"reset" without arguments now execute a "reset run".
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (OpenOCD)
27 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About OpenOCD.
46 * Developers:: OpenOCD developers
47 * Building:: Building OpenOCD
48 * Running:: Running OpenOCD
49 * Configuration:: OpenOCD Configuration.
50 * Target library:: Target library
51 * Commands:: OpenOCD Commands
52 * Sample Scripts:: Sample Target Scripts
53 * GDB and OpenOCD:: Using GDB and OpenOCD
54 * TCL and OpenOCD:: Using TCL and OpenOCD
55 * TCL scripting API:: Tcl scripting API
56 * Upgrading:: Deprecated/Removed Commands
57 * FAQ:: Frequently Asked Questions
58 * License:: GNU Free Documentation License
59 * Index:: Main index.
60 @end menu
61
62 @node About
63 @unnumbered About
64 @cindex about
65
66 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
67 and boundary-scan testing for embedded target devices. The targets are interfaced
68 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
69 connection types in the future.
70
71 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
72 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
73 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
74 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
75
76 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
77 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
78 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
79
80 @node Developers
81 @chapter Developers
82 @cindex developers
83
84 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
85 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
86 Others interested in improving the state of free and open debug and testing technology
87 are welcome to participate.
88
89 Other developers have contributed support for additional targets and flashes as well
90 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
91
92 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
93
94 @node Building
95 @chapter Building
96 @cindex building OpenOCD
97
98 You can download the current SVN version with SVN client of your choice from the
99 following repositories:
100
101 (@uref{svn://svn.berlios.de/openocd/trunk})
102
103 or
104
105 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
106
107 Using the SVN command line client, you can use the following command to fetch the
108 latest version (make sure there is no (non-svn) directory called "openocd" in the
109 current directory):
110
111 @smallexample
112 svn checkout svn://svn.berlios.de/openocd/trunk openocd
113 @end smallexample
114
115 Building OpenOCD requires a recent version of the GNU autotools.
116 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
117 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
118 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
119 paths, resulting in obscure dependency errors (This is an observation I've gathered
120 from the logs of one user - correct me if I'm wrong).
121
122 You further need the appropriate driver files, if you want to build support for
123 a FTDI FT2232 based interface:
124 @itemize @bullet
125 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
126 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
127 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
128 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
129 @end itemize
130
131 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
132 see contrib/libftdi for more details.
133
134 In general, the D2XX driver provides superior performance (several times as fast),
135 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
136 a kernel module, only a user space library.
137
138 To build OpenOCD (on both Linux and Cygwin), use the following commands:
139 @smallexample
140 ./bootstrap
141 @end smallexample
142 Bootstrap generates the configure script, and prepares building on your system.
143 @smallexample
144 ./configure
145 @end smallexample
146 Configure generates the Makefiles used to build OpenOCD.
147 @smallexample
148 make
149 @end smallexample
150 Make builds OpenOCD, and places the final executable in ./src/.
151
152 The configure script takes several options, specifying which JTAG interfaces
153 should be included:
154
155 @itemize @bullet
156 @item
157 @option{--enable-parport}
158 @item
159 @option{--enable-parport_ppdev}
160 @item
161 @option{--enable-parport_giveio}
162 @item
163 @option{--enable-amtjtagaccel}
164 @item
165 @option{--enable-ft2232_ftd2xx}
166 @footnote{Using the latest D2XX drivers from FTDI and following their installation
167 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
168 build properly.}
169 @item
170 @option{--enable-ft2232_libftdi}
171 @item
172 @option{--with-ftd2xx=/path/to/d2xx/}
173 @item
174 @option{--enable-gw16012}
175 @item
176 @option{--enable-usbprog}
177 @item
178 @option{--enable-presto_libftdi}
179 @item
180 @option{--enable-presto_ftd2xx}
181 @item
182 @option{--enable-jlink}
183 @end itemize
184
185 If you want to access the parallel port using the PPDEV interface you have to specify
186 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
187 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
188 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
189
190 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
191 absolute path containing no spaces.
192
193 Linux users should copy the various parts of the D2XX package to the appropriate
194 locations, i.e. /usr/include, /usr/lib.
195
196 @node Running
197 @chapter Running
198 @cindex running OpenOCD
199 @cindex --configfile
200 @cindex --debug_level
201 @cindex --logfile
202 @cindex --search
203 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
204 Run with @option{--help} or @option{-h} to view the available command line switches.
205
206 It reads its configuration by default from the file openocd.cfg located in the current
207 working directory. This may be overwritten with the @option{-f <configfile>} command line
208 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
209 are executed in order.
210
211 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
212
213 To enable debug output (when reporting problems or working on OpenOCD itself), use
214 the @option{-d} command line switch. This sets the debug_level to "3", outputting
215 the most information, including debug messages. The default setting is "2", outputting
216 only informational messages, warnings and errors. You can also change this setting
217 from within a telnet or gdb session (@option{debug_level <n>}).
218
219 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
220
221 Search paths for config/script files can be added to OpenOCD by using
222 the @option{-s <search>} switch. The current directory and the OpenOCD target library
223 is in the search path by default.
