for all ARM7 and ARM9 devices.
368 Other devices, like CPLDs, require different parameters. An example configuration
369 line for a Xilinx XC9500 CPLD would look like this:
370 @smallexample
371 jtag_device 8 0x01 0x0e3 0xfe
372 @end smallexample
373 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
374 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
375 The IDCODE instruction is 0xfe.
376
377 @item @b{jtag_nsrst_delay} <@var{ms}>
378 @cindex jtag_nsrst_delay
379 How long (in miliseconds) the OpenOCD should wait after deasserting nSRST before
380 starting new JTAG operations.
381 @item @b{jtag_ntrst_delay} <@var{ms}>
382 @cindex jtag_ntrst_delay
383 How long (in miliseconds) the OpenOCD should wait after deasserting nTRST before
384 starting new JTAG operations.
385
386 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
387 or on-chip features) keep a reset line asserted for some time after the external reset
388 got deasserted.
389 @end itemize
390
391 @section parport options
392
393 @itemize @bullet
394 @item @b{parport_port} <@var{number}>
395 @cindex parport_port
396 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
397 the @file{/dev/parport} device
398
399 When using PPDEV to access the parallel port, use the number of the parallel port:
400 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
401 you may encounter a problem.
402 @item @b{parport_cable} <@var{name}>
403 @cindex parport_cable
404 The layout of the parallel port cable used to connect to the target.
405 Currently supported cables are
406 @itemize @minus
407 @item @b{wiggler}
408 @cindex wiggler
409 Original Wiggler layout, also supported by several clones, such
410 as the Olimex ARM-JTAG
411 @item @b{old_amt_wiggler}
412 @cindex old_amt_wiggler
413 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
414 version available from the website uses the original Wiggler layout ('@var{wiggler}')
415 @item @b{chameleon}
416 @cindex chameleon
417 Describes the connection of the Amontec Chameleon's CPLD when operated in
418 configuration mode. This is only used to program the Chameleon itself, not
419 a connected target.
420 @item @b{dlc5}
421 @cindex dlc5
422 Xilinx Parallel cable III.
423 @item @b{triton}
424 @cindex triton
425 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
426 This is also the layout used by the HollyGates design
427 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
428 @item @b{flashlink}
429 @cindex flashlink
430 ST Parallel cable.
431 @end itemize
432 @item @b{parport_write_on_exit} <@var{on|off}>
433 @cindex parport_write_on_exit
434 This will configure the parallel driver to write a known value to the parallel
435 interface on exiting openocd
436 @end itemize
437
438 @section amt_jtagaccel options
439 @itemize @bullet
440 @item @b{parport_port} <@var{number}>
441 @cindex parport_port
442 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
443 @file{/dev/parport} device
444 @end itemize
445 @section ft2232 options
446
447 @itemize @bullet
448 @item @b{ft2232_device_desc} <@var{description}>
449 @cindex ft2232_device_desc
450 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
451 default value is used. This setting is only valid if compiled with FTD2XX support.
452 @item @b{ft2232_layout} <@var{name}>
453 @cindex ft2232_layout
454 The layout of the FT2232 GPIO signals used to control output-enables and reset
455 signals. Valid layouts are
456 @itemize @minus
457 @item @b{usbjtag}
458 The "USBJTAG-1" layout described in the original OpenOCD diploma thesis
459 @item @b{jtagkey}
460 Amontec JTAGkey and JTAGkey-tiny
461 @item @b{signalyzer}
462 Signalyzer
463 @item @b{olimex-jtag}
464 Olimex ARM-USB-OCD
465 @item @b{m5960}
466 American Microsystems M5960
467 @item @b{evb_lm3s811}
468 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
469 SRST signals on external connector
470 @item @b{comstick}
471 Hitex STR9 comstick
472 @item @b{stm32stick}
473 Hitex STM32 Performance Stick
474 @item @b{flyswatter}
475 Tin Can Tools Flyswatter
476 @item @b{turtelizer2}
477 egnite Software turtelizer2
478 @item @b{oocdlink}
479 OOCDLink
480 @end itemize
481
482 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
483 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
484 default values are used. This command is not available on Windows.
485 @item @b{ft2232_latency} <@var{ms}>
486 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
487 ft2232_read() fails to return the expected number of bytes. This can be caused by
488 USB communication delays and has proved hard to reproduce and debug. Setting the
489 FT2232 latency timer to a larger value increases delays for short USB packages but it
490 also reduces the risk of timeouts before receiving the expected number of bytes.
