- docs patch from Thomas Kindler
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD.
55 * Developers:: OpenOCD Developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * Tcl Scripting API:: Tcl Scripting API
74 * Upgrading:: Deprecated/Removed commands
75 * Target Library:: Target Library
76 * FAQ:: Frequently Asked Questions
77 * Tcl Crash Course:: Tcl Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main index.
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) compliant taps on your target board.
96
97 @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
98 Based, Parallel Port Based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
102 ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB Protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
125
126 @node Building
127 @chapter Building
128 @cindex building OpenOCD
129
130 @section Pre-Built Tools
131 If you are interested in getting actual work done rather than building
132 OpenOCD, then check if your interface supplier provides binaries for
133 you. Chances are that that binary is from some SVN version that is more
134 stable than SVN trunk where bleeding edge development takes place.
135
136 @section Packagers Please Read!
137
138 If you are a @b{PACKAGER} of OpenOCD if you
139
140 @enumerate
141 @item @b{Sell dongles} and include pre-built binaries
142 @item @b{Supply tools} i.e.: A complete development solution
143 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
144 @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro
145 @end enumerate
146
147 As a @b{PACKAGER} - you are at the top of the food chain. You solve
148 problems for downstream users. What you fix or solve - solves hundreds
149 if not thousands of user questions. If something does not work for you
150 please let us know. That said, would also like you to follow a few
151 suggestions:
152
153 @enumerate
154 @item @b{Always build with printer ports enabled}
155 @item @b{Try to use LIBFTDI + LIBUSB where possible}. You cover more bases
156 @end enumerate
157
158 It is your decision..
159
160 @itemize @bullet
161 @item @b{Why YES to LIBFTDI + LIBUSB}
162 @itemize @bullet
163 @item @b{LESS} work - libusb perhaps already there
164 @item @b{LESS} work - identical code multiple platforms
165 @item @b{MORE} dongles are supported
166 @item @b{MORE} platforms are supported
167 @item @b{MORE} complete solution
168 @end itemize
169 @item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)
170 @itemize @bullet
171 @item @b{LESS} Some say it is slower.
172 @item @b{LESS} complex to distribute (external dependencies)
173 @end itemize
174 @end itemize
175
176 @section Building From Source
177
178 You can download the current SVN version with SVN client of your choice from the
179 following repositories:
180
181 @uref{svn://svn.berlios.de/openocd/trunk}
182
183 or
184
185 @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk}
186
187 Using the SVN command line client, you can use the following command to fetch the
188 latest version (make sure there is no (non-svn) directory called "openocd" in the
189 current directory):
190
191 @example
192 svn checkout svn://svn.berlios.de/openocd/trunk openocd
193 @end example
194
195 Building OpenOCD requires a recent version of the GNU autotools.
196 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
197 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
198 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
199 paths, resulting in obscure dependency errors (This is an observation I've gathered
200 from the logs of one user - correct me if I'm wrong).
201
202 You further need the appropriate driver files, if you want to build support for
203 a FTDI FT2232 based interface:
204 @itemize @bullet
205 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
206 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
207 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
208 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
209 @end itemize
210
211 libftdi is supported under Windows. Do not use versions earlier then 0.14.
212
213 In general, the D2XX driver provides superior performance (several times as fast),
214 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
215 a kernel module, only a user space library.
216
217 To build OpenOCD (on both Linux and Cygwin), use the following commands:
218 @example
219 ./bootstrap
220 @end example
221 Bootstrap generates the configure script, and prepares building on your system.
222 @example
223 ./configure [options, see below]
224 @end example
225 Configure generates the Makefiles used to build OpenOCD.
226 @example
227 make
228 make install
229 @end example
230 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
231
232 The configure script takes several options, specifying which JTAG interfaces
233 should be included:
234
235 @itemize @bullet
236 @item
237 @option{--enable-parport} - Bit bang pc printer ports.
238 @item
239 @option{--enable-parport_ppdev} - Parallel Port [see below]
240 @item
241 @option{--enable-parport_giveio} - Parallel Port [see below]
242 @item
243 @option{--enable-amtjtagaccel} - Parallel Port [Amontec, see below]
244 @item
245 @option{--enable-ft2232_ftd2xx} - Numerous USB Type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
246 @item
247 @option{--enable-ft2232_libftdi} - An open source (free) alternate to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin)
248 @item
249 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
250 @item
251 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only equal of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
252 @item
253 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static, specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. Shared is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
254 @item
255 @option{--enable-gw16012}
256 @item
257 @option{--enable-usbprog}
258 @item
259 @option{--enable-presto_libftdi}
260 @item
261 @option{--enable-presto_ftd2xx}
262 @item
263 @option{--enable-jlink} - From SEGGER
264 @item
265 @option{--enable-vsllink}
266 @item
267 @option{--enable-rlink} - Raisonance.com dongle.
268 @item
269 @option{--enable-arm-jtag-ew} - Olimex ARM-JTAG-EW dongle.
270 @end itemize
271
272 @section Parallel Port Dongles
273
274 If you want to access the parallel port using the PPDEV interface you have to specify
275 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
276 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
277 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
278
279 @section FT2232C Based USB Dongles
280
281 There are 2 methods of using the FTD2232, either (1) using the
282 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
283 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
284
285 The FTDICHIP drivers come as either a (win32) ZIP file, or a (Linux)
286 TAR.GZ file. You must unpack them ``some where'' convient. As of this
287 writing (12/26/2008) FTDICHIP does not supply means to install these
288 files ``in an appropriate place'' As a result, there are two
289 ``./configure'' options that help.
290
291 Below is an example build process:
292
293 1) Check out the latest version of ``openocd'' from SVN.
294
295 2) Download & Unpack either the Windows or Linux FTD2xx Drivers
296 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
297
298 @example
299 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
300 /home/duane/libftd2xx0.4.16 => the Linux TAR file contents.
301 @end example
302
303 3) Configure with these options:
304
305 @example
306 Cygwin FTCICHIP solution
307 ./configure --prefix=/home/duane/mytools \
308 --enable-ft2232_ftd2xx \
309 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
310
311 Linux FTDICHIP solution
312 ./configure --prefix=/home/duane/mytools \
313 --enable-ft2232_ftd2xx \
314 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
315
316 Cygwin/Linux LIBFTDI solution
317 Assumes:
318 1a) For Windows: The Windows port of LIBUSB is in place.
319 1b) For Linux: libusb has been built and is inplace.
320
321 2) And libftdi has been built and installed
322 Note: libftdi - relies upon libusb.
323
324 ./configure --prefix=/home/duane/mytools \
325 --enable-ft2232_libftdi
326
327 @end example
328
329 4) Then just type ``make'', and perhaps ``make install''.
330
331
332 @section Miscellaneous configure options
333
334 @itemize @bullet
335 @item
336 @option{--enable-gccwarnings} - enable extra gcc warnings during build.
337 Default is enabled.
338 @item
339 @option{--enable-release} - enable building of a openocd release, generally
340 this is for developers. It simply omits the svn version string when the
341 openocd @option{-v} is executed.
342 @end itemize
343
344 @node JTAG Hardware Dongles
345 @chapter JTAG Hardware Dongles
346 @cindex dongles
347 @cindex FTDI
348 @cindex wiggler
349 @cindex zy1000
350 @cindex printer port
351 @cindex USB Adapter
352 @cindex rtck
353
354 Defined: @b{dongle}: A small device that plugins into a computer and serves as
355 an adapter .... [snip]
356
357 In the OpenOCD case, this generally refers to @b{a small adapater} one
358 attaches to your computer via USB or the Parallel Printer Port. The
359 execption being the Zylin ZY1000 which is a small box you attach via
360 an ethernet cable.
361
362
363 @section Choosing a Dongle
364
365 There are three things you should keep in mind when choosing a dongle.
366
367 @enumerate
368 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
369 @item @b{Connection} Printer Ports - Does your computer have one?
370 @item @b{Connection} Is that long printer bit-bang cable practical?
371 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
372 @end enumerate
373
374 @section Stand alone Systems
375
376 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
377 dongle, but a standalone box.
378
379 @section USB FT2232 Based
380
381 There are many USB JTAG dongles on the market, many of them are based
382 on a chip from ``Future Technology Devices International'' (FTDI)
383 known as the FTDI FT2232.
384
385 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
386
387 As of 28/Nov/2008, the following are supported:
388
389 @itemize @bullet
390 @item @b{usbjtag}
391 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
392 @item @b{jtagkey}
393 @* See: @url{http://www.amontec.com/jtagkey.shtml}
394 @item @b{oocdlink}
395 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
396 @item @b{signalyzer}
397 @* See: @url{http://www.signalyzer.com}
398 @item @b{evb_lm3s811}
399 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
400 @item @b{olimex-jtag}
401 @* See: @url{http://www.olimex.com}
402 @item @b{flyswatter}
403 @* See: @url{http://www.tincantools.com}
404 @item @b{turtelizer2}
405 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
406 @item @b{comstick}
407 @* Link: @url{http://www.hitex.com/index.php?id=383}
408 @item @b{stm32stick}
409 @* Link @url{http://www.hitex.com/stm32-stick}
410 @item @b{axm0432_jtag}
411 @* Axiom AXM-0432 Link @url{http://www.axman.com}
412 @end itemize
413
414 @section USB JLINK based
415 There are several OEM versions of the Segger @b{JLINK} adapter. It is
416 an example of a micro controller based JTAG adapter, it uses an
417 AT91SAM764 internally.
418
419 @itemize @bullet
420 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
421 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
422 @item @b{SEGGER JLINK}
423 @* Link: @url{http://www.segger.com/jlink.html}
424 @item @b{IAR J-Link}
425 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
426 @end itemize
427
428 @section USB RLINK based
429 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
430
431 @itemize @bullet
432 @item @b{Raisonance RLink}
433 @* Link: @url{http://www.raisonance.com/products/RLink.php}
434 @item @b{STM32 Primer}
435 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
436 @item @b{STM32 Primer2}
437 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
438 @end itemize
439
440 @section USB Other
441 @itemize @bullet
442 @item @b{USBprog}
443 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
444
445 @item @b{USB - Presto}
446 @* Link: @url{http://tools.asix.net/prg_presto.htm}
447
448 @item @b{Versaloon-Link}
449 @* Link: @url{http://www.simonqian.com/en/Versaloon}
450
451 @item @b{ARM-JTAG-EW}
452 @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
453 @end itemize
454
455 @section IBM PC Parallel Printer Port Based
456
457 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
458 and the MacGraigor Wiggler. There are many clones and variations of
459 these on the market.
460
461 @itemize @bullet
462
463 @item @b{Wiggler} - There are many clones of this.
464 @* Link: @url{http://www.macraigor.com/wiggler.htm}
465
466 @item @b{DLC5} - From XILINX - There are many clones of this
467 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
468 produced, PDF schematics are easily found and it is easy to make.
469
470 @item @b{Amontec - JTAG Accelerator}
471 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
472
473 @item @b{GW16402}
474 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
475
476 @item @b{Wiggler2}
477 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
478
479 @item @b{Wiggler_ntrst_inverted}
480 @* Yet another variation - See the source code, src/jtag/parport.c
481
482 @item @b{old_amt_wiggler}
483 @* Unknown - probably not on the market today
484
485 @item @b{arm-jtag}
486 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
487
488 @item @b{chameleon}
489 @* Link: @url{http://www.amontec.com/chameleon.shtml}
490
491 @item @b{Triton}
492 @* Unknown.
493
494 @item @b{Lattice}
495 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
496
497 @item @b{flashlink}
498 @* From ST Microsystems, link:
499 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
500 Title: FlashLINK JTAG programing cable for PSD and uPSD
501
502 @end itemize
503
504 @section Other...
505 @itemize @bullet
506
507 @item @b{ep93xx}
508 @* An EP93xx based Linux machine using the GPIO pins directly.
509
510 @item @b{at91rm9200}
511 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
512
513 @end itemize
514
515 @node Running
516 @chapter Running
517 @cindex running OpenOCD
518 @cindex --configfile
519 @cindex --debug_level
520 @cindex --logfile
521 @cindex --search
522
523 The @option{--help} option shows:
524 @verbatim
525 bash$ openocd --help
526
527 --help | -h display this help
528 --version | -v display OpenOCD version
529 --file | -f use configuration file <name>
530 --search | -s dir to search for config files and scripts
531 --debug | -d set debug level <0-3>
532 --log_output | -l redirect log output to file <name>
533 --command | -c run <command>
534 --pipe | -p use pipes when talking to gdb
535 @end verbatim
536
537 By default OpenOCD reads the file configuration file ``openocd.cfg''
538 in the current directory. To specify a different (or multiple)
539 configuration file, you can use the ``-f'' option. For example:
540
541 @example
542 openocd -f config1.cfg -f config2.cfg -f config3.cfg
543 @end example
544
545 Once started, OpenOCD runs as a daemon, waiting for connections from
546 clients (Telnet, GDB, Other).
547
548 If you are having problems, you can enable internal debug messages via
549 the ``-d'' option.
550
551 Also it is possible to interleave commands w/config scripts using the
552 @option{-c} command line switch.
553
554 To enable debug output (when reporting problems or working on OpenOCD
555 itself), use the @option{-d} command line switch. This sets the
556 @option{debug_level} to "3", outputting the most information,
557 including debug messages. The default setting is "2", outputting only
558 informational messages, warnings and errors. You can also change this
559 setting from within a telnet or gdb session using @option{debug_level
560 <n>} @xref{debug_level}.
561
562 You can redirect all output from the daemon to a file using the
563 @option{-l <logfile>} switch.
564
565 Search paths for config/script files can be added to OpenOCD by using
566 the @option{-s <search>} switch. The current directory and the OpenOCD
567 target library is in the search path by default.
568
569 For details on the @option{-p} option. @xref{Connecting to GDB}.
570
571 Note! OpenOCD will launch the GDB & telnet server even if it can not
572 establish a connection with the target. In general, it is possible for
573 the JTAG controller to be unresponsive until the target is set up
574 correctly via e.g. GDB monitor commands in a GDB init script.
575
576 @node Simple Configuration Files
577 @chapter Simple Configuration Files
578 @cindex configuration
579
580 @section Outline
581 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
582
583 @enumerate
584 @item A small openocd.cfg file which ``sources'' other configuration files
585 @item A monolithic openocd.cfg file
586 @item Many -f filename options on the command line
587 @item Your Mixed Solution
588 @end enumerate
589
590 @section Small configuration file method
591
592 This is the preferred method. It is simple and works well for many
593 people. The developers of OpenOCD would encourage you to use this
594 method. If you create a new configuration please email new
595 configurations to the development list.
596
597 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
598
599 @example
600 source [find interface/signalyzer.cfg]
601
602 # Change the default telnet port...
603 telnet_port 4444
604 # GDB connects here
605 gdb_port 3333
606 # GDB can also flash my flash!
607 gdb_memory_map enable
608 gdb_flash_program enable
609
610 source [find target/sam7x256.cfg]
611 @end example
612
613 There are many example configuration scripts you can work with. You
614 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
615 should find:
616
617 @enumerate
618 @item @b{board} - eval board level configurations
619 @item @b{interface} - specific dongle configurations
620 @item @b{target} - the target chips
621 @item @b{tcl} - helper scripts
622 @item @b{xscale} - things specific to the xscale.