224
225 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
226 with the target. In general, it is possible for the JTAG controller to be unresponsive until
227 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
228
229 @node Configuration
230 @chapter Configuration
231 @cindex configuration
232 OpenOCD runs as a daemon, and reads it current configuration
233 by default from the file openocd.cfg in the current directory. A different configuration
234 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
235
236 The configuration file is used to specify on which ports the daemon listens for new
237 connections, the JTAG interface used to connect to the target, the layout of the JTAG
238 chain, the targets that should be debugged, and connected flashes.
239
240 @section Daemon configuration
241
242 @itemize @bullet
243 @item @b{init} This command terminates the configuration stage and enters the normal
244 command mode. This can be useful to add commands to the startup scripts and commands
245 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
246 add "init" and "reset" at the end of the config script or at the end of the
247 OpenOCD command line using the @option{-c} command line switch.
248 @cindex init
249 @item @b{telnet_port} <@var{number}>
250 @cindex telnet_port
251 Port on which to listen for incoming telnet connections
252 @item @b{gdb_port} <@var{number}>
253 @cindex gdb_port
254 First port on which to listen for incoming GDB connections. The GDB port for the
255 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
256 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
257 @cindex gdb_detach
258 Configures what OpenOCD will do when gdb detaches from the daeman.
259 Default behaviour is <@var{resume}>
260 @item @b{gdb_memory_map} <@var{enable|disable}>
261 @cindex gdb_memory_map
262 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
263 requested. gdb will then know when to set hardware breakpoints, and program flash
264 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
265 for flash programming to work.
266 Default behaviour is <@var{enable}>
267 @item @b{gdb_flash_program} <@var{enable|disable}>
268 @cindex gdb_flash_program
269 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
270 vFlash packet is received.
271 Default behaviour is <@var{enable}>
272 at item @b{tcl_port} <@var{number}>
273 at cindex tcl_port
274 Port on which to listen for incoming TCL syntax. This port is intended as
275 a simplified RPC connection that can be used by clients to issue commands
276 and get the output from the TCL engine.
277 @item @b{daemon_startup} <@var{mode}>
278 @cindex daemon_startup
279 @option{mode} can either @option{attach} or @option{reset}
280 This is equivalent to adding "init" and "reset" to the end of the config script.
281
282 It is available as a command mainly for backwards compatibility.
283 @end itemize
284
285 @section JTAG interface configuration
286
287 @itemize @bullet
288 @item @b{interface} <@var{name}>
289 @cindex interface
290 Use the interface driver <@var{name}> to connect to the target. Currently supported
291 interfaces are
292 @itemize @minus
293 @item @b{parport}
294 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
295 @end itemize
296 @itemize @minus
297 @item @b{amt_jtagaccel}
298 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
299 mode parallel port
300 @end itemize
301 @itemize @minus
302 @item @b{ft2232}
303 FTDI FT2232 based devices using either the open-source libftdi or the binary only
304 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
305 platform. The libftdi uses libusb, and should be portable to all systems that provide
306 libusb.
307 @end itemize
308 @itemize @minus
309 @item @b{ep93xx}
310 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
311 @end itemize
312 @itemize @minus
313 @item @b{presto}
314 ASIX PRESTO USB JTAG programmer.
315 @end itemize
316 @itemize @minus
317 @item @b{usbprog}
318 usbprog is a freely programmable USB adapter.
319 @end itemize
320 @itemize @minus
321 @item @b{gw16012}
322 Gateworks GW16012 JTAG programmer.
323 @end itemize
324 @itemize @minus
325 @item @b{jlink}
326 Segger jlink usb adapter
327 @end itemize
328 @end itemize
329
330 @itemize @bullet
331 @item @b{jtag_speed} <@var{reset speed}> <@var{post reset speed}>
332 @cindex jtag_speed
333 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
334 speed. The actual effect of this option depends on the JTAG interface used. Reset
335 speed is used during reset and post reset speed after reset. post reset speed
336 is optional, in which case the reset speed is used.
337 @itemize @minus
338
339 @item wiggler: maximum speed / @var{number}
340 @item ft2232: 6MHz / (@var{number}+1)
341 @item amt jtagaccel: 8 / 2**@var{number}
342 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
343 @end itemize
344
345 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
346 especially true for synthesized cores (-S).
347
348 @item @b{jtag_khz} <@var{reset speed kHz}> <@var{post reset speed kHz}>
349 @cindex jtag_khz
350 Same as jtag_speed, except that the speed is specified in maximum kHz. If
351 the device can not support the rate asked for, or can not translate from
352 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
353 is not supported, then an error is reported.
354
355 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
356 @cindex reset_config
357 The configuration of the reset signals available on the JTAG interface AND the target.
358 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
359 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
360 @option{srst_only} or @option{trst_and_srst}.
361
362 [@var{combination}] is an optional value specifying broken reset signal implementations.
363 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
364 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
365 that the system is reset together with the test logic (only hypothetical, I haven't
366 seen hardware with such a bug, and can be worked around).