491 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
492 @end itemize
493
494 @section ep93xx options
495 @cindex ep93xx options
496 Currently, there are no options available for the ep93xx interface.
497
498 @page
499 @section Target configuration
500
501 @itemize @bullet
502 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
503 <@var{variant}>
504 @cindex target
505 Defines a target that should be debugged. Currently supported types are:
506 @itemize @minus
507 @item @b{arm7tdmi}
508 @item @b{arm720t}
509 @item @b{arm9tdmi}
510 @item @b{arm920t}
511 @item @b{arm922t}
512 @item @b{arm926ejs}
513 @item @b{arm966e}
514 @item @b{cortex_m3}
515 @item @b{feroceon}
516 @item @b{xscale}
517 @end itemize
518
519 If you want to use a target board that is not on this list, see Adding a new
520 target board
521
522 Endianess may be @option{little} or @option{big}.
523
524 The reset_mode specifies what should happen to the target when a reset occurs:
525 @itemize @minus
526 @item @b{reset_halt}
527 @cindex reset_halt
528 Immediately request a target halt after reset. This allows targets to be debugged
529 from the very first instruction. This is only possible with targets and JTAG
530 interfaces that correctly implement the reset signals.
531 @item @b{reset_init}
532 @cindex reset_init
533 Similar to @option{reset_halt}, but executes the script file defined to handle the
534 'reset' event for the target. Like @option{reset_halt} this only works with
535 correct reset implementations.
536 @item @b{reset_run}
537 @cindex reset_run
538 Simply let the target run after a reset.
539 @item @b{run_and_halt}
540 @cindex run_and_halt
541 Let the target run for some time (default: 1s), and then request halt.
542 @item @b{run_and_init}
543 @cindex run_and_init
544 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
545 to run for some time, then halted, and the @option{reset} event script is executed.
546 @end itemize
547
548 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
549 completely independent (like the LPC2000 series), or where the JTAG interface is
550 unavailable for some time during startup (like the STR7 series), you can't use
551 @option{reset_halt} or @option{reset_init}.
552
553 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
554 @cindex target_script
555 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
556
557 TODO: describe exact semantic of events
558 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
559 @cindex run_and_halt_time
560 The amount of time the debugger should wait after releasing reset before it asserts
561 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
562 reset modes.
563 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
564 <@var{backup}|@var{nobackup}>
565 @cindex working_area
566 Specifies a working area for the debugger to use. This may be used to speed-up
567 downloads to target memory and flash operations, or to perform otherwise unavailable
568 operations (some coprocessor operations on ARM7/9 systems, for example). The last
569 parameter decides whether the memory should be preserved <@var{backup}>. If possible, use
570 a working_area that doesn't need to be backed up, as that slows down operation.
571 @end itemize
572
573 @subsection arm7tdmi options
574 @cindex arm7tdmi options
575 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
576 The arm7tdmi target definition requires at least one additional argument, specifying
577 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
578 The optional [@var{variant}] parameter has been removed in recent versions.
579 The correct feature set is determined at runtime.
580
581 @subsection arm720t options
582 @cindex arm720t options
583 ARM720t options are similar to ARM7TDMI options.
584
585 @subsection arm9tdmi options
586 @cindex arm9tdmi options
587 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
588 @option{arm920t}, @option{arm922t} and @option{arm940t}.
589 This enables the hardware single-stepping support found on these cores.
590
591 @subsection arm920t options
592 @cindex arm920t options
593 ARM920t options are similar to ARM9TDMI options.
594
595 @subsection arm966e options
596 @cindex arm966e options
597 ARM966e options are similar to ARM9TDMI options.
598
599 @subsection xscale options
600 @cindex xscale options
601 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
602 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
603
604 @section Flash configuration
605 @cindex Flash configuration
606
607 @itemize @bullet
608 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
609 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
610 @cindex flash bank
611 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
612 and <@var{bus_width}> bytes using the selected flash <driver>.
613 @end itemize
614
615 @subsection lpc2000 options
616 @cindex lpc2000 options
617
618 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
619 <@var{clock}> [@var{calc_checksum}]
620 LPC flashes don't require the chip and bus width to be specified. Additional
621 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
622 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
623 of the target this flash belongs to (first is 0), the frequency at which the core
624 is currently running (in kHz - must be an integral number), and the optional keyword
625 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
626 vector table.
627
628 @subsection cfi options
629 @cindex cfi options
630
631 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
632 <@var{target#}>
633 CFI flashes require the number of the target they're connected to as an additional
634 argument. The CFI driver makes use of a working area (specified for the target)
635 to significantly speed up operation.
636
637 @var{chip_width} and @var{bus_width} are specified in bytes.
638
639 @subsection at91sam7 options
640 @cindex at91sam7 options
641
642 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
643 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
644 reading the chip-id and type.