623 @end enumerate
624
625 Look first in the ``boards'' area, then the ``targets'' area. Often a board
626 configuration is a good example to work from.
627
628 @section Many -f filename options
629 Some believe this is a wonderful solution, others find it painful.
630
631 You can use a series of ``-f filename'' options on the command line,
632 OpenOCD will read each filename in sequence, for example:
633
634 @example
635 openocd -f file1.cfg -f file2.cfg -f file2.cfg
636 @end example
637
638 You can also intermix various commands with the ``-c'' command line
639 option.
640
641 @section Monolithic file
642 The ``Monolithic File'' dispenses with all ``source'' statements and
643 puts everything in one self contained (monolithic) file. This is not
644 encouraged.
645
646 Please try to ``source'' various files or use the multiple -f
647 technique.
648
649 @section Advice for you
650 Often, one uses a ``mixed approach''. Where possible, please try to
651 ``source'' common things, and if needed cut/paste parts of the
652 standard distribution configuration files as needed.
653
654 @b{REMEMBER:} The ``important parts'' of your configuration file are:
655
656 @enumerate
657 @item @b{Interface} - Defines the dongle
658 @item @b{Taps} - Defines the JTAG Taps
659 @item @b{GDB Targets} - What GDB talks to
660 @item @b{Flash Programing} - Very Helpful
661 @end enumerate
662
663 Some key things you should look at and understand are:
664
665 @enumerate
666 @item The reset configuration of your debug environment as a whole
667 @item Is there a ``work area'' that OpenOCD can use?
668 @* For ARM - work areas mean up to 10x faster downloads.
669 @item For MMU/MPU based ARM chips (i.e.: ARM9 and later) will that work area still be available?
670 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
671 @end enumerate
672
673
674
675 @node Config File Guidelines
676 @chapter Config File Guidelines
677
678 This section/chapter is aimed at developers and integrators of
679 OpenOCD. These are guidelines for creating new boards and new target
680 configurations as of 28/Nov/2008.
681
682 However, you, the user of OpenOCD, should be somewhat familiar with
683 this section as it should help explain some of the internals of what
684 you might be looking at.
685
686 The user should find the following directories under @t{$(INSTALLDIR)/lib/openocd} :
687
688 @itemize @bullet
689 @item @b{interface}
690 @*Think JTAG Dongle. Files that configure the JTAG dongle go here.
691 @item @b{board}
692 @* Think Circuit Board, PWA, PCB, they go by many names. Board files
693 contain initialization items that are specific to a board - for
694 example: The SDRAM initialization sequence for the board, or the type
695 of external flash and what address it is found at. Any initialization
696 sequence to enable that external flash or SDRAM should be found in the
697 board file. Boards may also contain multiple targets, i.e.: Two CPUs, or
698 a CPU and an FPGA or CPLD.
699 @item @b{target}
700 @* Think chip. The ``target'' directory represents a JTAG tap (or
701 chip) OpenOCD should control, not a board. Two common types of targets
702 are ARM chips and FPGA or CPLD chips.
703 @end itemize
704
705 @b{If needed...} The user in their ``openocd.cfg'' file or the board
706 file might override a specific feature in any of the above files by
707 setting a variable or two before sourcing the target file. Or adding
708 various commands specific to their situation.
709
710 @section Interface Config Files
711
712 The user should be able to source one of these files via a command like this:
713
714 @example
715 source [find interface/FOOBAR.cfg]
716 Or:
717 openocd -f interface/FOOBAR.cfg
718 @end example
719
720 A preconfigured interface file should exist for every interface in use
721 today, that said, perhaps some interfaces have only been used by the
722 sole developer who created it.
723
724 @b{FIXME/NOTE:} We need to add support for a variable like Tcl variable
725 tcl_platform(platform), it should be called jim_platform (because it
726 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
727 ``cygwin'' or ``mingw''
728
729 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
730
731 @section Board Config Files
732
733 @b{Note: BOARD directory NEW as of 28/nov/2008}
734
735 The user should be able to source one of these files via a command like this:
736
737 @example
738 source [find board/FOOBAR.cfg]
739 Or:
740 openocd -f board/FOOBAR.cfg
741 @end example
742
743
744 The board file should contain one or more @t{source [find
745 target/FOO.cfg]} statements along with any board specific things.
746
747 In summary the board files should contain (if present)
748
749 @enumerate
750 @item External flash configuration (i.e.: the flash on CS0)
751 @item SDRAM configuration (size, speed, etc.
752 @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash)
753 @item Multiple TARGET source statements
754 @item All things that are not ``inside a chip''
755 @item Things inside a chip go in a 'target' file
756 @end enumerate
757
758 @section Target Config Files
759
760 The user should be able to source one of these files via a command like this:
761
762 @example
763 source [find target/FOOBAR.cfg]
764 Or:
765 openocd -f target/FOOBAR.cfg
766 @end example
767
768 In summary the target files should contain
769
770 @enumerate
771 @item Set defaults
772 @item Create taps
773 @item Reset configuration
774 @item Work areas
775 @item CPU/Chip/CPU-Core specific features
776 @item On-Chip flash
777 @end enumerate
778
779 @subsection Important variable names
780
781 By default, the end user should never need to set these
782 variables. However, if the user needs to override a setting they only
783 need to set the variable in a simple way.
784
785 @itemize @bullet
786 @item @b{CHIPNAME}
787 @* This gives a name to the overall chip, and is used as part of the
788 tap identifier dotted name.
789 @item @b{ENDIAN}
790 @* By default little - unless the chip or board is not normally used that way.
791 @item @b{CPUTAPID}
792 @* When OpenOCD examines the JTAG chain, it will attempt to identify
793 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
794 to verify the tap id number verses configuration file and may issue an
795 error or warning like this. The hope is that this will help to pinpoint
796 problems in OpenOCD configurations.
797
798 @example
799 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
800 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
801 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
802 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
803 @end example
804
805 @item @b{_TARGETNAME}
806 @* By convention, this variable is created by the target configuration
807 script. The board configuration file may make use of this variable to
808 configure things like a ``reset init'' script, or other things
809 specific to that board and that target.
810
811 If the chip has 2 targets, use the names @b{_TARGETNAME0},
812 @b{_TARGETNAME1}, ... etc.
813
814 @b{Remember:} The ``board file'' may include multiple targets.
815
816 At no time should the name ``target0'' (the default target name if
817 none was specified) be used. The name ``target0'' is a hard coded name
818 - the next target on the board will be some other number.
819
820 The user (or board file) should reasonably be able to:
821
822 @example
823 source [find target/FOO.cfg]
824 $_TARGETNAME configure ... FOO specific parameters
825
826 source [find target/BAR.cfg]
827 $_TARGETNAME configure ... BAR specific parameters
828 @end example
829
830 @end itemize
831
832 @subsection Tcl Variables Guide Line
833 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
834
835 Thus the rule we follow in OpenOCD is this: Variables that begin with
836 a leading underscore are temporary in nature, and can be modified and
837 used at will within a ?TARGET? configuration file.
838
839 @b{EXAMPLE:} The user should be able to do this:
840
841 @example
842 # Board has 3 chips,
843 # PXA270 #1 network side, big endian
844 # PXA270 #2 video side, little endian
845 # Xilinx Glue logic
846 set CHIPNAME network
847 set ENDIAN big
848 source [find target/pxa270.cfg]
849 # variable: _TARGETNAME = network.cpu
850 # other commands can refer to the "network.cpu" tap.
851 $_TARGETNAME configure .... params for this CPU..
852
853 set ENDIAN little
854 set CHIPNAME video
855 source [find target/pxa270.cfg]
856 # variable: _TARGETNAME = video.cpu
857 # other commands can refer to the "video.cpu" tap.
858 $_TARGETNAME configure .... params for this CPU..
859
860 unset ENDIAN
861 set CHIPNAME xilinx
862 source [find target/spartan3.cfg]
863
864 # Since $_TARGETNAME is temporal..
865 # these names still work!
866 network.cpu configure ... params
867 video.cpu configure ... params
868
869 @end example
870
871 @subsection Default Value Boiler Plate Code
872
873 All target configuration files should start with this (or a modified form)
874
875 @example
876 # SIMPLE example
877 if @{ [info exists CHIPNAME] @} @{
878 set _CHIPNAME $CHIPNAME
879 @} else @{
880 set _CHIPNAME sam7x256
881 @}
882
883 if @{ [info exists ENDIAN] @} @{
884 set _ENDIAN $ENDIAN
885 @} else @{
886 set _ENDIAN little
887 @}
888
889 if @{ [info exists CPUTAPID ] @} @{
890 set _CPUTAPID $CPUTAPID
891 @} else @{
892 set _CPUTAPID 0x3f0f0f0f
893 @}
894
895 @end example
896
897 @subsection Creating Taps
898 After the ``defaults'' are choosen [see above] the taps are created.
899
900 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
901
902 @example
903 # for an ARM7TDMI.
904 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
905 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
906 @end example
907
908 @b{COMPLEX example:}
909
910 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
911
912 @enumerate
913 @item @b{Unform tap names} - See: Tap Naming Convention
914 @item @b{_TARGETNAME} is created at the end where used.
915 @end enumerate
916
917 @example
918 if @{ [info exists FLASHTAPID ] @} @{
919 set _FLASHTAPID $FLASHTAPID
920 @} else @{
921 set _FLASHTAPID 0x25966041
922 @}
923 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
924
925 if @{ [info exists CPUTAPID ] @} @{
926 set _CPUTAPID $CPUTAPID
927 @} else @{
928 set _CPUTAPID 0x25966041
929 @}
930 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
931
932
933 if @{ [info exists BSTAPID ] @} @{
934 set _BSTAPID $BSTAPID
935 @} else @{
936 set _BSTAPID 0x1457f041
937 @}
938 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
939
940 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
941 @end example
942
943 @b{Tap Naming Convention}
944
945 See the command ``jtag newtap'' for detail, but in brief the names you should use are:
946
947 @itemize @bullet
948 @item @b{tap}
949 @item @b{cpu}
950 @item @b{flash}
951 @item @b{bs}
952 @item @b{jrc}
953 @item @b{unknownN} - it happens :-(
954 @end itemize
955
956 @subsection Reset Configuration
957
958 Some chips have specific ways the TRST and SRST signals are
959 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
960 @b{BOARD SPECIFIC} they go in the board file.
961
962 @subsection Work Areas
963
964 Work areas are small RAM areas used by OpenOCD to speed up downloads,
965 and to download small snippets of code to program flash chips.
966
967 If the chip includes a form of ``on-chip-ram'' - and many do - define
968 a reasonable work area and use the ``backup'' option.
969
970 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
971 inaccessible if/when the application code enables or disables the MMU.
972
973 @subsection ARM Core Specific Hacks
974
975 If the chip has a DCC, enable it. If the chip is an ARM9 with some
976 special high speed download features - enable it.
977
978 If the chip has an ARM ``vector catch'' feature - by default enable
979 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
980 user is really writing a handler for those situations - they can
981 easily disable it. Experiance has shown the ``vector catch'' is
982 helpful - for common programing errors.
983
984 If present, the MMU, the MPU and the CACHE should be disabled.
985
986 @subsection Internal Flash Configuration
987
988 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
989
990 @b{Never ever} in the ``target configuration file'' define any type of
991 flash that is external to the chip. (For example the BOOT flash on
992 Chip Select 0). The BOOT flash information goes in a board file - not
993 the TARGET (chip) file.
994
995 Examples:
996 @itemize @bullet
997 @item at91sam7x256 - has 256K flash YES enable it.
998 @item str912 - has flash internal YES enable it.
999 @item imx27 - uses boot flash on CS0 - it goes in the board file.
1000 @item pxa270 - again - CS0 flash - it goes in the board file.
1001 @end itemize
1002
1003 @node About JIM-Tcl
1004 @chapter About JIM-Tcl
1005 @cindex JIM Tcl
1006 @cindex tcl
1007
1008 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1009 learn more about JIM here: @url{http://jim.berlios.de}
1010
1011 @itemize @bullet
1012 @item @b{JIM vs. Tcl}
1013 @* JIM-TCL is a stripped down version of the well known Tcl language,
1014 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1015 fewer features. JIM-Tcl is a single .C file and a single .H file and
1016 impliments the basic Tcl command set along. In contrast: Tcl 8.6 is a
1017 4.2 MB .zip file containing 1540 files.
1018
1019 @item @b{Missing Features}
1020 @* Our practice has been: Add/clone the real Tcl feature if/when
1021 needed. We welcome JIM Tcl improvements, not bloat.
1022
1023 @item @b{Scripts}
1024 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1025 command interpreter today (28/nov/2008) is a mixture of (newer)
1026 JIM-Tcl commands, and (older) the orginal command interpreter.
1027
1028 @item @b{Commands}
1029 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1030 can type a Tcl for() loop, set variables, etc.
1031
1032 @item @b{Historical Note}
1033 @* JIM-Tcl was introduced to OpenOCD in spring 2008.
1034
1035 @item @b{Need a crash course in Tcl?}
1036 @* See: @xref{Tcl Crash Course}.
1037 @end itemize
1038
1039
1040 @node Daemon Configuration
1041 @chapter Daemon Configuration
1042 The commands here are commonly found in the openocd.cfg file and are
1043 used to specify what TCP/IP ports are used, and how GDB should be
1044 supported.
1045 @section init
1046 @cindex init
1047 This command terminates the configuration stage and
1048 enters the normal command mode. This can be useful to add commands to
1049 the startup scripts and commands such as resetting the target,
1050 programming flash, etc. To reset the CPU upon startup, add "init" and
1051 "reset" at the end of the config script or at the end of the OpenOCD
1052 command line using the @option{-c} command line switch.
1053
1054 If this command does not appear in any startup/configuration file
1055 OpenOCD executes the command for you after processing all
1056 configuration files and/or command line options.
1057
1058 @b{NOTE:} This command normally occurs at or near the end of your
1059 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1060 targets ready. For example: If your openocd.cfg file needs to
1061 read/write memory on your target - the init command must occur before
1062 the memory read/write commands.
1063
1064 @section TCP/IP Ports
1065 @itemize @bullet
1066 @item @b{telnet_port} <@var{number}>
1067 @cindex telnet_port
1068 @*Intended for a human. Port on which to listen for incoming telnet connections.
1069
1070 @item @b{tcl_port} <@var{number}>
1071 @cindex tcl_port
1072 @*Intended as a machine interface. Port on which to listen for
1073 incoming Tcl syntax. This port is intended as a simplified RPC
1074 connection that can be used by clients to issue commands and get the
1075 output from the Tcl engine.
1076
1077 @item @b{gdb_port} <@var{number}>
1078 @cindex gdb_port
1079 @*First port on which to listen for incoming GDB connections. The GDB port for the
1080 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1081 @end itemize
1082
1083 @section GDB Items
1084 @itemize @bullet
1085 @item @b{gdb_breakpoint_override} <@var{hard|soft|disable}>
1086 @cindex gdb_breakpoint_override
1087 @anchor{gdb_breakpoint_override}
1088 @*Force breakpoint type for gdb 'break' commands.
1089 The raison d'etre for this option is to support GDB GUI's without
1090 a hard/soft breakpoint concept where the default OpenOCD and
1091 GDB behaviour is not sufficient. Note that GDB will use hardware
1092 breakpoints if the memory map has been set up for flash regions.
1093
1094 This option replaces older arm7_9 target commands that addressed
1095 the same issue.