367 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
368 The default behaviour if no option given is @option{separate}.
369
370 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
371 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
372 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
373 (default) and @option{srst_push_pull} for the system reset. These values only affect
374 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
375
376 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
377 @cindex jtag_device
378 Describes the devices that form the JTAG daisy chain, with the first device being
379 the one closest to TDO. The parameters are the length of the instruction register
380 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
381 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
382 The IDCODE instruction will in future be used to query devices for their JTAG
383 identification code. This line is the same for all ARM7 and ARM9 devices.
384 Other devices, like CPLDs, require different parameters. An example configuration
385 line for a Xilinx XC9500 CPLD would look like this:
386 @smallexample
387 jtag_device 8 0x01 0x0e3 0xfe
388 @end smallexample
389 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
390 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
391 The IDCODE instruction is 0xfe.
392
393 @item @b{jtag_nsrst_delay} <@var{ms}>
394 @cindex jtag_nsrst_delay
395 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
396 starting new JTAG operations.
397 @item @b{jtag_ntrst_delay} <@var{ms}>
398 @cindex jtag_ntrst_delay
399 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
400 starting new JTAG operations.
401
402 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
403 or on-chip features) keep a reset line asserted for some time after the external reset
404 got deasserted.
405 @end itemize
406
407 @section parport options
408
409 @itemize @bullet
410 @item @b{parport_port} <@var{number}>
411 @cindex parport_port
412 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
413 the @file{/dev/parport} device
414
415 When using PPDEV to access the parallel port, use the number of the parallel port:
416 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
417 you may encounter a problem.
418 @item @b{parport_cable} <@var{name}>
419 @cindex parport_cable
420 The layout of the parallel port cable used to connect to the target.
421 Currently supported cables are
422 @itemize @minus
423 @item @b{wiggler}
424 @cindex wiggler
425 The original Wiggler layout, also supported by several clones, such
426 as the Olimex ARM-JTAG
427 @item @b{old_amt_wiggler}
428 @cindex old_amt_wiggler
429 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
430 version available from the website uses the original Wiggler layout ('@var{wiggler}')
431 @item @b{chameleon}
432 @cindex chameleon
433 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
434 @item @b{dlc5}
435 @cindex dlc5
436 The Xilinx Parallel cable III.
437 @item @b{triton}
438 @cindex triton
439 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
440 This is also the layout used by the HollyGates design
441 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
442 @item @b{flashlink}
443 @cindex flashlink
444 The ST Parallel cable.
445 @end itemize
446 @item @b{parport_write_on_exit} <@var{on|off}>
447 @cindex parport_write_on_exit
448 This will configure the parallel driver to write a known value to the parallel
449 interface on exiting OpenOCD
450 @end itemize
451
452 @section amt_jtagaccel options
453 @itemize @bullet
454 @item @b{parport_port} <@var{number}>
455 @cindex parport_port
456 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
457 @file{/dev/parport} device
458 @end itemize
459 @section ft2232 options
460
461 @itemize @bullet
462 @item @b{ft2232_device_desc} <@var{description}>
463 @cindex ft2232_device_desc
464 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
465 default value is used. This setting is only valid if compiled with FTD2XX support.
466 @item @b{ft2232_layout} <@var{name}>
467 @cindex ft2232_layout
468 The layout of the FT2232 GPIO signals used to control output-enables and reset
469 signals. Valid layouts are
470 @itemize @minus
471 @item @b{usbjtag}
472 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
473 @item @b{jtagkey}
474 Amontec JTAGkey and JTAGkey-tiny
475 @item @b{signalyzer}
476 Signalyzer
477 @item @b{olimex-jtag}
478 Olimex ARM-USB-OCD
479 @item @b{m5960}
480 American Microsystems M5960
481 @item @b{evb_lm3s811}
482 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
483 SRST signals on external connector
484 @item @b{comstick}
485 Hitex STR9 comstick
486 @item @b{stm32stick}
487 Hitex STM32 Performance Stick
488 @item @b{flyswatter}
489 Tin Can Tools Flyswatter
490 @item @b{turtelizer2}
491 egnite Software turtelizer2
492 @item @b{oocdlink}
493 OOCDLink
494 @end itemize
495
496 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
497 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
498 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
499 @smallexample
500 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
501 @end smallexample
502 @item @b{ft2232_latency} <@var{ms}>
503 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
504 ft2232_read() fails to return the expected number of bytes. This can be caused by
505 USB communication delays and has proved hard to reproduce and debug. Setting the
506 FT2232 latency timer to a larger value increases delays for short USB packages but it
507 also reduces the risk of timeouts before receiving the expected number of bytes.
508 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
509 @end itemize
510
511 @section ep93xx options
512 @cindex ep93xx options
513 Currently, there are no options available for the ep93xx interface.
514
515 @page
516 @section Target configuration
517
518 @itemize @bullet
519 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
520 <@var{variant}>
521 @cindex target
522 Defines a target that should be debugged. Currently supported types are:
523 @itemize @minus
524 @item @b{arm7tdmi}
525 @item @b{arm720t}
526 @item @b{arm9tdmi}
527 @item @b{arm920t}
528 @item @b{arm922t}
529 @item @b{arm926ejs}
530 @item @b{arm966e}
531 @item @b{cortex_m3}
532 @item @b{feroceon}
533 @item @b{xscale}
534 @end itemize
535
536 If you want to use a target board that is not on this list, see Adding a new
537 target board
538
539 Endianess may be @option{little} or @option{big}.
540
541
542 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
543 completely independent (like the LPC2000 series), or where the JTAG interface is
544 unavailable for some time during startup (like the STR7 series), you can't use
545 @option{reset_halt} or @option{reset_init}.