645
646 @subsection str7 options
647 @cindex str7 options
648
649 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
650 variant can be either STR71x, STR73x or STR75x.
651
652 @subsection str9 options
653 @cindex str9 options
654
655 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
656 The str9 needs the flash controller to be configured prior to Flash programming, eg.
657 @smallexample
658 str9x flash_config 0 4 2 0 0x80000
659 @end smallexample
660 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
661
662 @subsection str9 options (str9xpec driver)
663
664 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
665 Before using the flash commands the turbo mode will need enabling using str9xpec
666 @option{enable_turbo} <@var{num>.}
667
668 Only use this driver for locking/unlocking the device or configuring the option bytes.
669 Use the standard str9 driver for programming.
670
671 @subsection stellaris (LM3Sxxx) options
672 @cindex stellaris (LM3Sxxx) options
673
674 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
675 stellaris flash plugin only require the @var{target#}.
676
677 @subsection stm32x options
678 @cindex stm32x options
679
680 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
681 stm32x flash plugin only require the @var{target#}.
682
683 @node Target library
684 @chapter Target library
685 @cindex Target library
686
687 OpenOCD comes with a target configuration script library. These scripts can be
688 used as-is or serve as a starting point.
689
690 The target library is published together with the openocd executable and
691 the path to the target library is in the OpenOCD script search path.
692 Similarly there are example scripts for configuring the JTAG interface.
693
694 The command line below uses the example parport configuration scripts
695 that ships with OpenOCD, then configures the str710.cfg target and
696 finally issues the init and reset command. The communication speed
697 is set to 10kHz for reset and 8MHz for post reset.
698
699
700 @smallexample
701 openocd -f interface/parport.cfg -c "jtag_khz 10 8000" -f target/str710.cfg -c "init" -c "reset"
702 @end smallexample
703
704
705 To list the target scripts available:
706
707 @smallexample
708 $ ls /usr/local/lib/openocd/target
709
710 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
711 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
712 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
713 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
714 @end smallexample
715
716
717 @node Commands
718 @chapter Commands
719 @cindex commands
720
721 The Open On-Chip Debugger (OpenOCD) allows user interaction through a telnet interface
722 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
723 is available from both the telnet interface and a GDB session. To issue commands to the
724 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
725 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
726 GDB session.
727
728 @section Daemon
729
730 @itemize @bullet
731 @item @b{sleep} <@var{msec}>
732 @cindex sleep
733 Wait for n milliseconds before resuming. Useful in connection with script files
734 (@var{script} command and @var{target_script} configuration).
735
736 @item @b{shutdown}
737 @cindex shutdown
738 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
739
740 @item @b{debug_level} [@var{n}]
741 @cindex debug_level
742 Display or adjust debug level to n<0-3>
743
744 @item @b{fast} [@var{enable/disable}]
745 @cindex fast
746 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
747 downloads and fast memory access will work if the JTAG interface isn't too fast and
748 the core doesn't run at a too low frequency. Note that this option only changes the default
749 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
750 individually.
751
752 The target specific "dangerous" optimisation tweaking options may come and go
753 as more robust and user friendly ways are found to ensure maximum throughput
754 and robustness with a minimum of configuration.
755
756 Typically the "fast enable" is specified first on the command line:
757
758 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
759
760 @item @b{log_output} <@var{file}>
761 @cindex log_output
762 Redirect logging to <file> (default: stderr)
763
764 @item @b{script} <@var{file}>
765 @cindex script
766 Execute commands from <file>
767
768 @end itemize
769
770 @subsection Target state handling
771 @itemize @bullet
772 @item @b{poll} [@option{on}|@option{off}]
773 @cindex poll
774 Poll the target for its current state. If the target is in debug mode, architecture
775 specific information about the current state are printed. An optional parameter
776 allows continuous polling to be enabled and disabled.
777
778 @item @b{halt} [@option{ms}]
779 @cindex halt
780 Send a halt request to the target and waits for it to halt for [@option{ms}].
781 Default [@option{ms}] is 5 seconds if no arg given.
782 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
783 will stop openocd from waiting.
784
785 @item @b{wait_halt} [@option{ms}]
786 @cindex wait_halt
787 Wait for the target to enter debug mode. Optional [@option{ms}] is
788 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
789 arg given.
790
791 @item @b{resume} [@var{address}]
792 @cindex resume
793 Resume the target at its current code position, or at an optional address.
794 Openocd will wait 5 seconds for the target to resume.
795
796 @item @b{step} [@var{address}]
797 @cindex step
798 Single-step the target at its current code position, or at an optional address.
799
800 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
801 |@option{run_and_init}]
802 @cindex reset
803 Do a hard-reset. The optional parameter specifies what should happen after the reset.
804 This optional parameter overwrites the setting specified in the configuration file,
805 making the new behaviour the default for the @option{reset} command.