1096
1097 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1098 @cindex gdb_detach
1099 @*Configures what OpenOCD will do when GDB detaches from the daemon.
1100 Default behaviour is <@var{resume}>
1101
1102 @item @b{gdb_memory_map} <@var{enable|disable}>
1103 @cindex gdb_memory_map
1104 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to GDB when
1105 requested. GDB will then know when to set hardware breakpoints, and program flash
1106 using the GDB load command. @option{gdb_flash_program enable} must also be enabled
1107 for flash programming to work.
1108 Default behaviour is <@var{enable}>
1109 @xref{gdb_flash_program}.
1110
1111 @item @b{gdb_flash_program} <@var{enable|disable}>
1112 @cindex gdb_flash_program
1113 @anchor{gdb_flash_program}
1114 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1115 vFlash packet is received.
1116 Default behaviour is <@var{enable}>
1117 @comment END GDB Items
1118 @end itemize
1119
1120 @node Interface - Dongle Configuration
1121 @chapter Interface - Dongle Configuration
1122 Interface commands are normally found in an interface configuration
1123 file which is sourced by your openocd.cfg file. These commands tell
1124 OpenOCD what type of JTAG dongle you have and how to talk to it.
1125 @section Simple Complete Interface Examples
1126 @b{A Turtelizer FT2232 Based JTAG Dongle}
1127 @verbatim
1128 #interface
1129 interface ft2232
1130 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1131 ft2232_layout turtelizer2
1132 ft2232_vid_pid 0x0403 0xbdc8
1133 @end verbatim
1134 @b{A SEGGER Jlink}
1135 @verbatim
1136 # jlink interface
1137 interface jlink
1138 @end verbatim
1139 @b{A Raisonance RLink}
1140 @verbatim
1141 # rlink interface
1142 interface rlink
1143 @end verbatim
1144 @b{Parallel Port}
1145 @verbatim
1146 interface parport
1147 parport_port 0xc8b8
1148 parport_cable wiggler
1149 jtag_speed 0
1150 @end verbatim
1151 @b{ARM-JTAG-EW}
1152 @verbatim
1153 interface arm-jtag-ew
1154 @end verbatim
1155 @section Interface Command
1156
1157 The interface command tells OpenOCD what type of JTAG dongle you are
1158 using. Depending on the type of dongle, you may need to have one or
1159 more additional commands.
1160
1161 @itemize @bullet
1162
1163 @item @b{interface} <@var{name}>
1164 @cindex interface
1165 @*Use the interface driver <@var{name}> to connect to the
1166 target. Currently supported interfaces are
1167
1168 @itemize @minus
1169
1170 @item @b{parport}
1171 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1172
1173 @item @b{amt_jtagaccel}
1174 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1175 mode parallel port
1176
1177 @item @b{ft2232}
1178 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1179 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1180 platform. The libftdi uses libusb, and should be portable to all systems that provide
1181 libusb.
1182
1183 @item @b{ep93xx}
1184 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1185
1186 @item @b{presto}
1187 @* ASIX PRESTO USB JTAG programmer.
1188
1189 @item @b{usbprog}
1190 @* usbprog is a freely programmable USB adapter.
1191
1192 @item @b{gw16012}
1193 @* Gateworks GW16012 JTAG programmer.
1194
1195 @item @b{jlink}
1196 @* Segger jlink USB adapter
1197
1198 @item @b{rlink}
1199 @* Raisonance RLink USB adapter
1200
1201 @item @b{vsllink}
1202 @* vsllink is part of Versaloon which is a versatile USB programmer.
1203
1204 @item @b{arm-jtag-ew}
1205 @* Olimex ARM-JTAG-EW USB adapter
1206 @comment - End parameters
1207 @end itemize
1208 @comment - End Interface
1209 @end itemize
1210 @subsection parport options
1211
1212 @itemize @bullet
1213 @item @b{parport_port} <@var{number}>
1214 @cindex parport_port
1215 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1216 the @file{/dev/parport} device
1217
1218 When using PPDEV to access the parallel port, use the number of the parallel port:
1219 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1220 you may encounter a problem.
1221 @item @b{parport_cable} <@var{name}>
1222 @cindex parport_cable
1223 @*The layout of the parallel port cable used to connect to the target.
1224 Currently supported cables are
1225 @itemize @minus
1226 @item @b{wiggler}
1227 @cindex wiggler
1228 The original Wiggler layout, also supported by several clones, such
1229 as the Olimex ARM-JTAG
1230 @item @b{wiggler2}
1231 @cindex wiggler2
1232 Same as original wiggler except an led is fitted on D5.
1233 @item @b{wiggler_ntrst_inverted}
1234 @cindex wiggler_ntrst_inverted
1235 Same as original wiggler except TRST is inverted.
1236 @item @b{old_amt_wiggler}
1237 @cindex old_amt_wiggler
1238 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1239 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1240 @item @b{chameleon}
1241 @cindex chameleon
1242 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1243 program the Chameleon itself, not a connected target.
1244 @item @b{dlc5}
1245 @cindex dlc5
1246 The Xilinx Parallel cable III.
1247 @item @b{triton}
1248 @cindex triton
1249 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1250 This is also the layout used by the HollyGates design
1251 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1252 @item @b{flashlink}
1253 @cindex flashlink
1254 The ST Parallel cable.
1255 @item @b{arm-jtag}
1256 @cindex arm-jtag
1257 Same as original wiggler except SRST and TRST connections reversed and
1258 TRST is also inverted.
1259 @item @b{altium}
1260 @cindex altium
1261 Altium Universal JTAG cable.
1262 @end itemize
1263 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1264 @cindex parport_write_on_exit
1265 @*This will configure the parallel driver to write a known value to the parallel
1266 interface on exiting OpenOCD
1267 @end itemize
1268
1269 @subsection amt_jtagaccel options
1270 @itemize @bullet
1271 @item @b{parport_port} <@var{number}>
1272 @cindex parport_port
1273 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1274 @file{/dev/parport} device
1275 @end itemize
1276 @subsection ft2232 options
1277
1278 @itemize @bullet
1279 @item @b{ft2232_device_desc} <@var{description}>
1280 @cindex ft2232_device_desc
1281 @*The USB device description of the FTDI FT2232 device. If not
1282 specified, the FTDI default value is used. This setting is only valid
1283 if compiled with FTD2XX support.
1284
1285 @b{TODO:} Confirm the following: On Windows the name needs to end with
1286 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1287 this be added and when must it not be added? Why can't the code in the
1288 interface or in OpenOCD automatically add this if needed? -- Duane.
1289
1290 @item @b{ft2232_serial} <@var{serial-number}>
1291 @cindex ft2232_serial
1292 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1293 values are used.
1294 @item @b{ft2232_layout} <@var{name}>
1295 @cindex ft2232_layout
1296 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1297 signals. Valid layouts are
1298 @itemize @minus
1299 @item @b{usbjtag}
1300 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1301 @item @b{jtagkey}
1302 Amontec JTAGkey and JTAGkey-Tiny
1303 @item @b{signalyzer}
1304 Signalyzer
1305 @item @b{olimex-jtag}
1306 Olimex ARM-USB-OCD
1307 @item @b{m5960}
1308 American Microsystems M5960
1309 @item @b{evb_lm3s811}
1310 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1311 SRST signals on external connector
1312 @item @b{comstick}
1313 Hitex STR9 comstick
1314 @item @b{stm32stick}
1315 Hitex STM32 Performance Stick
1316 @item @b{flyswatter}
1317 Tin Can Tools Flyswatter
1318 @item @b{turtelizer2}
1319 egnite Software turtelizer2
1320 @item @b{oocdlink}
1321 OOCDLink
1322 @item @b{axm0432_jtag}
1323 Axiom AXM-0432
1324 @end itemize
1325
1326 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1327 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1328 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g.
1329 @example
1330 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1331 @end example
1332 @item @b{ft2232_latency} <@var{ms}>
1333 @*On some systems using FT2232 based JTAG interfaces the FT_Read function call in
1334 ft2232_read() fails to return the expected number of bytes. This can be caused by
1335 USB communication delays and has proved hard to reproduce and debug. Setting the
1336 FT2232 latency timer to a larger value increases delays for short USB packets but it
1337 also reduces the risk of timeouts before receiving the expected number of bytes.
1338 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1339 @end itemize
1340
1341 @subsection ep93xx options
1342 @cindex ep93xx options
1343 Currently, there are no options available for the ep93xx interface.
1344
1345 @section JTAG Speed
1346 @itemize @bullet
1347 @item @b{jtag_khz} <@var{reset speed kHz}>
1348 @cindex jtag_khz
1349
1350 It is debatable if this command belongs here - or in a board
1351 configuration file. In fact, in some situations the JTAG speed is
1352 changed during the target initialisation process (i.e.: (1) slow at
1353 reset, (2) program the CPU clocks, (3) run fast)
1354
1355 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1356
1357 Not all interfaces support ``rtck''. If the interface device can not
1358 support the rate asked for, or can not translate from kHz to
1359 jtag_speed, then an error is returned.
1360
1361 Make sure the JTAG clock is no more than @math{1/6th CPU-Clock}. This is
1362 especially true for synthesized cores (-S). Also see RTCK.
1363
1364 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1365 please use the command: 'jtag_rclk FREQ'. This Tcl proc (in
1366 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1367 the specified frequency.
1368
1369 @example
1370 # Fall back to 3mhz if RCLK is not supported
1371 jtag_rclk 3000
1372 @end example
1373
1374 @item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above.
1375 @cindex jtag_speed
1376 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1377 speed. The actual effect of this option depends on the JTAG interface used.
1378
1379 The speed used during reset can be adjusted using setting jtag_speed during
1380 pre_reset and post_reset events.
1381 @itemize @minus
1382
1383 @item wiggler: maximum speed / @var{number}
1384 @item ft2232: 6MHz / (@var{number}+1)
1385 @item amt jtagaccel: 8 / 2**@var{number}
1386 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1387 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1388 @comment end speed list.
1389 @end itemize
1390
1391 @comment END command list
1392 @end itemize
1393
1394 @node Reset Configuration
1395 @chapter Reset Configuration
1396 @cindex Reset Configuration
1397
1398 Every system configuration may require a different reset
1399 configuration. This can also be quite confusing. Please see the
1400 various board files for example.
1401
1402 @section jtag_nsrst_delay <@var{ms}>
1403 @cindex jtag_nsrst_delay
1404 @*How long (in milliseconds) OpenOCD should wait after deasserting
1405 nSRST before starting new JTAG operations.
1406
1407 @section jtag_ntrst_delay <@var{ms}>
1408 @cindex jtag_ntrst_delay
1409 @*Same @b{jtag_nsrst_delay}, but for nTRST
1410
1411 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1412 big resistor/capacitor, reset supervisor, or on-chip features). This
1413 keeps the signal asserted for some time after the external reset got
1414 deasserted.
1415
1416 @section reset_config
1417
1418 @b{Note:} To maintainers and integrators: Where exactly the
1419 ``reset configuration'' goes is a good question. It touches several
1420 things at once. In the end, if you have a board file - the board file
1421 should define it and assume 100% that the DONGLE supports
1422 anything. However, that does not mean the target should not also make
1423 not of something the silicon vendor has done inside the
1424 chip. @i{Grr.... nothing is every pretty.}
1425
1426 @* @b{Problems:}
1427 @enumerate
1428 @item Every JTAG Dongle is slightly different, some dongles implement reset differently.
1429 @item Every board is also slightly different; some boards tie TRST and SRST together.
1430 @item Every chip is slightly different; some chips internally tie the two signals together.
1431 @item Some may not implement all of the signals the same way.
1432 @item Some signals might be push-pull, others open-drain/collector.
1433 @end enumerate
1434 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1435 reset the TAP via TRST and send commands through the JTAG tap to halt
1436 the CPU at the reset vector before the 1st instruction is executed,
1437 and finally release the SRST signal.
1438 @*Depending on your board vendor, chip vendor, etc., these
1439 signals may have slightly different names.
1440
1441 OpenOCD defines these signals in these terms:
1442 @itemize @bullet
1443 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1444 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1445 @end itemize
1446
1447 The Command:
1448
1449 @itemize @bullet
1450 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1451 @cindex reset_config
1452 @* The @t{reset_config} command tells OpenOCD the reset configuration
1453 of your combination of Dongle, Board, and Chips.
1454 If the JTAG interface provides SRST, but the target doesn't connect
1455 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1456 be @option{none}, @option{trst_only}, @option{srst_only} or
1457 @option{trst_and_srst}.
1458
1459 [@var{combination}] is an optional value specifying broken reset
1460 signal implementations. @option{srst_pulls_trst} states that the
1461 test logic is reset together with the reset of the system (e.g. Philips
1462 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1463 the system is reset together with the test logic (only hypothetical, I
1464 haven't seen hardware with such a bug, and can be worked around).
1465 @option{combined} implies both @option{srst_pulls_trst} and
1466 @option{trst_pulls_srst}. The default behaviour if no option given is
1467 @option{separate}.
1468
1469 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1470 driver type of the reset lines to be specified. Possible values are
1471 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1472 test reset signal, and @option{srst_open_drain} (default) and
1473 @option{srst_push_pull} for the system reset. These values only affect
1474 JTAG interfaces with support for different drivers, like the Amontec
1475 JTAGkey and JTAGAccelerator.
1476
1477 @comment - end command
1478 @end itemize
1479
1480
1481
1482 @node Tap Creation
1483 @chapter Tap Creation
1484 @cindex tap creation
1485 @cindex tap configuration
1486
1487 In order for OpenOCD to control a target, a JTAG tap must be
1488 defined/created.
1489
1490 Commands to create taps are normally found in a configuration file and
1491 are not normally typed by a human.
1492
1493 When a tap is created a @b{dotted.name} is created for the tap. Other
1494 commands use that dotted.name to manipulate or refer to the tap.
1495
1496 Tap Uses:
1497 @itemize @bullet
1498 @item @b{Debug Target} A tap can be used by a GDB debug target
1499 @item @b{Flash Programing} Some chips program the flash via JTAG
1500 @item @b{Boundry Scan} Some chips support boundary scan.
1501 @end itemize
1502
1503
1504 @section jtag newtap
1505 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1506 @cindex jtag_device
1507 @cindex jtag newtap
1508 @cindex tap
1509 @cindex tap order
1510 @cindex tap geometry
1511
1512 @comment START options
1513 @itemize @bullet
1514 @item @b{CHIPNAME}
1515 @* is a symbolic name of the chip.
1516 @item @b{TAPNAME}
1517 @* is a symbol name of a tap present on the chip.
1518 @item @b{Required configparams}
1519 @* Every tap has 3 required configparams, and several ``optional
1520 parameters'', the required parameters are:
1521 @comment START REQUIRED
1522 @itemize @bullet
1523 @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
1524 @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
1525 @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
1526 some devices, there are bits in the IR that aren't used. This lets you mask
1527 them off when doing comparisons. In general, this should just be all ones for
1528 the size of the IR.
1529 @comment END REQUIRED
1530 @end itemize
1531 An example of a FOOBAR Tap
1532 @example
1533 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1534 @end example
1535 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1536 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1537 [6,4,2,0] are checked.
1538
1539 @item @b{Optional configparams}
1540 @comment START Optional
1541 @itemize @bullet
1542 @item @b{-expected-id NUMBER}
1543 @* By default it is zero. If non-zero represents the
1544 expected tap ID used when the JTAG chain is examined. See below.