546
547 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
548 @cindex target_script
549 Event is one of the following:
550 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
551 @option{pre_resume} or @option{gdb_program_config}.
552 @option{post_reset} and @option{reset} will produce the same results.
553
554 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
555 @cindex run_and_halt_time
556 The amount of time the debugger should wait after releasing reset before it asserts
557 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
558 reset modes.
559 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
560 <@var{backup}|@var{nobackup}>
561 @cindex working_area
562 Specifies a working area for the debugger to use. This may be used to speed-up
563 downloads to target memory and flash operations, or to perform otherwise unavailable
564 operations (some coprocessor operations on ARM7/9 systems, for example). The last
565 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
566 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
567 @end itemize
568
569 @subsection arm7tdmi options
570 @cindex arm7tdmi options
571 target arm7tdmi <@var{endianess}> <@var{jtag#}>
572 The arm7tdmi target definition requires at least one additional argument, specifying
573 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
574 The optional [@var{variant}] parameter has been removed in recent versions.
575 The correct feature set is determined at runtime.
576
577 @subsection arm720t options
578 @cindex arm720t options
579 ARM720t options are similar to ARM7TDMI options.
580
581 @subsection arm9tdmi options
582 @cindex arm9tdmi options
583 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
584 @option{arm920t}, @option{arm922t} and @option{arm940t}.
585 This enables the hardware single-stepping support found on these cores.
586
587 @subsection arm920t options
588 @cindex arm920t options
589 ARM920t options are similar to ARM9TDMI options.
590
591 @subsection arm966e options
592 @cindex arm966e options
593 ARM966e options are similar to ARM9TDMI options.
594
595 @subsection cortex_m3 options
596 @cindex cortex_m3 options
597 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
598 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
599 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
600 be detected and the normal reset behaviour used.
601
602 @subsection xscale options
603 @cindex xscale options
604 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
605 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
606
607 @section Flash configuration
608 @cindex Flash configuration
609
610 @itemize @bullet
611 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
612 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
613 @cindex flash bank
614 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
615 and <@var{bus_width}> bytes using the selected flash <driver>.
616 @end itemize
617
618 @subsection lpc2000 options
619 @cindex lpc2000 options
620
621 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
622 <@var{clock}> [@var{calc_checksum}]
623 LPC flashes don't require the chip and bus width to be specified. Additional
624 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
625 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
626 of the target this flash belongs to (first is 0), the frequency at which the core
627 is currently running (in kHz - must be an integral number), and the optional keyword
628 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
629 vector table.
630
631 @subsection cfi options
632 @cindex cfi options
633
634 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
635 <@var{target#}>
636 CFI flashes require the number of the target they're connected to as an additional
637 argument. The CFI driver makes use of a working area (specified for the target)
638 to significantly speed up operation.
639
640 @var{chip_width} and @var{bus_width} are specified in bytes.
641
642 @subsection at91sam7 options
643 @cindex at91sam7 options
644
645 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
646 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
647 reading the chip-id and type.
648
649 @subsection str7 options
650 @cindex str7 options
651
652 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
653 variant can be either STR71x, STR73x or STR75x.
654
655 @subsection str9 options
656 @cindex str9 options
657
658 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
659 The str9 needs the flash controller to be configured prior to Flash programming, eg.
660 @smallexample
661 str9x flash_config 0 4 2 0 0x80000
662 @end smallexample
663 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
664
665 @subsection str9 options (str9xpec driver)
666
667 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
668 Before using the flash commands the turbo mode will need enabling using str9xpec
669 @option{enable_turbo} <@var{num>.}
670
671 Only use this driver for locking/unlocking the device or configuring the option bytes.
672 Use the standard str9 driver for programming.
673
674 @subsection stellaris (LM3Sxxx) options
675 @cindex stellaris (LM3Sxxx) options
676
677 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
678 stellaris flash plugin only require the @var{target#}.
679
680 @subsection stm32x options
681 @cindex stm32x options
682
683 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
684 stm32x flash plugin only require the @var{target#}.
685
686 @node Target library
687 @chapter Target library
688 @cindex Target library
689
690 OpenOCD comes with a target configuration script library. These scripts can be
691 used as-is or serve as a starting point.
692
693 The target library is published together with the openocd executable and
694 the path to the target library is in the OpenOCD script search path.
695 Similarly there are example scripts for configuring the JTAG interface.
696
697 The command line below uses the example parport configuration scripts
698 that ship with OpenOCD, then configures the str710.cfg target and
699 finally issues the init and reset command. The communication speed
700 is set to 10kHz for reset and 8MHz for post reset.