806 @itemize @minus
807 @item @b{run}
808 @cindex reset run
809 Let the target run.
810 @item @b{halt}
811 @cindex reset halt
812 Immediately halt the target (works only with certain configurations).
813 @item @b{init}
814 @cindex reset init
815 Immediately halt the target, and execute the reset script (works only with certain
816 configurations)
817 @item @b{run_and_halt}
818 @cindex reset run_and_halt
819 Let the target run for a certain amount of time, then request a halt.
820 @item @b{run_and_init}
821 @cindex reset run_and_init
822 Let the target run for a certain amount of time, then request a halt. Execute the
823 reset script once the target entered debug mode.
824 @end itemize
825 @end itemize
826
827 @subsection Memory access commands
828 These commands allow accesses of a specific size to the memory system:
829 @itemize @bullet
830 @item @b{mdw} <@var{addr}> [@var{count}]
831 @cindex mdw
832 display memory words
833 @item @b{mdh} <@var{addr}> [@var{count}]
834 @cindex mdh
835 display memory half-words
836 @item @b{mdb} <@var{addr}> [@var{count}]
837 @cindex mdb
838 display memory bytes
839 @item @b{mww} <@var{addr}> <@var{value}>
840 @cindex mww
841 write memory word
842 @item @b{mwh} <@var{addr}> <@var{value}>
843 @cindex mwh
844 write memory half-word
845 @item @b{mwb} <@var{addr}> <@var{value}>
846 @cindex mwb
847 write memory byte
848
849 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
850 @cindex load_image
851 Load image <@var{file}> to target memory at <@var{address}>
852 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
853 @cindex dump_image
854 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
855 (binary) <@var{file}>.
856 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
857 @cindex verify_image
858 Verify <@var{file}> to target memory starting at <@var{address}>.
859 This will first attempt using a crc checksum, if this fails it will try a binary compare.
860 @end itemize
861
862 @subsection Flash commands
863 @cindex Flash commands
864 @itemize @bullet
865 @item @b{flash banks}
866 @cindex flash banks
867 List configured flash banks
868 @item @b{flash info} <@var{num}>
869 @cindex flash info
870 Print info about flash bank <@option{num}>
871 @item @b{flash probe} <@var{num}>
872 @cindex flash probe
873 Identify the flash, or validate the parameters of the configured flash. Operation
874 depends on the flash type.
875 @item @b{flash erase_check} <@var{num}>
876 @cindex flash erase_check
877 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
878 updates the erase state information displayed by @option{flash info}. That means you have
879 to issue an @option{erase_check} command after erasing or programming the device to get
880 updated information.
881 @item @b{flash protect_check} <@var{num}>
882 @cindex flash protect_check
883 Check protection state of sectors in flash bank <num>.
884 @option{flash erase_sector} using the same syntax.
885 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
886 @cindex flash erase_sector
887 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
888 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
889 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
890 the CFI driver).
891 @item @b{flash erase_address} <@var{address}> <@var{length}>
892 @cindex flash erase_address
893 Erase sectors starting at <@var{address}> for <@var{length}> number of bytes
894 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
895 @cindex flash write_bank
896 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
897 <@option{offset}> bytes from the beginning of the bank.
898 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
899 @cindex flash write_image
900 Write the image <@var{file}> to the current target's flash bank(s). A relocation
901 [@var{offset}] can be specified and the file [@var{type}] can be specified
902 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
903 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
904 if the @option{erase} parameter is given.
905 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
906 @cindex flash protect
907 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
908 <@var{last}> of @option{flash bank} <@var{num}>.
909 @end itemize
910
911 @page
912 @section Target Specific Commands
913 @cindex Target Specific Commands
914
915 @subsection AT91SAM7 specific commands
916 @cindex AT91SAM7 specific commands
917 The flash configuration is deduced from the chip identification register. The flash
918 controller handles erases automatically on a page (128/265 byte) basis so erase is
919 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
920 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
921 that can be erased separatly.Only an EraseAll command is supported by the controller
922 for each flash plane and this is called with
923 @itemize @bullet
924 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
925 bulk erase flash planes first_plane to last_plane.
926 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
927 @cindex at91sam7 gpnvm
928 set or clear a gpnvm bit for the processor
929 @end itemize
930
931 @subsection STR9 specific commands
932 @cindex STR9 specific commands
933 These are flash specific commands when using the str9xpec driver.
934 @itemize @bullet
935 @item @b{str9xpec enable_turbo} <@var{num}>
936 @cindex str9xpec enable_turbo
937 enable turbo mode, simply this will remove the str9 from the chain and talk
938 directly to the embedded flash controller.