1545 @item @b{-disable}
1546 @item @b{-enable}
1547 @* By default not specified the tap is enabled. Some chips have a
1548 JTAG route controller (JRC) that is used to enable and/or disable
1549 specific JTAG taps. You can later enable or disable any JTAG tap via
1550 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1551 DOTTED.NAME}
1552 @comment END Optional
1553 @end itemize
1554
1555 @comment END OPTIONS
1556 @end itemize
1557 @b{Notes:}
1558 @comment START NOTES
1559 @itemize @bullet
1560 @item @b{Technically}
1561 @* newtap is a sub command of the ``jtag'' command
1562 @item @b{Big Picture Background}
1563 @*GDB Talks to OpenOCD using the GDB protocol via
1564 TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to
1565 control the JTAG chain on your board. Your board has one or more chips
1566 in a @i{daisy chain configuration}. Each chip may have one or more
1567 JTAG taps. GDB ends up talking via OpenOCD to one of the taps.
1568 @item @b{NAME Rules}
1569 @*Names follow ``C'' symbol name rules (start with alpha ...)
1570 @item @b{TAPNAME - Conventions}
1571 @itemize @bullet
1572 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1573 @item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1574 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1575 @item @b{bs} - for boundary scan if this is a seperate tap.
1576 @item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards)
1577 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1578 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1579 @item @b{When in doubt} - use the chip maker's name in their data sheet.
1580 @end itemize
1581 @item @b{DOTTED.NAME}
1582 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1583 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1584 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1585 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1586 numerous other places to refer to various taps.
1587 @item @b{ORDER}
1588 @* The order this command appears via the config files is
1589 important.
1590 @item @b{Multi Tap Example}
1591 @* This example is based on the ST Microsystems STR912. See the ST
1592 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1593 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
1594
1595 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1596 @*@b{checked: 28/nov/2008}
1597
1598 The diagram shows that the TDO pin connects to the flash tap, flash TDI
1599 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1600 tap which then connects to the TDI pin.
1601
1602 @example
1603 # The order is...
1604 # create tap: 'str912.flash'
1605 jtag newtap str912 flash ... params ...
1606 # create tap: 'str912.cpu'
1607 jtag newtap str912 cpu ... params ...
1608 # create tap: 'str912.bs'
1609 jtag newtap str912 bs ... params ...
1610 @end example
1611
1612 @item @b{Note: Deprecated} - Index Numbers
1613 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1614 feature is still present, however its use is highly discouraged and
1615 should not be counted upon.
1616 @item @b{Multiple chips}
1617 @* If your board has multiple chips, you should be
1618 able to @b{source} two configuration files, in the proper order, and
1619 have the taps created in the proper order.
1620 @comment END NOTES
1621 @end itemize
1622 @comment at command level
1623 @comment DOCUMENT old command
1624 @section jtag_device - REMOVED
1625 @example
1626 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1627 @end example
1628 @cindex jtag_device
1629
1630 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1631 by the ``jtag newtap'' command. The documentation remains here so that
1632 one can easily convert the old syntax to the new syntax. About the old
1633 syntax: The old syntax is positional, i.e.: The 3rd parameter is the
1634 ``irmask''. The new syntax requires named prefixes, and supports
1635 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1636 @b{jtag newtap} command for details.
1637 @example
1638 OLD: jtag_device 8 0x01 0xe3 0xfe
1639 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1640 @end example
1641
1642 @section Enable/Disable Taps
1643 @b{Note:} These commands are intended to be used as a machine/script
1644 interface. Humans might find the ``scan_chain'' command more helpful
1645 when querying the state of the JTAG taps.
1646
1647 @b{By default, all taps are enabled}
1648
1649 @itemize @bullet
1650 @item @b{jtag tapenable} @var{DOTTED.NAME}
1651 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1652 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1653 @end itemize
1654 @cindex tap enable
1655 @cindex tap disable
1656 @cindex JRC
1657 @cindex route controller
1658
1659 These commands are used when your target has a JTAG route controller
1660 that effectively adds or removes a tap from the JTAG chain in a
1661 non-standard way.
1662
1663 The ``standard way'' to remove a tap would be to place the tap in
1664 bypass mode. But with the advent of modern chips, this is not always a
1665 good solution. Some taps operate slowly, others operate fast, and
1666 there are other JTAG clock synchronisation problems one must face. To
1667 solve that problem, the JTAG route controller was introduced. Rather
1668 than ``bypass'' the tap, the tap is completely removed from the
1669 circuit and skipped.
1670
1671
1672 From OpenOCD's point of view, a JTAG tap is in one of 3 states:
1673
1674 @itemize @bullet
1675 @item @b{Enabled - Not In ByPass} and has a variable bit length
1676 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1677 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1678 @end itemize
1679
1680 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1681 @b{Historical note:} this feature was added 28/nov/2008
1682
1683 @b{jtag tapisenabled DOTTED.NAME}
1684
1685 This command returns 1 if the named tap is currently enabled, 0 if not.
1686 This command exists so that scripts that manipulate a JRC (like the
1687 OMAP3530 has) can determine if OpenOCD thinks a tap is presently
1688 enabled or disabled.
1689
1690 @page
1691 @node Target Configuration
1692 @chapter Target Configuration
1693
1694 This chapter discusses how to create a GDB debug target. Before
1695 creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
1696
1697 @section targets [NAME]
1698 @b{Note:} This command name is PLURAL - not singular.
1699
1700 With NO parameter, this plural @b{targets} command lists all known
1701 targets in a human friendly form.
1702
1703 With a parameter, this plural @b{targets} command sets the current
1704 target to the given name. (i.e.: If there are multiple debug targets)
1705
1706 Example:
1707 @verbatim
1708 (gdb) mon targets
1709 CmdName Type Endian ChainPos State
1710 -- ---------- ---------- ---------- -------- ----------
1711 0: target0 arm7tdmi little 0 halted
1712 @end verbatim
1713
1714 @section target COMMANDS
1715 @b{Note:} This command name is SINGULAR - not plural. It is used to
1716 manipulate specific targets, to create targets and other things.
1717
1718 Once a target is created, a TARGETNAME (object) command is created;
1719 see below for details.
1720
1721 The TARGET command accepts these sub-commands:
1722 @itemize @bullet
1723 @item @b{create} .. parameters ..
1724 @* creates a new target, see below for details.
1725 @item @b{types}
1726 @* Lists all supported target types (perhaps some are not yet in this document).
1727 @item @b{names}
1728 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1729 @verbatim
1730 foreach t [target names] {
1731 puts [format "Target: %s\n" $t]
1732 }
1733 @end verbatim
1734 @item @b{current}
1735 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1736 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1737 @item @b{number} @b{NUMBER}
1738 @* Internally OpenOCD maintains a list of targets - in numerical index
1739 (0..N-1) this command returns the name of the target at index N.
1740 Example usage:
1741 @verbatim
1742 set thename [target number $x]
1743 puts [format "Target %d is: %s\n" $x $thename]
1744 @end verbatim
1745 @item @b{count}
1746 @* Returns the number of targets known to OpenOCD (see number above)
1747 Example:
1748 @verbatim
1749 set c [target count]
1750 for { set x 0 } { $x < $c } { incr x } {
1751 # Assuming you have created this function
1752 print_target_details $x
1753 }
1754 @end verbatim
1755
1756 @end itemize
1757
1758 @section TARGETNAME (object) commands
1759 @b{Use:} Once a target is created, an ``object name'' that represents the
1760 target is created. By convention, the target name is identical to the
1761 tap name. In a multiple target system, one can preceed many common
1762 commands with a specific target name and effect only that target.
1763 @example
1764 str912.cpu mww 0x1234 0x42
1765 omap3530.cpu mww 0x5555 123
1766 @end example
1767
1768 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1769 good example is a on screen button, once a button is created a button
1770 has a name (a path in Tk terms) and that name is useable as a 1st
1771 class command. For example in Tk, one can create a button and later
1772 configure it like this:
1773
1774 @example
1775 # Create
1776 button .foobar -background red -command @{ foo @}
1777 # Modify
1778 .foobar configure -foreground blue
1779 # Query
1780 set x [.foobar cget -background]
1781 # Report
1782 puts [format "The button is %s" $x]
1783 @end example
1784
1785 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1786 button. Commands available as a ``target object'' are:
1787
1788 @comment START targetobj commands.
1789 @itemize @bullet
1790 @item @b{configure} - configure the target; see Target Config/Cget Options below
1791 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1792 @item @b{curstate} - current target state (running, halt, etc.
1793 @item @b{eventlist}
1794 @* Intended for a human to see/read the currently configure target events.
1795 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1796 @comment start memory
1797 @itemize @bullet
1798 @item @b{mww} ...
1799 @item @b{mwh} ...
1800 @item @b{mwb} ...
1801 @item @b{mdw} ...
1802 @item @b{mdh} ...
1803 @item @b{mdb} ...
1804 @comment end memory
1805 @end itemize
1806 @item @b{Memory To Array, Array To Memory}
1807 @* These are aimed at a machine interface to memory
1808 @itemize @bullet
1809 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1810 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1811 @* Where:
1812 @* @b{ARRAYNAME} is the name of an array variable
1813 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1814 @* @b{ADDRESS} is the target memory address
1815 @* @b{COUNT} is the number of elements to process
1816 @end itemize
1817 @item @b{Used during ``reset''}
1818 @* These commands are used internally by the OpenOCD scripts to deal
1819 with odd reset situations and are not documented here.
1820 @itemize @bullet
1821 @item @b{arp_examine}
1822 @item @b{arp_poll}
1823 @item @b{arp_reset}
1824 @item @b{arp_halt}
1825 @item @b{arp_waitstate}
1826 @end itemize
1827 @item @b{invoke-event} @b{EVENT-NAME}
1828 @* Invokes the specific event manually for the target
1829 @end itemize
1830
1831 @section Target Events
1832 At various times, certain things can happen, or you want them to happen.
1833
1834 Examples:
1835 @itemize @bullet
1836 @item What should happen when GDB connects? Should your target reset?
1837 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1838 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1839 @end itemize
1840
1841 All of the above items are handled by target events.
1842
1843 To specify an event action, either during target creation, or later
1844 via ``$_TARGETNAME configure'' see this example.
1845
1846 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1847 target event name, and BODY is a Tcl procedure or string of commands
1848 to execute.
1849
1850 The programmers model is the ``-command'' option used in Tcl/Tk
1851 buttons and events. Below are two identical examples, the first
1852 creates and invokes small procedure. The second inlines the procedure.
1853
1854 @example
1855 proc my_attach_proc @{ @} @{
1856 puts "RESET...."
1857 reset halt
1858 @}
1859 mychip.cpu configure -event gdb-attach my_attach_proc
1860 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1861 @end example
1862
1863 @section Current Events
1864 The following events are available:
1865 @itemize @bullet
1866 @item @b{debug-halted}
1867 @* The target has halted for debug reasons (i.e.: breakpoint)
1868 @item @b{debug-resumed}
1869 @* The target has resumed (i.e.: gdb said run)
1870 @item @b{early-halted}
1871 @* Occurs early in the halt process
1872 @item @b{examine-end}
1873 @* Currently not used (goal: when JTAG examine completes)
1874 @item @b{examine-start}
1875 @* Currently not used (goal: when JTAG examine starts)
1876 @item @b{gdb-attach}
1877 @* When GDB connects
1878 @item @b{gdb-detach}
1879 @* When GDB disconnects
1880 @item @b{gdb-end}
1881 @* When the taret has halted and GDB is not doing anything (see early halt)
1882 @item @b{gdb-flash-erase-start}
1883 @* Before the GDB flash process tries to erase the flash
1884 @item @b{gdb-flash-erase-end}
1885 @* After the GDB flash process has finished erasing the flash
1886 @item @b{gdb-flash-write-start}
1887 @* Before GDB writes to the flash
1888 @item @b{gdb-flash-write-end}
1889 @* After GDB writes to the flash
1890 @item @b{gdb-start}
1891 @* Before the taret steps, gdb is trying to start/resume the target
1892 @item @b{halted}
1893 @* The target has halted
1894 @item @b{old-gdb_program_config}
1895 @* DO NOT USE THIS: Used internally
1896 @item @b{old-pre_resume}
1897 @* DO NOT USE THIS: Used internally
1898 @item @b{reset-assert-pre}
1899 @* Before reset is asserted on the tap.
1900 @item @b{reset-assert-post}
1901 @* Reset is now asserted on the tap.
1902 @item @b{reset-deassert-pre}
1903 @* Reset is about to be released on the tap
1904 @item @b{reset-deassert-post}
1905 @* Reset has been released on the tap
1906 @item @b{reset-end}
1907 @* Currently not used.
1908 @item @b{reset-halt-post}
1909 @* Currently not usd
1910 @item @b{reset-halt-pre}
1911 @* Currently not used
1912 @item @b{reset-init}
1913 @* Currently not used
1914 @item @b{reset-start}
1915 @* Currently not used
1916 @item @b{reset-wait-pos}
1917 @* Currently not used
1918 @item @b{reset-wait-pre}
1919 @* Currently not used
1920 @item @b{resume-start}
1921 @* Before any target is resumed
1922 @item @b{resume-end}
1923 @* After all targets have resumed
1924 @item @b{resume-ok}
1925 @* Success
1926 @item @b{resumed}
1927 @* Target has resumed
1928 @item @b{tap-enable}
1929 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
1930 @example
1931 jtag configure DOTTED.NAME -event tap-enable @{
1932 puts "Enabling CPU"
1933 ...
1934 @}
1935 @end example
1936 @item @b{tap-disable}
1937 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
1938 @example
1939 jtag configure DOTTED.NAME -event tap-disable @{
1940 puts "Disabling CPU"
1941 ...
1942 @}
1943 @end example
1944 @end itemize
1945
1946 @section target create
1947 @cindex target
1948 @cindex target creation
1949
1950 @example
1951 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1952 @end example
1953 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1954 @comment START params
1955 @itemize @bullet
1956 @item @b{NAME}
1957 @* Is the name of the debug target. By convention it should be the tap
1958 DOTTED.NAME, this name is also used to create the target object
1959 command.
1960 @item @b{TYPE}
1961 @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are:
1962 @comment START types
1963 @itemize @minus
1964 @item @b{arm7tdmi}
1965 @item @b{arm720t}
1966 @item @b{arm9tdmi}
1967 @item @b{arm920t}
1968 @item @b{arm922t}
1969 @item @b{arm926ejs}
1970 @item @b{arm966e}
1971 @item @b{cortex_m3}
1972 @item @b{feroceon}
1973 @item @b{xscale}
1974 @item @b{arm11}
1975 @item @b{mips_m4k}
1976 @comment end TYPES
1977 @end itemize
1978 @item @b{PARAMS}
1979 @*PARAMs are various target configuration parameters. The following ones are mandatory:
1980 @comment START mandatory
1981 @itemize @bullet
1982 @item @b{-endian big|little}
1983 @item @b{-chain-position DOTTED.NAME}
1984 @comment end MANDATORY
1985 @end itemize
1986 @comment END params
1987 @end itemize
1988
1989 @section Target Config/Cget Options
1990 These options can be specified when the target is created, or later
1991 via the configure option or to query the target via cget.