701
702
703 @smallexample
704 openocd -f interface/parport.cfg -c "jtag_khz 10 8000" -f target/str710.cfg -c "init" -c "reset"
705 @end smallexample
706
707
708 To list the target scripts available:
709
710 @smallexample
711 $ ls /usr/local/lib/openocd/target
712
713 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
714 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
715 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
716 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
717 @end smallexample
718
719
720 @node Commands
721 @chapter Commands
722 @cindex commands
723
724 OpenOCD allows user interaction through a GDB server (default: port 3333),
725 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
726 is available from both the telnet interface and a GDB session. To issue commands to the
727 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
728 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
729 GDB session.
730
731 The TCL interface is used as a simplified RPC mechanism that feeds all the
732 input into the TCL interpreter and returns the output from the evaluation of
733 the commands.
734
735 @section Daemon
736
737 @itemize @bullet
738 @item @b{sleep} <@var{msec}>
739 @cindex sleep
740 Wait for n milliseconds before resuming. Useful in connection with script files
741 (@var{script} command and @var{target_script} configuration).
742
743 @item @b{shutdown}
744 @cindex shutdown
745 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
746
747 @item @b{debug_level} [@var{n}]
748 @cindex debug_level
749 Display or adjust debug level to n<0-3>
750
751 @item @b{fast} [@var{enable/disable}]
752 @cindex fast
753 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
754 downloads and fast memory access will work if the JTAG interface isn't too fast and
755 the core doesn't run at a too low frequency. Note that this option only changes the default
756 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
757 individually.
758
759 The target specific "dangerous" optimisation tweaking options may come and go
760 as more robust and user friendly ways are found to ensure maximum throughput
761 and robustness with a minimum of configuration.
762
763 Typically the "fast enable" is specified first on the command line:
764
765 @smallexample
766 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
767 @end smallexample
768
769 @item @b{log_output} <@var{file}>
770 @cindex log_output
771 Redirect logging to <file> (default: stderr)
772
773 @item @b{script} <@var{file}>
774 @cindex script
775 Execute commands from <file>
776
777 @end itemize
778
779 @subsection Target state handling
780 @itemize @bullet
781 @item @b{poll} [@option{on}|@option{off}]
782 @cindex poll
783 Poll the target for its current state. If the target is in debug mode, architecture
784 specific information about the current state is printed. An optional parameter
785 allows continuous polling to be enabled and disabled.
786
787 @item @b{halt} [@option{ms}]
788 @cindex halt
789 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
790 Default [@option{ms}] is 5 seconds if no arg given.
791 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
792 will stop OpenOCD from waiting.
793
794 @item @b{wait_halt} [@option{ms}]
795 @cindex wait_halt
796 Wait for the target to enter debug mode. Optional [@option{ms}] is
797 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
798 arg given.
799
800 @item @b{resume} [@var{address}]
801 @cindex resume
802 Resume the target at its current code position, or at an optional address.
803 OpenOCD will wait 5 seconds for the target to resume.
804
805 @item @b{step} [@var{address}]
806 @cindex step
807 Single-step the target at its current code position, or at an optional address.
808
809
810 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
811 |@option{run_and_init}]
812 @cindex reset
813 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
814 This optional parameter overrides the setting specified in the configuration file,
815 making the new behaviour the default for the @option{reset} command.
816
817 With no arguments a "reset run" is executed
818 @itemize @minus
819 @item @b{run}
820 @cindex reset run
821 Let the target run.
822 @item @b{halt}
823 @cindex reset halt
824 Immediately halt the target (works only with certain configurations).
825 @item @b{init}
826 @cindex reset init
827 Immediately halt the target, and execute the reset script (works only with certain
828 configurations)
829 @item @b{run_and_halt}
830 @cindex reset run_and_halt
831 Let the target run for a certain amount of time, then request a halt.
832 @item @b{run_and_init}
833 @cindex reset run_and_init
834 Let the target run for a certain amount of time, then request a halt. Execute the
835 reset script once the target enters debug mode.
836 @end itemize
837 @end itemize
838
839 @subsection Memory access commands
840 These commands allow accesses of a specific size to the memory system:
841 @itemize @bullet
842 @item @b{mdw} <@var{addr}> [@var{count}]
843 @cindex mdw
844 display memory words
845 @item @b{mdh} <@var{addr}> [@var{count}]
846 @cindex mdh
847 display memory half-words
848 @item @b{mdb} <@var{addr}> [@var{count}]
849 @cindex mdb
850 display memory bytes
851 @item @b{mww} <@var{addr}> <@var{value}>
852 @cindex mww
853 write memory word
854 @item @b{mwh} <@var{addr}> <@var{value}>
855 @cindex mwh
856 write memory half-word
857 @item @b{mwb} <@var{addr}> <@var{value}>
858 @cindex mwb
859 write memory byte
860
861 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
862 @cindex load_image
863 Load image <@var{file}> to target memory at <@var{address}>
864 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
865 @cindex dump_image
866 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
867 (binary) <@var{file}>.
868 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
869 @cindex verify_image
870 Verify <@var{file}> against target memory starting at <@var{address}>.
871 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
872 @end itemize
873
874 @subsection Flash commands
875 @cindex Flash commands
876 @itemize @bullet
877 @item @b{flash banks}
878 @cindex flash banks
879 List configured flash banks
880 @item @b{flash info} <@var{num}>
881 @cindex flash info
882 Print info about flash bank <@option{num}>
883 @item @b{flash probe} <@var{num}>
884 @cindex flash probe
885 Identify the flash, or validate the parameters of the configured flash. Operation
886 depends on the flash type.