939 @item @b{str9xpec disable_turbo} <@var{num}>
940 @cindex str9xpec disable_turbo
941 restore the str9 into jtag chain.
942 @item @b{str9xpec lock} <@var{num}>
943 @cindex str9xpec lock
944 lock str9 device. The str9 will only respond to an unlock command that will
945 erase the device.
946 @item @b{str9xpec unlock} <@var{num}>
947 @cindex str9xpec unlock
948 unlock str9 device.
949 @item @b{str9xpec options_read} <@var{num}>
950 @cindex str9xpec options_read
951 read str9 option bytes.
952 @item @b{str9xpec options_write} <@var{num}>
953 @cindex str9xpec options_write
954 write str9 option bytes.
955 @end itemize
956
957 @subsection STR9 configuration
958 @cindex STR9 configuration
959 @itemize @bullet
960 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
961 <@var{BBADR}> <@var{NBBADR}>
962 @cindex str9x flash_config
963 Configure str9 flash controller.
964 @smallexample
965 eg. str9x flash_config 0 4 2 0 0x80000
966 This will setup
967 BBSR - Boot Bank Size register
968 NBBSR - Non Boot Bank Size register
969 BBADR - Boot Bank Start Address register
970 NBBADR - Boot Bank Start Address register
971 @end smallexample
972 @end itemize
973
974 @subsection STR9 option byte configuration
975 @cindex STR9 option byte configuration
976 @itemize @bullet
977 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
978 @cindex str9xpec options_cmap
979 configure str9 boot bank.
980 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
981 @cindex str9xpec options_lvdthd
982 configure str9 lvd threshold.
983 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
984 @cindex str9xpec options_lvdsel
985 configure str9 lvd source.
986 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
987 @cindex str9xpec options_lvdwarn
988 configure str9 lvd reset warning source.
989 @end itemize
990
991 @subsection STM32x specific commands
992 @cindex STM32x specific commands
993
994 These are flash specific commands when using the stm32x driver.
995 @itemize @bullet
996 @item @b{stm32x lock} <@var{num}>
997 @cindex stm32x lock
998 lock stm32 device.
999 @item @b{stm32x unlock} <@var{num}>
1000 @cindex stm32x unlock
1001 unlock stm32 device.
1002 @item @b{stm32x options_read} <@var{num}>
1003 @cindex stm32x options_read
1004 read stm32 option bytes.
1005 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1006 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1007 @cindex stm32x options_write
1008 write stm32 option bytes.
1009 @item @b{stm32x mass_erase} <@var{num}>
1010 @cindex stm32x mass_erase
1011 mass erase flash memory.
1012 @end itemize
1013
1014 @page
1015 @section Architecture Specific Commands
1016 @cindex Architecture Specific Commands
1017
1018 @subsection ARMV4/5 specific commands
1019 @cindex ARMV4/5 specific commands
1020
1021 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1022 or Intel XScale (XScale isn't supported yet).
1023 @itemize @bullet
1024 @item @b{armv4_5 reg}
1025 @cindex armv4_5 reg
1026 Display a list of all banked core registers, fetching the current value from every
1027 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1028 register value.
1029 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1030 @cindex armv4_5 core_mode
1031 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1032 The target is resumed in the currently set @option{core_mode}.
1033 @end itemize
1034
1035 @subsection ARM7/9 specific commands
1036 @cindex ARM7/9 specific commands
1037
1038 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1039 ARM920t or ARM926EJ-S.
1040 @itemize @bullet
1041 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1042 @cindex arm7_9 sw_bkpts
1043 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1044 one of the watchpoint registers to implement software breakpoints. Disabling
1045 SW Bkpts frees that register again.
1046 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1047 @cindex arm7_9 force_hw_bkpts
1048 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1049 breakpoints are turned into hardware breakpoints.
1050 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1051 @cindex arm7_9 dbgrq
1052 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1053 safe for all but ARM7TDMI--S cores (like Philips LPC).
1054 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1055 @cindex arm7_9 fast_memory_access
1056 Allow the OpenOCD to read and write memory without checking completion of
1057 the operation. This provides a huge speed increase, especially with USB JTAG
1058 cables (FT2232), but might be unsafe if used with targets running at a very low
1059 speed, like the 32kHz startup clock of an AT91RM9200.
1060 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1061 @cindex arm7_9 dcc_downloads
1062 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1063 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1064 unsafe, especially with targets running at a very low speed. This command was introduced
1065 with OpenOCD rev. 60.