1992 @itemize @bullet
1993 @item @b{-type} - returns the target type
1994 @item @b{-event NAME BODY} see Target events
1995 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
1996 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
1997 @item @b{-work-area-size [ADDRESS]} specify/set the work area
1998 @item @b{-work-area-backup [0|1]} does the work area get backed up
1999 @item @b{-endian [big|little]}
2000 @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about
2001 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
2002 @end itemize
2003 Example:
2004 @example
2005 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
2006 set name [target number $x]
2007 set y [$name cget -endian]
2008 set z [$name cget -type]
2009 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
2010 @}
2011 @end example
2012
2013 @section Target Variants
2014 @itemize @bullet
2015 @item @b{arm7tdmi}
2016 @* Unknown (please write me)
2017 @item @b{arm720t}
2018 @* Unknown (please write me) (similar to arm7tdmi)
2019 @item @b{arm9tdmi}
2020 @* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t}
2021 This enables the hardware single-stepping support found on these
2022 cores.
2023 @item @b{arm920t}
2024 @* None.
2025 @item @b{arm966e}
2026 @* None (this is also used as the ARM946)
2027 @item @b{cortex_m3}
2028 @* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause
2029 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2030 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2031 be detected and the normal reset behaviour used.
2032 @item @b{xscale}
2033 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2034 @item @b{arm11}
2035 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2036 @item @b{mips_m4k}
2037 @* Use variant @option{ejtag_srst} when debugging targets that do not
2038 provide a functional SRST line on the EJTAG connector. This causes
2039 OpenOCD to instead use an EJTAG software reset command to reset the
2040 processor. You still need to enable @option{srst} on the reset
2041 configuration command to enable OpenOCD hardware reset functionality.
2042 @comment END variants
2043 @end itemize
2044 @section working_area - Command Removed
2045 @cindex working_area
2046 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2047 @* This documentation remains because there are existing scripts that
2048 still use this that need to be converted.
2049 @example
2050 working_area target# address size backup| [virtualaddress]
2051 @end example
2052 @* The target# is a the 0 based target numerical index.
2053
2054 This command specifies a working area for the debugger to use. This
2055 may be used to speed-up downloads to target memory and flash
2056 operations, or to perform otherwise unavailable operations (some
2057 coprocessor operations on ARM7/9 systems, for example). The last
2058 parameter decides whether the memory should be preserved
2059 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
2060 possible, use a working_area that doesn't need to be backed up, as
2061 performing a backup slows down operation.
2062
2063 @node Flash Configuration
2064 @chapter Flash programming
2065 @cindex Flash Configuration
2066
2067 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2068 flash that a micro may boot from. Perhaps you, the reader, would like to
2069 contribute support for this.
2070
2071 Flash Steps:
2072 @enumerate
2073 @item Configure via the command @b{flash bank}
2074 @* Normally this is done in a configuration file.
2075 @item Operate on the flash via @b{flash SOMECOMMAND}
2076 @* Often commands to manipulate the flash are typed by a human, or run
2077 via a script in some automated way. For example: To program the boot
2078 flash on your board.
2079 @item GDB Flashing
2080 @* Flashing via GDB requires the flash be configured via ``flash
2081 bank'', and the GDB flash features be enabled. See the daemon
2082 configuration section for more details.
2083 @end enumerate
2084
2085 @section Flash commands
2086 @cindex Flash commands
2087 @subsection flash banks
2088 @b{flash banks}
2089 @cindex flash banks
2090 @*List configured flash banks
2091 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2092 @subsection flash info
2093 @b{flash info} <@var{num}>
2094 @cindex flash info
2095 @*Print info about flash bank <@option{num}>
2096 @subsection flash probe
2097 @b{flash probe} <@var{num}>
2098 @cindex flash probe
2099 @*Identify the flash, or validate the parameters of the configured flash. Operation
2100 depends on the flash type.
2101 @subsection flash erase_check
2102 @b{flash erase_check} <@var{num}>
2103 @cindex flash erase_check
2104 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2105 updates the erase state information displayed by @option{flash info}. That means you have
2106 to issue an @option{erase_check} command after erasing or programming the device to get
2107 updated information.
2108 @subsection flash protect_check
2109 @b{flash protect_check} <@var{num}>
2110 @cindex flash protect_check
2111 @*Check protection state of sectors in flash bank <num>.
2112 @option{flash erase_sector} using the same syntax.
2113 @subsection flash erase_sector
2114 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2115 @cindex flash erase_sector
2116 @anchor{flash erase_sector}
2117 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2118 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2119 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2120 the CFI driver).
2121 @subsection flash erase_address
2122 @b{flash erase_address} <@var{address}> <@var{length}>
2123 @cindex flash erase_address
2124 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2125 @subsection flash write_bank
2126 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2127 @cindex flash write_bank
2128 @anchor{flash write_bank}
2129 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2130 <@option{offset}> bytes from the beginning of the bank.
2131 @subsection flash write_image
2132 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2133 @cindex flash write_image
2134 @anchor{flash write_image}
2135 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2136 [@var{offset}] can be specified and the file [@var{type}] can be specified
2137 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2138 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2139 if the @option{erase} parameter is given.
2140 @subsection flash protect
2141 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2142 @cindex flash protect
2143 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2144 <@var{last}> of @option{flash bank} <@var{num}>.
2145
2146 @subsection mFlash commands
2147 @cindex mFlash commands
2148 @itemize @bullet
2149 @item @b{mflash probe}
2150 @cindex mflash probe
2151 Probe mflash.
2152 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2153 @cindex mflash write
2154 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2155 <@var{offset}> bytes from the beginning of the bank.
2156 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2157 @cindex mflash dump
2158 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2159 to a <@var{file}>.
2160 @end itemize
2161
2162 @section flash bank command
2163 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2164
2165 @example
2166 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2167 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2168 @end example
2169 @cindex flash bank
2170 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2171 and <@var{bus_width}> bytes using the selected flash <driver>.
2172
2173 @subsection External Flash - cfi options
2174 @cindex cfi options
2175 CFI flashes are external flash chips - often they are connected to a
2176 specific chip select on the CPU. By default, at hard reset, most
2177 CPUs have the ablity to ``boot'' from some flash chip - typically
2178 attached to the CPU's CS0 pin.
2179
2180 For other chip selects: OpenOCD does not know how to configure, or
2181 access a specific chip select. Instead you, the human, might need to
2182 configure additional chip selects via other commands (like: mww) , or
2183 perhaps configure a GPIO pin that controls the ``write protect'' pin
2184 on the flash chip.
2185
2186 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2187 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2188 @*CFI flashes require the number of the target they're connected to as an additional
2189 argument. The CFI driver makes use of a working area (specified for the target)
2190 to significantly speed up operation.
2191
2192 @var{chip_width} and @var{bus_width} are specified in bytes.
2193
2194 The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types.
2195
2196 @var{x16_as_x8} ???
2197
2198 @subsection Internal Flash (Microcontrollers)
2199 @subsubsection lpc2000 options
2200 @cindex lpc2000 options
2201
2202 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2203 <@var{clock}> [@var{calc_checksum}]
2204 @*LPC flashes don't require the chip and bus width to be specified. Additional
2205 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2206 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2207 of the target this flash belongs to (first is 0), the frequency at which the core
2208 is currently running (in kHz - must be an integral number), and the optional keyword
2209 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2210 vector table.
2211
2212
2213 @subsubsection at91sam7 options
2214 @cindex at91sam7 options
2215
2216 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2217 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2218 reading the chip-id and type.
2219
2220 @subsubsection str7 options
2221 @cindex str7 options
2222
2223 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2224 @*variant can be either STR71x, STR73x or STR75x.
2225
2226 @subsubsection str9 options
2227 @cindex str9 options
2228
2229 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2230 @*The str9 needs the flash controller to be configured prior to Flash programming, e.g.
2231 @example
2232 str9x flash_config 0 4 2 0 0x80000
2233 @end example
2234 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2235
2236 @subsubsection str9 options (str9xpec driver)
2237
2238 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2239 @*Before using the flash commands the turbo mode must be enabled using str9xpec
2240 @option{enable_turbo} <@var{num>.}
2241
2242 Only use this driver for locking/unlocking the device or configuring the option bytes.
2243 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2244
2245 @subsubsection Stellaris (LM3Sxxx) options
2246 @cindex Stellaris (LM3Sxxx) options
2247
2248 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2249 @*Stellaris flash plugin only require the @var{target#}.
2250
2251 @subsubsection stm32x options
2252 @cindex stm32x options
2253
2254 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2255 @*stm32x flash plugin only require the @var{target#}.
2256
2257 @subsubsection aduc702x options
2258 @cindex aduc702x options
2259
2260 @b{flash bank aduc702x} 0 0 0 0 <@var{target#}>
2261 @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target#} argument (all devices in this family have the same memory layout).
2262
2263 @subsection mFlash Configuration
2264 @cindex mFlash Configuration
2265 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2266 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2267 @cindex mflash bank
2268 @*Configures a mflash for <@var{soc}> host bank at
2269 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2270 order. Pin number format is dependent on host GPIO calling convention.
2271 If WP or DPD pin was not used, write -1. Currently, mflash bank
2272 support s3c2440 and pxa270.
2273
2274 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2275 @example
2276 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2277 @end example
2278 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2279 @example
2280 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2281 @end example
2282
2283 @section Microcontroller specific Flash Commands
2284
2285 @subsection AT91SAM7 specific commands
2286 @cindex AT91SAM7 specific commands
2287 The flash configuration is deduced from the chip identification register. The flash
2288 controller handles erases automatically on a page (128/265 byte) basis, so erase is
2289 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2290 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2291 that can be erased separatly. Only an EraseAll command is supported by the controller
2292 for each flash plane and this is called with
2293 @itemize @bullet
2294 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2295 @*bulk erase flash planes first_plane to last_plane.
2296 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2297 @cindex at91sam7 gpnvm
2298 @*set or clear a gpnvm bit for the processor
2299 @end itemize
2300
2301 @subsection STR9 specific commands
2302 @cindex STR9 specific commands
2303 @anchor{STR9 specific commands}
2304 These are flash specific commands when using the str9xpec driver.
2305 @itemize @bullet
2306 @item @b{str9xpec enable_turbo} <@var{num}>
2307 @cindex str9xpec enable_turbo
2308 @*enable turbo mode, will simply remove the str9 from the chain and talk
2309 directly to the embedded flash controller.
2310 @item @b{str9xpec disable_turbo} <@var{num}>
2311 @cindex str9xpec disable_turbo
2312 @*restore the str9 into JTAG chain.
2313 @item @b{str9xpec lock} <@var{num}>
2314 @cindex str9xpec lock
2315 @*lock str9 device. The str9 will only respond to an unlock command that will
2316 erase the device.
2317 @item @b{str9xpec unlock} <@var{num}>
2318 @cindex str9xpec unlock
2319 @*unlock str9 device.
2320 @item @b{str9xpec options_read} <@var{num}>
2321 @cindex str9xpec options_read
2322 @*read str9 option bytes.
2323 @item @b{str9xpec options_write} <@var{num}>
2324 @cindex str9xpec options_write
2325 @*write str9 option bytes.
2326 @end itemize
2327
2328 Note: Before using the str9xpec driver here is some background info to help
2329 you better understand how the drivers works. OpenOCD has two flash drivers for
2330 the str9.
2331 @enumerate
2332 @item
2333 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2334 flash programming as it is faster than the @option{str9xpec} driver.
2335 @item
2336 Direct programming @option{str9xpec} using the flash controller. This is an
2337 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2338 core does not need to be running to program using this flash driver. Typical use
2339 for this driver is locking/unlocking the target and programming the option bytes.
2340 @end enumerate
2341
2342 Before we run any commands using the @option{str9xpec} driver we must first disable
2343 the str9 core. This example assumes the @option{str9xpec} driver has been
2344 configured for flash bank 0.
2345 @example
2346 # assert srst, we do not want core running
2347 # while accessing str9xpec flash driver
2348 jtag_reset 0 1
2349 # turn off target polling
2350 poll off
2351 # disable str9 core
2352 str9xpec enable_turbo 0
2353 # read option bytes
2354 str9xpec options_read 0
2355 # re-enable str9 core
2356 str9xpec disable_turbo 0
2357 poll on
2358 reset halt
2359 @end example
2360 The above example will read the str9 option bytes.
2361 When performing a unlock remember that you will not be able to halt the str9 - it
2362 has been locked. Halting the core is not required for the @option{str9xpec} driver
2363 as mentioned above, just issue the commands above manually or from a telnet prompt.
2364
2365 @subsection STR9 configuration
2366 @cindex STR9 configuration
2367 @itemize @bullet
2368 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2369 <@var{BBADR}> <@var{NBBADR}>
2370 @cindex str9x flash_config
2371 @*Configure str9 flash controller.
2372 @example
2373 e.g. str9x flash_config 0 4 2 0 0x80000
2374 This will setup
2375 BBSR - Boot Bank Size register
2376 NBBSR - Non Boot Bank Size register
2377 BBADR - Boot Bank Start Address register
2378 NBBADR - Boot Bank Start Address register
2379 @end example
2380 @end itemize
2381
2382 @subsection STR9 option byte configuration
2383 @cindex STR9 option byte configuration
2384 @itemize @bullet
2385 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2386 @cindex str9xpec options_cmap
2387 @*configure str9 boot bank.
2388 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2389 @cindex str9xpec options_lvdthd
2390 @*configure str9 lvd threshold.
2391 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2392 @cindex str9xpec options_lvdsel
2393 @*configure str9 lvd source.
2394 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2395 @cindex str9xpec options_lvdwarn
2396 @*configure str9 lvd reset warning source.
2397 @end itemize
2398
2399 @subsection STM32x specific commands
2400 @cindex STM32x specific commands
2401
2402 These are flash specific commands when using the stm32x driver.
2403 @itemize @bullet
2404 @item @b{stm32x lock} <@var{num}>
2405 @cindex stm32x lock
2406 @*lock stm32 device.
2407 @item @b{stm32x unlock} <@var{num}>
2408 @cindex stm32x unlock
2409 @*unlock stm32 device.
2410 @item @b{stm32x options_read} <@var{num}>
2411 @cindex stm32x options_read
2412 @*read stm32 option bytes.
2413 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2414 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2415 @cindex stm32x options_write
2416 @*write stm32 option bytes.
2417 @item @b{stm32x mass_erase} <@var{num}>
2418 @cindex stm32x mass_erase
2419 @*mass erase flash memory.
2420 @end itemize
2421
2422 @subsection Stellaris specific commands
2423 @cindex Stellaris specific commands
2424
2425 These are flash specific commands when using the Stellaris driver.
2426 @itemize @bullet
2427 @item @b{stellaris mass_erase} <@var{num}>
2428 @cindex stellaris mass_erase
2429 @*mass erase flash memory.
2430 @end itemize
2431
2432 @node General Commands
2433 @chapter General Commands
2434 @cindex commands
2435
2436 The commands documented in this chapter here are common commands that
2437 you, as a human, may want to type and see the output of. Configuration type
2438 commands are documented elsewhere.
2439
2440 Intent:
2441 @itemize @bullet
2442 @item @b{Source Of Commands}
2443 @* OpenOCD commands can occur in a configuration script (discussed
2444 elsewhere) or typed manually by a human or supplied programatically,
2445 or via one of several TCP/IP Ports.