887 @item @b{flash erase_check} <@var{num}>
888 @cindex flash erase_check
889 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
890 updates the erase state information displayed by @option{flash info}. That means you have
891 to issue an @option{erase_check} command after erasing or programming the device to get
892 updated information.
893 @item @b{flash protect_check} <@var{num}>
894 @cindex flash protect_check
895 Check protection state of sectors in flash bank <num>.
896 @option{flash erase_sector} using the same syntax.
897 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
898 @cindex flash erase_sector
899 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
900 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
901 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
902 the CFI driver).
903 @item @b{flash erase_address} <@var{address}> <@var{length}>
904 @cindex flash erase_address
905 Erase sectors starting at <@var{address}> for <@var{length}> bytes
906 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
907 @cindex flash write_bank
908 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
909 <@option{offset}> bytes from the beginning of the bank.
910 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
911 @cindex flash write_image
912 Write the image <@var{file}> to the current target's flash bank(s). A relocation
913 [@var{offset}] can be specified and the file [@var{type}] can be specified
914 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
915 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
916 if the @option{erase} parameter is given.
917 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
918 @cindex flash protect
919 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
920 <@var{last}> of @option{flash bank} <@var{num}>.
921 @end itemize
922
923 @page
924 @section Target Specific Commands
925 @cindex Target Specific Commands
926
927 @subsection AT91SAM7 specific commands
928 @cindex AT91SAM7 specific commands
929 The flash configuration is deduced from the chip identification register. The flash
930 controller handles erases automatically on a page (128/265 byte) basis so erase is
931 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
932 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
933 that can be erased separatly. Only an EraseAll command is supported by the controller
934 for each flash plane and this is called with
935 @itemize @bullet
936 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
937 bulk erase flash planes first_plane to last_plane.
938 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
939 @cindex at91sam7 gpnvm
940 set or clear a gpnvm bit for the processor
941 @end itemize
942
943 @subsection STR9 specific commands
944 @cindex STR9 specific commands
945 These are flash specific commands when using the str9xpec driver.
946 @itemize @bullet
947 @item @b{str9xpec enable_turbo} <@var{num}>
948 @cindex str9xpec enable_turbo
949 enable turbo mode, simply this will remove the str9 from the chain and talk
950 directly to the embedded flash controller.
951 @item @b{str9xpec disable_turbo} <@var{num}>
952 @cindex str9xpec disable_turbo
953 restore the str9 into jtag chain.
954 @item @b{str9xpec lock} <@var{num}>
955 @cindex str9xpec lock
956 lock str9 device. The str9 will only respond to an unlock command that will
957 erase the device.
958 @item @b{str9xpec unlock} <@var{num}>
959 @cindex str9xpec unlock
960 unlock str9 device.
961 @item @b{str9xpec options_read} <@var{num}>
962 @cindex str9xpec options_read
963 read str9 option bytes.
964 @item @b{str9xpec options_write} <@var{num}>
965 @cindex str9xpec options_write
966 write str9 option bytes.
967 @end itemize
968
969 @subsection STR9 configuration
970 @cindex STR9 configuration
971 @itemize @bullet
972 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
973 <@var{BBADR}> <@var{NBBADR}>
974 @cindex str9x flash_config
975 Configure str9 flash controller.
976 @smallexample
977 eg. str9x flash_config 0 4 2 0 0x80000
978 This will setup
979 BBSR - Boot Bank Size register
980 NBBSR - Non Boot Bank Size register
981 BBADR - Boot Bank Start Address register
982 NBBADR - Boot Bank Start Address register
983 @end smallexample
984 @end itemize
985
986 @subsection STR9 option byte configuration
987 @cindex STR9 option byte configuration
988 @itemize @bullet
989 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
990 @cindex str9xpec options_cmap
991 configure str9 boot bank.
992 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
993 @cindex str9xpec options_lvdthd
994 configure str9 lvd threshold.
995 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
996 @cindex str9xpec options_lvdsel
997 configure str9 lvd source.
998 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
999 @cindex str9xpec options_lvdwarn
1000 configure str9 lvd reset warning source.
1001 @end itemize
1002
1003 @subsection STM32x specific commands
1004 @cindex STM32x specific commands
1005
1006 These are flash specific commands when using the stm32x driver.
1007 @itemize @bullet
1008 @item @b{stm32x lock} <@var{num}>
1009 @cindex stm32x lock
1010 lock stm32 device.
1011 @item @b{stm32x unlock} <@var{num}>
1012 @cindex stm32x unlock
1013 unlock stm32 device.
1014 @item @b{stm32x options_read} <@var{num}>
1015 @cindex stm32x options_read
1016 read stm32 option bytes.
1017 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1018 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1019 @cindex stm32x options_write
1020 write stm32 option bytes.
1021 @item @b{stm32x mass_erase} <@var{num}>
1022 @cindex stm32x mass_erase
1023 mass erase flash memory.