1066 @end itemize
1067
1068 @subsection ARM720T specific commands
1069 @cindex ARM720T specific commands
1070
1071 @itemize @bullet
1072 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1073 @cindex arm720t cp15
1074 display/modify cp15 register <@option{num}> [@option{value}].
1075 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1076 @cindex arm720t md<bhw>_phys
1077 Display memory at physical address addr.
1078 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1079 @cindex arm720t mw<bhw>_phys
1080 Write memory at physical address addr.
1081 @item @b{arm720t virt2phys} <@var{va}>
1082 @cindex arm720t virt2phys
1083 Translate a virtual address to a physical address.
1084 @end itemize
1085
1086 @subsection ARM9TDMI specific commands
1087 @cindex ARM9TDMI specific commands
1088
1089 @itemize @bullet
1090 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1091 @cindex arm9tdmi vector_catch
1092 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1093 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1094 @option{irq} @option{fiq}.
1095
1096 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1097 @end itemize
1098
1099 @subsection ARM966E specific commands
1100 @cindex ARM966E specific commands
1101
1102 @itemize @bullet
1103 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1104 @cindex arm966e cp15
1105 display/modify cp15 register <@option{num}> [@option{value}].
1106 @end itemize
1107
1108 @subsection ARM920T specific commands
1109 @cindex ARM920T specific commands
1110
1111 @itemize @bullet
1112 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1113 @cindex arm920t cp15
1114 display/modify cp15 register <@option{num}> [@option{value}].
1115 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1116 @cindex arm920t cp15i
1117 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1118 @item @b{arm920t cache_info}
1119 @cindex arm920t cache_info
1120 Print information about the caches found. This allows you to see if your target
1121 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1122 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1123 @cindex arm920t md<bhw>_phys
1124 Display memory at physical address addr.
1125 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1126 @cindex arm920t mw<bhw>_phys
1127 Write memory at physical address addr.
1128 @item @b{arm920t read_cache} <@var{filename}>
1129 @cindex arm920t read_cache
1130 Dump the content of ICache and DCache to a file.
1131 @item @b{arm920t read_mmu} <@var{filename}>
1132 @cindex arm920t read_mmu
1133 Dump the content of the ITLB and DTLB to a file.
1134 @item @b{arm920t virt2phys} <@var{va}>
1135 @cindex arm920t virt2phys
1136 Translate a virtual address to a physical address.
1137 @end itemize
1138
1139 @subsection ARM926EJS specific commands
1140 @cindex ARM926EJS specific commands
1141
1142 @itemize @bullet
1143 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1144 @cindex arm926ejs cp15
1145 display/modify cp15 register <@option{num}> [@option{value}].
1146 @item @b{arm926ejs cache_info}
1147 @cindex arm926ejs cache_info
1148 Print information about the caches found.
1149 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1150 @cindex arm926ejs md<bhw>_phys
1151 Display memory at physical address addr.
1152 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1153 @cindex arm926ejs mw<bhw>_phys
1154 Write memory at physical address addr.
1155 @item @b{arm926ejs virt2phys} <@var{va}>
1156 @cindex arm926ejs virt2phys
1157 Translate a virtual address to a physical address.
1158 @end itemize
1159
1160 @page
1161 @section Debug commands
1162 @cindex Debug commands
1163 The following commands give direct access to the core, and are most likely
1164 only useful while debugging the OpenOCD.
1165 @itemize @bullet
1166 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1167 @cindex arm7_9 write_xpsr
1168 Immediately write either the current program status register (CPSR) or the saved
1169 program status register (SPSR), without changing the register cache (as displayed
1170 by the @option{reg} and @option{armv4_5 reg} commands).
1171 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1172 <@var{0=cpsr},@var{1=spsr}>
1173 @cindex arm7_9 write_xpsr_im8
1174 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1175 operation (similar to @option{write_xpsr}).
1176 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1177 @cindex arm7_9 write_core_reg
1178 Write a core register, without changing the register cache (as displayed by the
1179 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1180 encoding of the [M4:M0] bits of the PSR.