2446
2447 @item @b{From the human}
2448 @* A human should interact with the telnet interface (default port: 4444,
2449 or via GDB, default port 3333)
2450
2451 To issue commands from within a GDB session, use the @option{monitor}
2452 command, e.g. use @option{monitor poll} to issue the @option{poll}
2453 command. All output is relayed through the GDB session.
2454
2455 @item @b{Machine Interface}
2456 The Tcl interface's intent is to be a machine interface. The default Tcl
2457 port is 5555.
2458 @end itemize
2459
2460
2461 @section Daemon Commands
2462
2463 @subsection sleep [@var{msec}]
2464 @cindex sleep
2465 @*Wait for n milliseconds before resuming. Useful in connection with script files
2466 (@var{script} command and @var{target_script} configuration).
2467
2468 @subsection shutdown
2469 @cindex shutdown
2470 @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
2471
2472 @subsection debug_level [@var{n}]
2473 @cindex debug_level
2474 @anchor{debug_level}
2475 @*Display or adjust debug level to n<0-3>
2476
2477 @subsection fast [@var{enable|disable}]
2478 @cindex fast
2479 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2480 downloads and fast memory access will work if the JTAG interface isn't too fast and
2481 the core doesn't run at a too low frequency. Note that this option only changes the default
2482 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2483 individually.
2484
2485 The target specific "dangerous" optimisation tweaking options may come and go
2486 as more robust and user friendly ways are found to ensure maximum throughput
2487 and robustness with a minimum of configuration.
2488
2489 Typically the "fast enable" is specified first on the command line:
2490
2491 @example
2492 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2493 @end example
2494
2495 @subsection log_output <@var{file}>
2496 @cindex log_output
2497 @*Redirect logging to <file> (default: stderr)
2498
2499 @subsection script <@var{file}>
2500 @cindex script
2501 @*Execute commands from <file>
2502 See also: ``source [find FILENAME]''
2503
2504 @section Target state handling
2505 @subsection power <@var{on}|@var{off}>
2506 @cindex reg
2507 @*Turn power switch to target on/off.
2508 No arguments: print status.
2509 Not all interfaces support this.
2510
2511 @subsection reg [@option{#}|@option{name}] [value]
2512 @cindex reg
2513 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2514 No arguments: list all available registers for the current target.
2515 Number or name argument: display a register.
2516 Number or name and value arguments: set register value.
2517
2518 @subsection poll [@option{on}|@option{off}]
2519 @cindex poll
2520 @*Poll the target for its current state. If the target is in debug mode, architecture
2521 specific information about the current state is printed. An optional parameter
2522 allows continuous polling to be enabled and disabled.
2523
2524 @subsection halt [@option{ms}]
2525 @cindex halt
2526 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2527 Default [@option{ms}] is 5 seconds if no arg given.
2528 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2529 will stop OpenOCD from waiting.
2530
2531 @subsection wait_halt [@option{ms}]
2532 @cindex wait_halt
2533 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2534 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2535 arg is given.
2536
2537 @subsection resume [@var{address}]
2538 @cindex resume
2539 @*Resume the target at its current code position, or at an optional address.
2540 OpenOCD will wait 5 seconds for the target to resume.
2541
2542 @subsection step [@var{address}]
2543 @cindex step
2544 @*Single-step the target at its current code position, or at an optional address.
2545
2546 @subsection reset [@option{run}|@option{halt}|@option{init}]
2547 @cindex reset
2548 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2549
2550 With no arguments a "reset run" is executed
2551 @itemize @minus
2552 @item @b{run}
2553 @cindex reset run
2554 @*Let the target run.
2555 @item @b{halt}
2556 @cindex reset halt
2557 @*Immediately halt the target (works only with certain configurations).
2558 @item @b{init}
2559 @cindex reset init
2560 @*Immediately halt the target, and execute the reset script (works only with certain
2561 configurations)
2562 @end itemize
2563
2564 @subsection soft_reset_halt
2565 @cindex reset
2566 @*Requesting target halt and executing a soft reset. This is often used
2567 when a target cannot be reset and halted. The target, after reset is
2568 released begins to execute code. OpenOCD attempts to stop the CPU and
2569 then sets the program counter back to the reset vector. Unfortunately
2570 the code that was executed may have left the hardware in an unknown
2571 state.
2572
2573
2574 @section Memory access commands
2575 @subsection meminfo
2576 display available RAM memory.
2577 @subsection Memory peek/poke type commands
2578 These commands allow accesses of a specific size to the memory
2579 system. Often these are used to configure the current target in some
2580 special way. For example - one may need to write certian values to the
2581 SDRAM controller to enable SDRAM.
2582
2583 @enumerate
2584 @item To change the current target see the ``targets'' (plural) command
2585 @item In system level scripts these commands are deprecated, please use the TARGET object versions.
2586 @end enumerate
2587
2588 @itemize @bullet
2589 @item @b{mdw} <@var{addr}> [@var{count}]
2590 @cindex mdw
2591 @*display memory words (32bit)
2592 @item @b{mdh} <@var{addr}> [@var{count}]
2593 @cindex mdh
2594 @*display memory half-words (16bit)
2595 @item @b{mdb} <@var{addr}> [@var{count}]
2596 @cindex mdb
2597 @*display memory bytes (8bit)
2598 @item @b{mww} <@var{addr}> <@var{value}>
2599 @cindex mww
2600 @*write memory word (32bit)
2601 @item @b{mwh} <@var{addr}> <@var{value}>
2602 @cindex mwh
2603 @*write memory half-word (16bit)
2604 @item @b{mwb} <@var{addr}> <@var{value}>
2605 @cindex mwb
2606 @*write memory byte (8bit)
2607 @end itemize
2608
2609 @section Image loading commands
2610 @subsection load_image
2611 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2612 @cindex load_image
2613 @anchor{load_image}
2614 @*Load image <@var{file}> to target memory at <@var{address}>
2615 @subsection fast_load_image
2616 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2617 @cindex fast_load_image
2618 @anchor{fast_load_image}
2619 @*Normally you should be using @b{load_image} or GDB load. However, for
2620 testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
2621 host), storing the image in memory and uploading the image to the target
2622 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2623 Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host
2624 memory, i.e. does not affect target. This approach is also useful when profiling
2625 target programming performance as I/O and target programming can easily be profiled
2626 separately.
2627 @subsection fast_load
2628 @b{fast_load}
2629 @cindex fast_image
2630 @anchor{fast_image}
2631 @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
2632 @subsection dump_image
2633 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2634 @cindex dump_image
2635 @anchor{dump_image}
2636 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2637 (binary) <@var{file}>.
2638 @subsection verify_image
2639 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2640 @cindex verify_image
2641 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2642 This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
2643
2644
2645 @section Breakpoint commands
2646 @cindex Breakpoint commands
2647 @itemize @bullet
2648 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2649 @cindex bp
2650 @*set breakpoint <address> <length> [hw]
2651 @item @b{rbp} <@var{addr}>
2652 @cindex rbp
2653 @*remove breakpoint <adress>
2654 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2655 @cindex wp
2656 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2657 @item @b{rwp} <@var{addr}>
2658 @cindex rwp
2659 @*remove watchpoint <adress>
2660 @end itemize
2661
2662 @section Misc Commands
2663 @cindex Other Target Commands
2664 @itemize
2665 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2666
2667 Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling.
2668
2669 @end itemize
2670
2671 @section Target Specific Commands
2672 @cindex Target Specific Commands
2673
2674
2675 @page
2676 @section Architecture Specific Commands
2677 @cindex Architecture Specific Commands
2678
2679 @subsection ARMV4/5 specific commands
2680 @cindex ARMV4/5 specific commands
2681
2682 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2683 or Intel XScale (XScale isn't supported yet).
2684 @itemize @bullet
2685 @item @b{armv4_5 reg}
2686 @cindex armv4_5 reg
2687 @*Display a list of all banked core registers, fetching the current value from every
2688 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2689 register value.
2690 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2691 @cindex armv4_5 core_mode
2692 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2693 The target is resumed in the currently set @option{core_mode}.
2694 @end itemize
2695
2696 @subsection ARM7/9 specific commands
2697 @cindex ARM7/9 specific commands
2698
2699 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2700 ARM920T or ARM926EJ-S.
2701 @itemize @bullet
2702 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2703 @cindex arm7_9 dbgrq
2704 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2705 safe for all but ARM7TDMI--S cores (like Philips LPC).
2706 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2707 @cindex arm7_9 fast_memory_access
2708 @anchor{arm7_9 fast_memory_access}
2709 @*Allow OpenOCD to read and write memory without checking completion of
2710 the operation. This provides a huge speed increase, especially with USB JTAG
2711 cables (FT2232), but might be unsafe if used with targets running at very low
2712 speeds, like the 32kHz startup clock of an AT91RM9200.
2713 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2714 @cindex arm7_9 dcc_downloads
2715 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2716 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2717 unsafe, especially with targets running at very low speeds. This command was introduced
2718 with OpenOCD rev. 60.
2719 @end itemize
2720
2721 @subsection ARM720T specific commands
2722 @cindex ARM720T specific commands
2723
2724 @itemize @bullet
2725 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2726 @cindex arm720t cp15
2727 @*display/modify cp15 register <@option{num}> [@option{value}].
2728 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2729 @cindex arm720t md<bhw>_phys
2730 @*Display memory at physical address addr.
2731 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2732 @cindex arm720t mw<bhw>_phys
2733 @*Write memory at physical address addr.
2734 @item @b{arm720t virt2phys} <@var{va}>
2735 @cindex arm720t virt2phys
2736 @*Translate a virtual address to a physical address.
2737 @end itemize
2738
2739 @subsection ARM9TDMI specific commands
2740 @cindex ARM9TDMI specific commands
2741
2742 @itemize @bullet
2743 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2744 @cindex arm9tdmi vector_catch
2745 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2746 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2747 @option{irq} @option{fiq}.
2748
2749 Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S.
2750 @end itemize
2751
2752 @subsection ARM966E specific commands
2753 @cindex ARM966E specific commands
2754
2755 @itemize @bullet
2756 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2757 @cindex arm966e cp15
2758 @*display/modify cp15 register <@option{num}> [@option{value}].
2759 @end itemize
2760
2761 @subsection ARM920T specific commands
2762 @cindex ARM920T specific commands
2763
2764 @itemize @bullet
2765 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2766 @cindex arm920t cp15
2767 @*display/modify cp15 register <@option{num}> [@option{value}].
2768 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2769 @cindex arm920t cp15i
2770 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2771 @item @b{arm920t cache_info}
2772 @cindex arm920t cache_info
2773 @*Print information about the caches found. This allows to see whether your target
2774 is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2775 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2776 @cindex arm920t md<bhw>_phys
2777 @*Display memory at physical address addr.
2778 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2779 @cindex arm920t mw<bhw>_phys
2780 @*Write memory at physical address addr.
2781 @item @b{arm920t read_cache} <@var{filename}>
2782 @cindex arm920t read_cache
2783 @*Dump the content of ICache and DCache to a file.
2784 @item @b{arm920t read_mmu} <@var{filename}>
2785 @cindex arm920t read_mmu
2786 @*Dump the content of the ITLB and DTLB to a file.
2787 @item @b{arm920t virt2phys} <@var{va}>
2788 @cindex arm920t virt2phys
2789 @*Translate a virtual address to a physical address.
2790 @end itemize
2791
2792 @subsection ARM926EJ-S specific commands
2793 @cindex ARM926EJ-S specific commands
2794
2795 @itemize @bullet
2796 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2797 @cindex arm926ejs cp15
2798 @*display/modify cp15 register <@option{num}> [@option{value}].
2799 @item @b{arm926ejs cache_info}
2800 @cindex arm926ejs cache_info
2801 @*Print information about the caches found.
2802 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2803 @cindex arm926ejs md<bhw>_phys
2804 @*Display memory at physical address addr.
2805 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2806 @cindex arm926ejs mw<bhw>_phys
2807 @*Write memory at physical address addr.
2808 @item @b{arm926ejs virt2phys} <@var{va}>
2809 @cindex arm926ejs virt2phys
2810 @*Translate a virtual address to a physical address.
2811 @end itemize
2812
2813 @subsection CORTEX_M3 specific commands
2814 @cindex CORTEX_M3 specific commands
2815
2816 @itemize @bullet
2817 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2818 @cindex cortex_m3 maskisr
2819 @*Enable masking (disabling) interrupts during target step/resume.
2820 @end itemize
2821
2822 @page
2823 @section Debug commands
2824 @cindex Debug commands
2825 The following commands give direct access to the core, and are most likely
2826 only useful while debugging OpenOCD.
2827 @itemize @bullet
2828 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2829 @cindex arm7_9 write_xpsr
2830 @*Immediately write either the current program status register (CPSR) or the saved
2831 program status register (SPSR), without changing the register cache (as displayed
2832 by the @option{reg} and @option{armv4_5 reg} commands).
2833 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2834 <@var{0=cpsr},@var{1=spsr}>
2835 @cindex arm7_9 write_xpsr_im8
2836 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2837 operation (similar to @option{write_xpsr}).
2838 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2839 @cindex arm7_9 write_core_reg
2840 @*Write a core register, without changing the register cache (as displayed by the
2841 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2842 encoding of the [M4:M0] bits of the PSR.
2843 @end itemize
2844
2845 @section Target Requests
2846 @cindex Target Requests
2847 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2848 See libdcc in the contrib dir for more details.
2849 @itemize @bullet
2850 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
2851 @cindex target_request debugmsgs
2852 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
2853 @end itemize
2854
2855 @node JTAG Commands
2856 @chapter JTAG Commands
2857 @cindex JTAG Commands
2858 Generally most people will not use the bulk of these commands. They
2859 are mostly used by the OpenOCD developers or those who need to
2860 directly manipulate the JTAG taps.
2861
2862 In general these commands control JTAG taps at a very low level. For
2863 example if you need to control a JTAG Route Controller (i.e.: the
2864 OMAP3530 on the Beagle Board has one) you might use these commands in
2865 a script or an event procedure.
2866 @section Commands
2867 @cindex Commands
2868 @itemize @bullet
2869 @item @b{scan_chain}
2870 @cindex scan_chain
2871 @*Print current scan chain configuration.
2872 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2873 @cindex jtag_reset
2874 @*Toggle reset lines.
2875 @item @b{endstate} <@var{tap_state}>
2876 @cindex endstate
2877 @*Finish JTAG operations in <@var{tap_state}>.
2878 @item @b{runtest} <@var{num_cycles}>
2879 @cindex runtest
2880 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2881 @item @b{statemove} [@var{tap_state}]
2882 @cindex statemove
2883 @*Move to current endstate or [@var{tap_state}]
2884 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2885 @cindex irscan
2886 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2887 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2888 @cindex drscan
2889 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2890 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2891 @cindex verify_ircapture
2892 @*Verify value captured during Capture-IR. Default is enabled.