1024 @end itemize
1025
1026 @subsection Stellaris specific commands
1027 @cindex Stellaris specific commands
1028
1029 These are flash specific commands when using the Stellaris driver.
1030 @itemize @bullet
1031 @item @b{stellaris mass_erase} <@var{num}>
1032 @cindex stellaris mass_erase
1033 mass erase flash memory.
1034 @end itemize
1035
1036 @page
1037 @section Architecture Specific Commands
1038 @cindex Architecture Specific Commands
1039
1040 @subsection ARMV4/5 specific commands
1041 @cindex ARMV4/5 specific commands
1042
1043 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1044 or Intel XScale (XScale isn't supported yet).
1045 @itemize @bullet
1046 @item @b{armv4_5 reg}
1047 @cindex armv4_5 reg
1048 Display a list of all banked core registers, fetching the current value from every
1049 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1050 register value.
1051 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1052 @cindex armv4_5 core_mode
1053 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1054 The target is resumed in the currently set @option{core_mode}.
1055 @end itemize
1056
1057 @subsection ARM7/9 specific commands
1058 @cindex ARM7/9 specific commands
1059
1060 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1061 ARM920t or ARM926EJ-S.
1062 @itemize @bullet
1063 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1064 @cindex arm7_9 sw_bkpts
1065 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1066 one of the watchpoint registers to implement software breakpoints. Disabling
1067 SW Bkpts frees that register again.
1068 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1069 @cindex arm7_9 force_hw_bkpts
1070 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1071 breakpoints are turned into hardware breakpoints.
1072 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1073 @cindex arm7_9 dbgrq
1074 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1075 safe for all but ARM7TDMI--S cores (like Philips LPC).
1076 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1077 @cindex arm7_9 fast_memory_access
1078 Allow OpenOCD to read and write memory without checking completion of
1079 the operation. This provides a huge speed increase, especially with USB JTAG
1080 cables (FT2232), but might be unsafe if used with targets running at a very low
1081 speed, like the 32kHz startup clock of an AT91RM9200.
1082 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1083 @cindex arm7_9 dcc_downloads
1084 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1085 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1086 unsafe, especially with targets running at a very low speed. This command was introduced
1087 with OpenOCD rev. 60.
1088 @end itemize
1089
1090 @subsection ARM720T specific commands
1091 @cindex ARM720T specific commands
1092
1093 @itemize @bullet
1094 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1095 @cindex arm720t cp15
1096 display/modify cp15 register <@option{num}> [@option{value}].
1097 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1098 @cindex arm720t md<bhw>_phys
1099 Display memory at physical address addr.
1100 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1101 @cindex arm720t mw<bhw>_phys
1102 Write memory at physical address addr.
1103 @item @b{arm720t virt2phys} <@var{va}>
1104 @cindex arm720t virt2phys
1105 Translate a virtual address to a physical address.
1106 @end itemize
1107
1108 @subsection ARM9TDMI specific commands
1109 @cindex ARM9TDMI specific commands
1110
1111 @itemize @bullet
1112 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1113 @cindex arm9tdmi vector_catch
1114 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1115 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1116 @option{irq} @option{fiq}.
1117
1118 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1119 @end itemize
1120
1121 @subsection ARM966E specific commands
1122 @cindex ARM966E specific commands
1123
1124 @itemize @bullet
1125 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1126 @cindex arm966e cp15
1127 display/modify cp15 register <@option{num}> [@option{value}].
1128 @end itemize
1129
1130 @subsection ARM920T specific commands
1131 @cindex ARM920T specific commands
1132
1133 @itemize @bullet
1134 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1135 @cindex arm920t cp15
1136 display/modify cp15 register <@option{num}> [@option{value}].
1137 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1138 @cindex arm920t cp15i
1139 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1140 @item @b{arm920t cache_info}
1141 @cindex arm920t cache_info
1142 Print information about the caches found. This allows you to see if your target
1143 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1144 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1145 @cindex arm920t md<bhw>_phys
1146 Display memory at physical address addr.
1147 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1148 @cindex arm920t mw<bhw>_phys
1149 Write memory at physical address addr.
1150 @item @b{arm920t read_cache} <@var{filename}>
1151 @cindex arm920t read_cache
1152 Dump the content of ICache and DCache to a file.
1153 @item @b{arm920t read_mmu} <@var{filename}>
1154 @cindex arm920t read_mmu
1155 Dump the content of the ITLB and DTLB to a file.
1156 @item @b{arm920t virt2phys} <@var{va}>
1157 @cindex arm920t virt2phys
1158 Translate a virtual address to a physical address.
1159 @end itemize
1160
1161 @subsection ARM926EJS specific commands
1162 @cindex ARM926EJS specific commands
1163
1164 @itemize @bullet
1165 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1166 @cindex arm926ejs cp15
1167 display/modify cp15 register <@option{num}> [@option{value}].