1181 @end itemize
1182
1183 @page
1184 @section JTAG commands
1185 @cindex JTAG commands
1186 @itemize @bullet
1187 @item @b{scan_chain}
1188 @cindex scan_chain
1189 Print current scan chain configuration.
1190 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1191 @cindex jtag_reset
1192 Toggle reset lines.
1193 @item @b{endstate} <@var{tap_state}>
1194 @cindex endstate
1195 Finish JTAG operations in <@var{tap_state}>.
1196 @item @b{runtest} <@var{num_cycles}>
1197 @cindex runtest
1198 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1199 @item @b{statemove} [@var{tap_state}]
1200 @cindex statemove
1201 Move to current endstate or [@var{tap_state}]
1202 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1203 @cindex irscan
1204 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1205 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1206 @cindex drscan
1207 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1208 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1209 @cindex verify_ircapture
1210 Verify value captured during Capture-IR. Default is enabled.
1211 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1212 @cindex var
1213 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1214 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1215 @cindex field
1216 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1217 @end itemize
1218
1219 @page
1220 @section Target Requests
1221 @cindex Target Requests
1222 Openocd can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1223 See libdcc in the contrib dir for more details.
1224 @itemize @bullet
1225 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1226 @cindex target_request debugmsgs
1227 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1228 @end itemize
1229
1230 @node Sample Scripts
1231 @chapter Sample Scripts
1232 @cindex scripts
1233
1234 This page shows how to use the target library.
1235
1236 The configuration script can be divided in the following section:
1237 @itemize @bullet
1238 @item daemon configuration
1239 @item interface
1240 @item jtag scan chain
1241 @item target configuration
1242 @item flash configuration
1243 @end itemize
1244
1245 Detailed information about each section can be found at OpenOCD configuration.
1246
1247 @section AT91R40008 example
1248 @cindex AT91R40008 example
1249 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1250 the CPU upon startup of the OpenOCD daemon.
1251 @smallexample
1252 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1253 @end smallexample
1254
1255
1256 @node GDB and Openocd
1257 @chapter GDB and Openocd
1258 @cindex GDB and Openocd
1259 Openocd complies with the remote gdbserver protocol, and as such can be used
1260 to debug remote targets.
1261
1262 @section Connecting to gdb
1263 @cindex Connecting to gdb
1264 A connection is typically started as follows:
1265 @smallexample
1266 target remote localhost:3333
1267 @end smallexample
1268 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1269
1270 To see a list of available openocd commands type @option{monitor help} on the
1271 gdb commandline.
1272
1273 Openocd supports the gdb @option{qSupported} packet, this enables information
1274 to be sent by the gdb server (openocd) to gdb. Typical information includes
1275 packet size and device memory map.
1276
1277 Previous versions of openocd required the following gdb options to increase
1278 the packet size and speed up gdb communication.
1279 @smallexample
1280 set remote memory-write-packet-size 1024
1281 set remote memory-write-packet-size fixed
1282 set remote memory-read-packet-size 1024
1283 set remote memory-read-packet-size fixed
1284 @end smallexample
1285 This is now handled in the @option{qSupported} PacketSize.
1286
1287 @section Programming using gdb
1288 @cindex Programming using gdb
1289
1290 By default the target memory map is sent to gdb, this can be diabled by
1291 the following openocd config option:
1292 @smallexample
1293 gdb_memory_map disable
1294 @end smallexample
1295 For this to function correctly a valid flash config must also be configured
1296 in openocd. For speed also configure a valid working area.
1297
1298 Informing gdb of the memory map of the target will enable gdb to protect any
1299 flash area of the target and use hardware breakpoints by default. This means
1300 that the openocd option @option{arm7_9 force_hw_bkpts} is not required when
1301 using a memory map.
1302
1303 To view the configured memory map in gdb, use the gdb command @option{info mem}
1304 All other unasigned addresses within gdb are treated as RAM.
1305
1306 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1307 this can be changed to the old behaviour by using the following gdb command.
1308 @smallexample
1309 set mem inaccessible-by-default off
1310 @end smallexample
1311
1312 If @option{gdb_flash_program enable} is also used, gdb will be able to
1313 program any flash memory using the vFlash interface.
1314
1315 gdb will look at the target memory map when a load command is given, if any
1316 areas to be programmed lie within the target flash area the vFlash packets
1317 will be used.
1318
1319 Incase the target needs configuring before gdb programming, a script can be executed.
1320 @smallexample
1321 target_script 0 gdb_program_config config.script
1322 @end smallexample
1323
1324 To verify any flash programming the gdb command @option{compare-sections}
1325 can be used.