2893 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2894 @cindex var
2895 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2896 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2897 @cindex field
2898 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2899 @end itemize
2900
2901 @section Tap states
2902 @cindex Tap states
2903 Available tap_states are:
2904 @itemize @bullet
2905 @item @b{RESET}
2906 @cindex RESET
2907 @item @b{IDLE}
2908 @cindex IDLE
2909 @item @b{DRSELECT}
2910 @cindex DRSELECT
2911 @item @b{DRCAPTURE}
2912 @cindex DRCAPTURE
2913 @item @b{DRSHIFT}
2914 @cindex DRSHIFT
2915 @item @b{DREXIT1}
2916 @cindex DREXIT1
2917 @item @b{DRPAUSE}
2918 @cindex DRPAUSE
2919 @item @b{DREXIT2}
2920 @cindex DREXIT2
2921 @item @b{DRUPDATE}
2922 @cindex DRUPDATE
2923 @item @b{IRSELECT}
2924 @cindex IRSELECT
2925 @item @b{IRCAPTURE}
2926 @cindex IRCAPTURE
2927 @item @b{IRSHIFT}
2928 @cindex IRSHIFT
2929 @item @b{IREXIT1}
2930 @cindex IREXIT1
2931 @item @b{IRPAUSE}
2932 @cindex IRPAUSE
2933 @item @b{IREXIT2}
2934 @cindex IREXIT2
2935 @item @b{IRUPDATE}
2936 @cindex IRUPDATE
2937 @end itemize
2938
2939
2940 @node TFTP
2941 @chapter TFTP
2942 @cindex TFTP
2943 If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can
2944 be used to access files on PCs (either the developer's PC or some other PC).
2945
2946 The way this works on the ZY1000 is to prefix a filename by
2947 "/tftp/ip/" and append the TFTP path on the TFTP
2948 server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2949 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2950 if the file was hosted on the embedded host.
2951
2952 In order to achieve decent performance, you must choose a TFTP server
2953 that supports a packet size bigger than the default packet size (512 bytes). There
2954 are numerous TFTP servers out there (free and commercial) and you will have to do
2955 a bit of googling to find something that fits your requirements.
2956
2957 @node Sample Scripts
2958 @chapter Sample Scripts
2959 @cindex scripts
2960
2961 This page shows how to use the Target Library.
2962
2963 The configuration script can be divided into the following sections:
2964 @itemize @bullet
2965 @item Daemon configuration
2966 @item Interface
2967 @item JTAG scan chain
2968 @item Target configuration
2969 @item Flash configuration
2970 @end itemize
2971
2972 Detailed information about each section can be found at OpenOCD configuration.
2973
2974 @section AT91R40008 example
2975 @cindex AT91R40008 example
2976 To start OpenOCD with a target script for the AT91R40008 CPU and reset
2977 the CPU upon startup of the OpenOCD daemon.
2978 @example
2979 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
2980 @end example
2981
2982
2983 @node GDB and OpenOCD
2984 @chapter GDB and OpenOCD
2985 @cindex GDB and OpenOCD
2986 OpenOCD complies with the remote gdbserver protocol, and as such can be used
2987 to debug remote targets.
2988
2989 @section Connecting to GDB
2990 @cindex Connecting to GDB
2991 @anchor{Connecting to GDB}
2992 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
2993 instance GDB 6.3 has a known bug that produces bogus memory access
2994 errors, which has since been fixed: look up 1836 in
2995 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
2996
2997 @*OpenOCD can communicate with GDB in two ways:
2998 @enumerate
2999 @item
3000 A socket (TCP/IP) connection is typically started as follows:
3001 @example
3002 target remote localhost:3333
3003 @end example
3004 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
3005 @item
3006 A pipe connection is typically started as follows:
3007 @example
3008 target remote | openocd --pipe
3009 @end example
3010 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
3011 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
3012 session.
3013 @end enumerate
3014
3015 @*To see a list of available OpenOCD commands type @option{monitor help} on the
3016 GDB command line.
3017
3018 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3019 to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes
3020 packet size and the device's memory map.
3021
3022 Previous versions of OpenOCD required the following GDB options to increase
3023 the packet size and speed up GDB communication:
3024 @example
3025 set remote memory-write-packet-size 1024
3026 set remote memory-write-packet-size fixed
3027 set remote memory-read-packet-size 1024
3028 set remote memory-read-packet-size fixed
3029 @end example
3030 This is now handled in the @option{qSupported} PacketSize and should not be required.
3031
3032 @section Programming using GDB
3033 @cindex Programming using GDB
3034
3035 By default the target memory map is sent to GDB. This can be disabled by
3036 the following OpenOCD configuration option:
3037 @example
3038 gdb_memory_map disable
3039 @end example
3040 For this to function correctly a valid flash configuration must also be set
3041 in OpenOCD. For faster performance you should also configure a valid
3042 working area.
3043
3044 Informing GDB of the memory map of the target will enable GDB to protect any
3045 flash areas of the target and use hardware breakpoints by default. This means
3046 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3047 using a memory map. @xref{gdb_breakpoint_override}.
3048
3049 To view the configured memory map in GDB, use the GDB command @option{info mem}
3050 All other unassigned addresses within GDB are treated as RAM.
3051
3052 GDB 6.8 and higher set any memory area not in the memory map as inaccessible.
3053 This can be changed to the old behaviour by using the following GDB command
3054 @example
3055 set mem inaccessible-by-default off
3056 @end example
3057
3058 If @option{gdb_flash_program enable} is also used, GDB will be able to
3059 program any flash memory using the vFlash interface.
3060
3061 GDB will look at the target memory map when a load command is given, if any
3062 areas to be programmed lie within the target flash area the vFlash packets
3063 will be used.
3064
3065 If the target needs configuring before GDB programming, an event
3066 script can be executed:
3067 @example
3068 $_TARGETNAME configure -event EVENTNAME BODY
3069 @end example
3070
3071 To verify any flash programming the GDB command @option{compare-sections}
3072 can be used.
3073
3074 @node Tcl Scripting API
3075 @chapter Tcl Scripting API
3076 @cindex Tcl Scripting API
3077 @cindex Tcl scripts
3078 @section API rules
3079
3080 The commands are stateless. E.g. the telnet command line has a concept
3081 of currently active target, the Tcl API proc's take this sort of state
3082 information as an argument to each proc.
3083
3084 There are three main types of return values: single value, name value
3085 pair list and lists.
3086
3087 Name value pair. The proc 'foo' below returns a name/value pair
3088 list.
3089
3090 @verbatim
3091
3092 > set foo(me) Duane
3093 > set foo(you) Oyvind
3094 > set foo(mouse) Micky
3095 > set foo(duck) Donald
3096
3097 If one does this:
3098
3099 > set foo
3100
3101 The result is:
3102
3103 me Duane you Oyvind mouse Micky duck Donald
3104
3105 Thus, to get the names of the associative array is easy:
3106
3107 foreach { name value } [set foo] {
3108 puts "Name: $name, Value: $value"
3109 }
3110 @end verbatim
3111
3112 Lists returned must be relatively small. Otherwise a range
3113 should be passed in to the proc in question.
3114
3115 @section Internal low-level Commands
3116
3117 By low-level, the intent is a human would not directly use these commands.
3118
3119 Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
3120 is the low level API upon which "flash banks" is implemented.
3121
3122 @itemize @bullet
3123 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3124
3125 Read memory and return as a Tcl array for script processing
3126 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3127
3128 Convert a Tcl array to memory locations and write the values
3129 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3130
3131 Return information about the flash banks
3132 @end itemize
3133
3134 OpenOCD commands can consist of two words, e.g. "flash banks". The
3135 startup.tcl "unknown" proc will translate this into a Tcl proc
3136 called "flash_banks".
3137
3138 @section OpenOCD specific Global Variables
3139
3140 @subsection HostOS
3141
3142 Real Tcl has ::tcl_platform(), and platform::identify, and many other
3143 variables. JimTCL, as implemented in OpenOCD creates $HostOS which
3144 holds one of the following values:
3145
3146 @itemize @bullet
3147 @item @b{winxx} Built using Microsoft Visual Studio
3148 @item @b{linux} Linux is the underlying operating sytem
3149 @item @b{darwin} Darwin (mac-os) is the underlying operating sytem.
3150 @item @b{cygwin} Running under Cygwin
3151 @item @b{mingw32} Running under MingW32
3152 @item @b{other} Unknown, none of the above.
3153 @end itemize
3154
3155 Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
3156
3157 @node Upgrading
3158 @chapter Deprecated/Removed Commands
3159 @cindex Deprecated/Removed Commands
3160 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3161
3162 @itemize @bullet
3163 @item @b{arm7_9 fast_writes}
3164 @cindex arm7_9 fast_writes
3165 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3166 @item @b{arm7_9 force_hw_bkpts}
3167 @cindex arm7_9 force_hw_bkpts
3168 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3169 for flash if the GDB memory map has been set up(default when flash is declared in
3170 target configuration). @xref{gdb_breakpoint_override}.
3171 @item @b{arm7_9 sw_bkpts}
3172 @cindex arm7_9 sw_bkpts
3173 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3174 @item @b{daemon_startup}
3175 @cindex daemon_startup
3176 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3177 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3178 and @option{target cortex_m3 little reset_halt 0}.
3179 @item @b{dump_binary}
3180 @cindex dump_binary
3181 @*use @option{dump_image} command with same args. @xref{dump_image}.
3182 @item @b{flash erase}
3183 @cindex flash erase
3184 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3185 @item @b{flash write}
3186 @cindex flash write
3187 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3188 @item @b{flash write_binary}
3189 @cindex flash write_binary
3190 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3191 @item @b{flash auto_erase}
3192 @cindex flash auto_erase
3193 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3194 @item @b{load_binary}
3195 @cindex load_binary
3196 @*use @option{load_image} command with same args. @xref{load_image}.
3197 @item @b{run_and_halt_time}
3198 @cindex run_and_halt_time
3199 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3200 following commands:
3201 @smallexample
3202 reset run
3203 sleep 100
3204 halt
3205 @end smallexample
3206 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3207 @cindex target
3208 @*use the create subcommand of @option{target}.
3209 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3210 @cindex target_script
3211 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3212 @item @b{working_area}
3213 @cindex working_area
3214 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3215 @end itemize
3216
3217 @node FAQ
3218 @chapter FAQ
3219 @cindex faq
3220 @enumerate
3221 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3222 @cindex RTCK
3223 @cindex adaptive clocking
3224 @*
3225
3226 In digital circuit design it is often refered to as ``clock
3227 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
3228 operating at some speed, your target is operating at another. The two
3229 clocks are not synchronised, they are ``asynchronous''
3230
3231 In order for the two to work together they must be synchronised. Otherwise
3232 the two systems will get out of sync with each other and nothing will
3233 work. There are 2 basic options:
3234 @enumerate
3235 @item
3236 Use a special circuit.
3237 @item
3238 One clock must be some multiple slower than the other.
3239 @end enumerate
3240
3241 @b{Does this really matter?} For some chips and some situations, this
3242 is a non-issue (i.e.: A 500MHz ARM926) but for others - for example some
3243 Atmel SAM7 and SAM9 chips start operation from reset at 32kHz -
3244 program/enable the oscillators and eventually the main clock. It is in
3245 those critical times you must slow the JTAG clock to sometimes 1 to
3246 4kHz.
3247
3248 Imagine debugging a 500MHz ARM926 hand held battery powered device
3249 that ``deep sleeps'' at 32kHz between every keystroke. It can be
3250 painful.
3251
3252 @b{Solution #1 - A special circuit}
3253
3254 In order to make use of this, your JTAG dongle must support the RTCK
3255 feature. Not all dongles support this - keep reading!
3256
3257 The RTCK signal often found in some ARM chips is used to help with
3258 this problem. ARM has a good description of the problem described at
3259 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3260 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic
3261 work? / how does adaptive clocking work?''.
3262
3263 The nice thing about adaptive clocking is that ``battery powered hand
3264 held device example'' - the adaptiveness works perfectly all the
3265 time. One can set a break point or halt the system in the deep power
3266 down code, slow step out until the system speeds up.
3267
3268 @b{Solution #2 - Always works - but may be slower}
3269
3270 Often this is a perfectly acceptable solution.
3271
3272 In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3273 the target clock speed. But what that ``magic division'' is varies
3274 depending on the chips on your board. @b{ARM rule of thumb} Most ARM
3275 based systems require an 8:1 division. @b{Xilinx rule of thumb} is
3276 1/12 the clock speed.
3277
3278 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
3279
3280 You can still debug the 'low power' situations - you just need to
3281 manually adjust the clock speed at every step. While painful and
3282 tedious, it is not always practical.
3283
3284 It is however easy to ``code your way around it'' - i.e.: Cheat a little,
3285 have a special debug mode in your application that does a ``high power
3286 sleep''. If you are careful - 98% of your problems can be debugged
3287 this way.
3288
3289 To set the JTAG frequency use the command:
3290
3291 @example
3292 # Example: 1.234MHz
3293 jtag_khz 1234
3294 @end example
3295
3296
3297 @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths?
3298
3299 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3300 around Windows filenames.
3301
3302 @example
3303 > echo \a
3304
3305 > echo @{\a@}
3306 \a
3307 > echo "\a"
3308
3309 >
3310 @end example
3311
3312
3313 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3314
3315 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3316 claims to come with all the necessary DLLs. When using Cygwin, try launching
3317 OpenOCD from the Cygwin shell.
3318
3319 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3320 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3321 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3322
3323 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3324 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
3325 software breakpoints consume one of the two available hardware breakpoints.
3326
3327 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
3328
3329 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3330 clock at the time you're programming the flash. If you've specified the crystal's
3331 frequency, make sure the PLL is disabled. If you've specified the full core speed
3332 (e.g. 60MHz), make sure the PLL is enabled.
3333
3334 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3335 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3336 out while waiting for end of scan, rtck was disabled".
3337
3338 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3339 settings in your PC BIOS (ECP, EPP, and different versions of those).
3340
3341 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3342 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3343 memory read caused data abort".
3344
3345 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3346 beyond the last valid frame. It might be possible to prevent this by setting up
3347 a proper "initial" stack frame, if you happen to know what exactly has to
3348 be done, feel free to add this here.
3349
3350 @b{Simple:} In your startup code - push 8 registers of zeros onto the
3351 stack before calling main(). What GDB is doing is ``climbing'' the run
3352 time stack by reading various values on the stack using the standard
3353 call frame for the target. GDB keeps going - until one of 2 things
3354 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3355 stackframes have been processed. By pushing zeros on the stack, GDB
3356 gracefully stops.
3357
3358 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3359 your C code, do the same - artifically push some zeros onto the stack,
3360 remember to pop them off when the ISR is done.
3361
3362 @b{Also note:} If you have a multi-threaded operating system, they
3363 often do not @b{in the intrest of saving memory} waste these few
3364 bytes. Painful...
3365
3366
3367 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3368 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3369
3370 This warning doesn't indicate any serious problem, as long as you don't want to
3371 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3372 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3373 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3374 independently. With this setup, it's not possible to halt the core right out of
3375 reset, everything else should work fine.
3376
3377 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3378 toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3379 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3380 quit with an error message. Is there a stability issue with OpenOCD?
3381
3382 No, this is not a stability issue concerning OpenOCD. Most users have solved
3383 this issue by simply using a self-powered USB hub, which they connect their
3384 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3385 supply stable enough for the Amontec JTAGkey to be operated.
3386
3387 @b{Laptops running on battery have this problem too...}
3388
3389 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3390 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3391 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3392 What does that mean and what might be the reason for this?
3393
3394 First of all, the reason might be the USB power supply. Try using a self-powered
3395 hub instead of a direct connection to your computer. Secondly, the error code 4
3396 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3397 chip ran into some sort of error - this points us to a USB problem.
3398
3399 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3400 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3401 What does that mean and what might be the reason for this?
3402
3403 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3404 has closed the connection to OpenOCD. This might be a GDB issue.
3405
3406 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3407 are described, there is a parameter for specifying the clock frequency
3408 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3409 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3410 specified in kilohertz. However, I do have a quartz crystal of a
3411 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3412 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3413 clock frequency?
3414
3415 No. The clock frequency specified here must be given as an integral number.
3416 However, this clock frequency is used by the In-Application-Programming (IAP)
3417 routines of the LPC2000 family only, which seems to be very tolerant concerning
3418 the given clock frequency, so a slight difference between the specified clock
3419 frequency and the actual clock frequency will not cause any trouble.
3420
3421 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3422
3423 Well, yes and no. Commands can be given in arbitrary order, yet the
3424 devices listed for the JTAG scan chain must be given in the right
3425 order (jtag newdevice), with the device closest to the TDO-Pin being
3426 listed first. In general, whenever objects of the same type exist
3427 which require an index number, then these objects must be given in the
3428 right order (jtag newtap, targets and flash banks - a target
3429 references a jtag newtap and a flash bank references a target).
3430
3431 You can use the ``scan_chain'' command to verify and display the tap order.
3432
3433 @item @b{JTAG Tap Order} JTAG tap order - command order
3434
3435 Many newer devices have multiple JTAG taps. For example: ST
3436 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3437 ``Cortex-M3'' tap. Example: The STM32 reference manual, Document ID:
3438 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3439 connected to the boundary scan tap, which then connects to the
3440 Cortex-M3 tap, which then connects to the TDO pin.
3441
3442 Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then
3443 (2) The boundary scan tap. If your board includes an additional JTAG
3444 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3445 place it before or after the STM32 chip in the chain. For example:
3446
3447 @itemize @bullet
3448 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3449 @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input)
3450 @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin
3451 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3452 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3453 @end itemize
3454
3455 The ``jtag device'' commands would thus be in the order shown below. Note:
3456
3457 @itemize @bullet
3458 @item jtag newtap Xilinx tap -irlen ...
3459 @item jtag newtap stm32 cpu -irlen ...
3460 @item jtag newtap stm32 bs -irlen ...
3461 @item # Create the debug target and say where it is
3462 @item target create stm32.cpu -chain-position stm32.cpu ...
3463 @end itemize
3464
3465
3466 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3467 log file, I can see these error messages: Error: arm7_9_common.c:561
3468 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3469
3470 TODO.
3471
3472 @end enumerate
3473
3474 @node Tcl Crash Course
3475 @chapter Tcl Crash Course
3476 @cindex Tcl
3477
3478 Not everyone knows Tcl - this is not intended to be a replacement for
3479 learning Tcl, the intent of this chapter is to give you some idea of
3480 how the Tcl scripts work.
3481
3482 This chapter is written with two audiences in mind. (1) OpenOCD users
3483 who need to understand a bit more of how JIM-Tcl works so they can do
3484 something useful, and (2) those that want to add a new command to
3485 OpenOCD.
3486
3487 @section Tcl Rule #1
3488 There is a famous joke, it goes like this:
3489 @enumerate
3490 @item Rule #1: The wife is always correct
3491 @item Rule #2: If you think otherwise, See Rule #1
3492 @end enumerate
3493
3494 The Tcl equal is this:
3495
3496 @enumerate
3497 @item Rule #1: Everything is a string
3498 @item Rule #2: If you think otherwise, See Rule #1
3499 @end enumerate
3500
3501 As in the famous joke, the consequences of Rule #1 are profound. Once
3502 you understand Rule #1, you will understand Tcl.
3503
3504 @section Tcl Rule #1b
3505 There is a second pair of rules.
3506 @enumerate
3507 @item Rule #1: Control flow does not exist. Only commands
3508 @* For example: the classic FOR loop or IF statement is not a control
3509 flow item, they are commands, there is no such thing as control flow
3510 in Tcl.
3511 @item Rule #2: If you think otherwise, See Rule #1
3512 @* Actually what happens is this: There are commands that by
3513 convention, act like control flow key words in other languages. One of
3514 those commands is the word ``for'', another command is ``if''.
3515 @end enumerate
3516
3517 @section Per Rule #1 - All Results are strings
3518 Every Tcl command results in a string. The word ``result'' is used
3519 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3520 Everything is a string}
3521
3522 @section Tcl Quoting Operators
3523 In life of a Tcl script, there are two important periods of time, the
3524 difference is subtle.
3525 @enumerate
3526 @item Parse Time
3527 @item Evaluation Time
3528 @end enumerate
3529
3530 The two key items here are how ``quoted things'' work in Tcl. Tcl has
3531 three primary quoting constructs, the [square-brackets] the
3532 @{curly-braces@} and ``double-quotes''
3533
3534 By now you should know $VARIABLES always start with a $DOLLAR
3535 sign. BTW: To set a variable, you actually use the command ``set'', as
3536 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3537 = 1'' statement, but without the equal sign.
3538
3539 @itemize @bullet
3540 @item @b{[square-brackets]}
3541 @* @b{[square-brackets]} are command substitutions. It operates much
3542 like Unix Shell `back-ticks`. The result of a [square-bracket]
3543 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3544 string}. These two statements are roughly identical:
3545 @example
3546 # bash example
3547 X=`date`
3548 echo "The Date is: $X"
3549 # Tcl example
3550 set X [date]
3551 puts "The Date is: $X"
3552 @end example
3553 @item @b{``double-quoted-things''}
3554 @* @b{``double-quoted-things''} are just simply quoted
3555 text. $VARIABLES and [square-brackets] are expanded in place - the
3556 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3557 is a string}
3558 @example
3559 set x "Dinner"
3560 puts "It is now \"[date]\", $x is in 1 hour"
3561 @end example
3562 @item @b{@{Curly-Braces@}}
3563 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3564 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3565 'single-quote' operators in BASH shell scripts, with the added
3566 feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is
3567 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3568 28/nov/2008, Jim/OpenOCD does not have a date command.
3569 @end itemize
3570
3571 @section Consequences of Rule 1/2/3/4
3572
3573 The consequences of Rule 1 are profound.
3574
3575 @subsection Tokenisation & Execution.
3576
3577 Of course, whitespace, blank lines and #comment lines are handled in
3578 the normal way.
3579
3580 As a script is parsed, each (multi) line in the script file is
3581 tokenised and according to the quoting rules. After tokenisation, that
3582 line is immedatly executed.
3583
3584 Multi line statements end with one or more ``still-open''
3585 @{curly-braces@} which - eventually - closes a few lines later.
3586
3587 @subsection Command Execution
3588
3589 Remember earlier: There are no ``control flow''
3590 statements in Tcl. Instead there are COMMANDS that simply act like
3591 control flow operators.
3592
3593 Commands are executed like this:
3594
3595 @enumerate
3596 @item Parse the next line into (argc) and (argv[]).
3597 @item Look up (argv[0]) in a table and call its function.
3598 @item Repeat until End Of File.
3599 @end enumerate
3600
3601 It sort of works like this:
3602 @example
3603 for(;;)@{
3604 ReadAndParse( &argc, &argv );
3605
3606 cmdPtr = LookupCommand( argv[0] );
3607
3608 (*cmdPtr->Execute)( argc, argv );
3609 @}
3610 @end example
3611
3612 When the command ``proc'' is parsed (which creates a procedure
3613 function) it gets 3 parameters on the command line. @b{1} the name of
3614 the proc (function), @b{2} the list of parameters, and @b{3} the body
3615 of the function. Not the choice of words: LIST and BODY. The PROC
3616 command stores these items in a table somewhere so it can be found by
3617 ``LookupCommand()''
3618
3619 @subsection The FOR command
3620
3621 The most interesting command to look at is the FOR command. In Tcl,
3622 the FOR command is normally implemented in C. Remember, FOR is a
3623 command just like any other command.
3624
3625 When the ascii text containing the FOR command is parsed, the parser
3626 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3627 are:
3628
3629 @enumerate 0
3630 @item The ascii text 'for'
3631 @item The start text
3632 @item The test expression
3633 @item The next text
3634 @item The body text
3635 @end enumerate
3636
3637 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3638 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3639 Often many of those parameters are in @{curly-braces@} - thus the
3640 variables inside are not expanded or replaced until later.
3641
3642 Remember that every Tcl command looks like the classic ``main( argc,
3643 argv )'' function in C. In JimTCL - they actually look like this:
3644
3645 @example
3646 int
3647 MyCommand( Jim_Interp *interp,
3648 int *argc,
3649 Jim_Obj * const *argvs );
3650 @end example
3651
3652 Real Tcl is nearly identical. Although the newer versions have
3653 introduced a byte-code parser and intepreter, but at the core, it
3654 still operates in the same basic way.
3655
3656 @subsection FOR command implementation
3657
3658 To understand Tcl it is perhaps most helpful to see the FOR
3659 command. Remember, it is a COMMAND not a control flow structure.
3660
3661 In Tcl there are two underlying C helper functions.
3662
3663 Remember Rule #1 - You are a string.
3664
3665 The @b{first} helper parses and executes commands found in an ascii
3666 string. Commands can be seperated by semicolons, or newlines. While
3667 parsing, variables are expanded via the quoting rules.
3668
3669 The @b{second} helper evaluates an ascii string as a numerical
3670 expression and returns a value.
3671
3672 Here is an example of how the @b{FOR} command could be
3673 implemented. The pseudo code below does not show error handling.
3674 @example
3675 void Execute_AsciiString( void *interp, const char *string );
3676
3677 int Evaluate_AsciiExpression( void *interp, const char *string );
3678
3679 int
3680 MyForCommand( void *interp,
3681 int argc,
3682 char **argv )
3683 @{
3684 if( argc != 5 )@{
3685 SetResult( interp, "WRONG number of parameters");
3686 return ERROR;
3687 @}
3688
3689 // argv[0] = the ascii string just like C
3690
3691 // Execute the start statement.
3692 Execute_AsciiString( interp, argv[1] );
3693
3694 // Top of loop test
3695 for(;;)@{
3696 i = Evaluate_AsciiExpression(interp, argv[2]);
3697 if( i == 0 )
3698 break;
3699
3700 // Execute the body
3701 Execute_AsciiString( interp, argv[3] );
3702
3703 // Execute the LOOP part
3704 Execute_AsciiString( interp, argv[4] );
3705 @}
3706
3707 // Return no error
3708 SetResult( interp, "" );
3709 return SUCCESS;
3710 @}
3711 @end example
3712
3713 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3714 in the same basic way.
3715
3716 @section OpenOCD Tcl Usage
3717
3718 @subsection source and find commands
3719 @b{Where:} In many configuration files
3720 @* Example: @b{ source [find FILENAME] }
3721 @*Remember the parsing rules
3722 @enumerate
3723 @item The FIND command is in square brackets.
3724 @* The FIND command is executed with the parameter FILENAME. It should
3725 find the full path to the named file. The RESULT is a string, which is
3726 substituted on the orginal command line.
3727 @item The command source is executed with the resulting filename.
3728 @* SOURCE reads a file and executes as a script.
3729 @end enumerate
3730 @subsection format command
3731 @b{Where:} Generally occurs in numerous places.
3732 @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
3733 @b{sprintf()}.
3734 @b{Example}
3735 @example
3736 set x 6
3737 set y 7
3738 puts [format "The answer: %d" [expr $x * $y]]
3739 @end example
3740 @enumerate
3741 @item The SET command creates 2 variables, X and Y.
3742 @item The double [nested] EXPR command performs math
3743 @* The EXPR command produces numerical result as a string.
3744 @* Refer to Rule #1
3745 @item The format command is executed, producing a single string
3746 @* Refer to Rule #1.
3747 @item The PUTS command outputs the text.
3748 @end enumerate
3749 @subsection Body or Inlined Text
3750 @b{Where:} Various TARGET scripts.
3751 @example
3752 #1 Good
3753 proc someproc @{@} @{
3754 ... multiple lines of stuff ...
3755 @}
3756 $_TARGETNAME configure -event FOO someproc
3757 #2 Good - no variables
3758 $_TARGETNAME confgure -event foo "this ; that;"
3759 #3 Good Curly Braces
3760 $_TARGETNAME configure -event FOO @{
3761 puts "Time: [date]"
3762 @}
3763 #4 DANGER DANGER DANGER
3764 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3765 @end example
3766 @enumerate
3767 @item The $_TARGETNAME is an OpenOCD variable convention.
3768 @*@b{$_TARGETNAME} represents the last target created, the value changes
3769 each time a new target is created. Remember the parsing rules. When
3770 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3771 the name of the target which happens to be a TARGET (object)
3772 command.
3773 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3774 @*There are 4 examples:
3775 @enumerate
3776 @item The TCLBODY is a simple string that happens to be a proc name
3777 @item The TCLBODY is several simple commands seperated by semicolons
3778 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3779 @item The TCLBODY is a string with variables that get expanded.
3780 @end enumerate
3781
3782 In the end, when the target event FOO occurs the TCLBODY is
3783 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3784 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3785
3786 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3787 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3788 and the text is evaluated. In case #4, they are replaced before the
3789 ``Target Object Command'' is executed. This occurs at the same time
3790 $_TARGETNAME is replaced. In case #4 the date will never
3791 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3792 Jim/OpenOCD does not have a date command@}
3793 @end enumerate
3794 @subsection Global Variables
3795 @b{Where:} You might discover this when writing your own procs @* In
3796 simple terms: Inside a PROC, if you need to access a global variable
3797 you must say so. See also ``upvar''. Example:
3798 @example
3799 proc myproc @{ @} @{
3800 set y 0 #Local variable Y
3801 global x #Global variable X
3802 puts [format "X=%d, Y=%d" $x $y]
3803 @}
3804 @end example
3805 @section Other Tcl Hacks
3806 @b{Dynamic variable creation}
3807 @example
3808 # Dynamically create a bunch of variables.
3809 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3810 # Create var name
3811 set vn [format "BIT%d" $x]
3812 # Make it a global
3813 global $vn
3814 # Set it.
3815 set $vn [expr (1 << $x)]
3816 @}
3817 @end example
3818 @b{Dynamic proc/command creation}
3819 @example
3820 # One "X" function - 5 uart functions.
3821 foreach who @{A B C D E@}
3822 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3823 @}
3824 @end example
3825
3826 @node Target Library
3827 @chapter Target Library
3828 @cindex Target Library
3829
3830 OpenOCD comes with a target configuration script library. These scripts can be
3831 used as-is or serve as a starting point.
3832
3833 The target library is published together with the OpenOCD executable and
3834 the path to the target library is in the OpenOCD script search path.
3835 Similarly there are example scripts for configuring the JTAG interface.
3836
3837 The command line below uses the example parport configuration script
3838 that ship with OpenOCD, then configures the str710.cfg target and
3839 finally issues the init and reset commands. The communication speed
3840 is set to 10kHz for reset and 8MHz for post reset.
3841
3842 @example
3843 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3844 @end example
3845
3846 To list the target scripts available:
3847
3848 @example
3849 $ ls /usr/local/lib/openocd/target
3850
3851 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3852 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3853 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3854 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3855 @end example
3856
3857 @include fdl.texi
3858
3859 @node OpenOCD Index
3860 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3861 @comment case issue with ``Index.html'' and ``index.html''
3862 @comment Occurs when creating ``--html --no-split'' output
3863 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3864 @unnumbered OpenOCD Index
3865
3866 @printindex cp
3867
3868 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)