1326
1327 @node Upgrading
1328 @chapter Deprecated/Removed Commands
1329 @cindex Deprecated/Removed Commands
1330 Certain openocd commands have been deprecated/removed during the various revisions.
1331
1332 @itemize @bullet
1333 @item @b{load_binary}
1334 @cindex load_binary
1335 use @option{load_image} command with same args
1336 @item @b{dump_binary}
1337 @cindex dump_binary
1338 use @option{dump_image} command with same args
1339 @item @b{flash erase}
1340 @cindex flash erase
1341 use @option{flash erase_sector} command with same args
1342 @item @b{flash write}
1343 @cindex flash write
1344 use @option{flash write_bank} command with same args
1345 @item @b{flash write_binary}
1346 @cindex flash write_binary
1347 use @option{flash write_bank} command with same args
1348 @item @b{arm7_9 fast_writes}
1349 @cindex arm7_9 fast_writes
1350 use @option{arm7_9 fast_memory_access} command with same args
1351 @item @b{flash auto_erase}
1352 @cindex flash auto_erase
1353 use @option{flash write_image} command passing @option{erase} as the first parameter.
1354 @end itemize
1355
1356 @node FAQ
1357 @chapter FAQ
1358 @cindex faq
1359 @enumerate
1360 @item OpenOCD complains about a missing cygwin1.dll.
1361
1362 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1363 claims to come with all the necessary dlls. When using Cygwin, try launching
1364 the OpenOCD from the Cygwin shell.
1365
1366 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1367 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1368 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1369
1370 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1371 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1372 software breakpoints consume one of the two available hardware breakpoints,
1373 and are therefore disabled by default. If your code is running from RAM, you
1374 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1375 your code resides in Flash, you can't use software breakpoints, but you can force
1376 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1377
1378 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1379 and works sometimes fine.
1380
1381 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1382 clock at the time you're programming the flash. If you've specified the crystal's
1383 frequency, make sure the PLL is disabled, if you've specified the full core speed
1384 (e.g. 60MHz), make sure the PLL is enabled.
1385
1386 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1387 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1388 out while waiting for end of scan, rtck was disabled".
1389
1390 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1391 settings in your PC BIOS (ECP, EPP, and different versions of those).
1392
1393 @item When debugging with the OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1394 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1395 memory read caused data abort".
1396
1397 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1398 beyond the last valid frame. It might be possible to prevent this by setting up
1399 a proper "initial" stack frame, if you happen to know what exactly has to
1400 be done, feel free to add this here.
1401
1402 @item I get the following message in the OpenOCD console (or log file):
1403 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1404
1405 This warning doesn't indicate any serious problem, as long as you don't want to
1406 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1407 trst_and_srst srst_pulls_trst} to tell the OpenOCD that either your board,
1408 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1409 independently. With this setup, it's not possible to halt the core right out of
1410 reset, everything else should work fine.
1411
1412 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1413 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1414 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1415 quit with an error message. Is there a stability issue with OpenOCD?
1416
1417 No, this is not a stability issue concerning OpenOCD. Most users have solved
1418 this issue by simply using a self-powered USB hub, which they connect their
1419 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1420 supply stable enough for the Amontec JTAGkey to be operated.
1421
1422 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1423 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1424 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1425 What does that mean and what might be the reason for this?
1426
1427 First of all, the reason might be the USB power supply. Try using a self-powered
1428 hub instead of a direct connection to your computer. Secondly, the error code 4
1429 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1430 chip ran into some sort of error - this points us to a USB problem.
1431
1432 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1433 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1434 What does that mean and what might be the reason for this?
1435
1436 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1437 has closed the connection to OpenOCD. This might be a GDB issue.
1438
1439 @item In the configuration file in the section where flash device configurations
1440 are described, there is a parameter for specifying the clock frequency for
1441 LPC2000 internal flash devices (e.g.
1442 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1443 which must be specified in kilohertz. However, I do have a quartz crystal of a
1444 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1445 Is it possible to specify real numbers for the clock frequency?
1446
1447 No. The clock frequency specified here must be given as an integral number.
1448 However, this clock frequency is used by the In-Application-Programming (IAP)
1449 routines of the LPC2000 family only, which seems to be very tolerant concerning
1450 the given clock frequency, so a slight difference between the specified clock
1451 frequency and the actual clock frequency will not cause any trouble.
1452
1453 @item Do I have to keep a specific order for the commands in the configuration file?
1454
1455 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1456 listed for the JTAG scan chain must be given in the right order (jtag_device),
1457 with the device closest to the TDO-Pin being listed first. In general,
1458 whenever objects of the same type exist which require an index number, then
1459 these objects must be given in the right order (jtag_devices, targets and flash
1460 banks - a target references a jtag_device and a flash bank references a target).
1461
1462 @item Sometimes my debugging session terminates with an error. When I look into the
1463 log file, I can see these error messages: Error: arm7_9_common.c:561
1464 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1465
1466 TODO.
1467
1468 @end enumerate
1469
1470 @include fdl.texi
1471
1472 @node Index
1473 @unnumbered Index
1474
1475 @printindex cp
1476
1477 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)