1168 @item @b{arm926ejs cache_info}
1169 @cindex arm926ejs cache_info
1170 Print information about the caches found.
1171 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1172 @cindex arm926ejs md<bhw>_phys
1173 Display memory at physical address addr.
1174 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1175 @cindex arm926ejs mw<bhw>_phys
1176 Write memory at physical address addr.
1177 @item @b{arm926ejs virt2phys} <@var{va}>
1178 @cindex arm926ejs virt2phys
1179 Translate a virtual address to a physical address.
1180 @end itemize
1181
1182 @page
1183 @section Debug commands
1184 @cindex Debug commands
1185 The following commands give direct access to the core, and are most likely
1186 only useful while debugging OpenOCD.
1187 @itemize @bullet
1188 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1189 @cindex arm7_9 write_xpsr
1190 Immediately write either the current program status register (CPSR) or the saved
1191 program status register (SPSR), without changing the register cache (as displayed
1192 by the @option{reg} and @option{armv4_5 reg} commands).
1193 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1194 <@var{0=cpsr},@var{1=spsr}>
1195 @cindex arm7_9 write_xpsr_im8
1196 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1197 operation (similar to @option{write_xpsr}).
1198 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1199 @cindex arm7_9 write_core_reg
1200 Write a core register, without changing the register cache (as displayed by the
1201 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1202 encoding of the [M4:M0] bits of the PSR.
1203 @end itemize
1204
1205 @page
1206 @section JTAG commands
1207 @cindex JTAG commands
1208 @itemize @bullet
1209 @item @b{scan_chain}
1210 @cindex scan_chain
1211 Print current scan chain configuration.
1212 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1213 @cindex jtag_reset
1214 Toggle reset lines.
1215 @item @b{endstate} <@var{tap_state}>
1216 @cindex endstate
1217 Finish JTAG operations in <@var{tap_state}>.
1218 @item @b{runtest} <@var{num_cycles}>
1219 @cindex runtest
1220 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1221 @item @b{statemove} [@var{tap_state}]
1222 @cindex statemove
1223 Move to current endstate or [@var{tap_state}]
1224 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1225 @cindex irscan
1226 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1227 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1228 @cindex drscan
1229 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1230 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1231 @cindex verify_ircapture
1232 Verify value captured during Capture-IR. Default is enabled.
1233 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1234 @cindex var
1235 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1236 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1237 @cindex field
1238 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1239 @end itemize
1240
1241 @page
1242 @section Target Requests
1243 @cindex Target Requests
1244 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1245 See libdcc in the contrib dir for more details.
1246 @itemize @bullet
1247 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1248 @cindex target_request debugmsgs
1249 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1250 @end itemize
1251
1252 @node Sample Scripts
1253 @chapter Sample Scripts
1254 @cindex scripts
1255
1256 This page shows how to use the target library.
1257
1258 The configuration script can be divided in the following section:
1259 @itemize @bullet
1260 @item daemon configuration
1261 @item interface
1262 @item jtag scan chain
1263 @item target configuration
1264 @item flash configuration
1265 @end itemize
1266
1267 Detailed information about each section can be found at OpenOCD configuration.
1268
1269 @section AT91R40008 example
1270 @cindex AT91R40008 example
1271 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1272 the CPU upon startup of the OpenOCD daemon.
1273 @smallexample
1274 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1275 @end smallexample
1276
1277
1278 @node GDB and OpenOCD
1279 @chapter GDB and OpenOCD
1280 @cindex GDB and OpenOCD
1281 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1282 to debug remote targets.
1283
1284 @section Connecting to gdb
1285 @cindex Connecting to gdb
1286 A connection is typically started as follows:
1287 @smallexample
1288 target remote localhost:3333
1289 @end smallexample
1290 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1291
1292 To see a list of available OpenOCD commands type @option{monitor help} on the
1293 gdb commandline.
1294
1295 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1296 to be sent by the gdb server (openocd) to gdb. Typical information includes
1297 packet size and device memory map.
1298
1299 Previous versions of OpenOCD required the following gdb options to increase
1300 the packet size and speed up gdb communication.
1301 @smallexample
1302 set remote memory-write-packet-size 1024
1303 set remote memory-write-packet-size fixed
1304 set remote memory-read-packet-size 1024
1305 set remote memory-read-packet-size fixed
1306 @end smallexample
1307 This is now handled in the @option{qSupported} PacketSize.
1308
1309 @section Programming using gdb
1310 @cindex Programming using gdb
1311
1312 By default the target memory map is sent to gdb, this can be disabled by
1313 the following OpenOCD config option:
1314 @smallexample
1315 gdb_memory_map disable
1316 @end smallexample
1317 For this to function correctly a valid flash config must also be configured
1318 in OpenOCD. For faster performance you should also configure a valid
1319 working area.
1320
1321 Informing gdb of the memory map of the target will enable gdb to protect any
1322 flash area of the target and use hardware breakpoints by default. This means
1323 that the OpenOCD option @option{arm7_9 force_hw_bkpts} is not required when
1324 using a memory map.
1325
1326 To view the configured memory map in gdb, use the gdb command @option{info mem}
1327 All other unasigned addresses within gdb are treated as RAM.
1328
1329 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1330 this can be changed to the old behaviour by using the following gdb command.
1331 @smallexample
1332 set mem inaccessible-by-default off
1333 @end smallexample
1334
1335 If @option{gdb_flash_program enable} is also used, gdb will be able to
1336 program any flash memory using the vFlash interface.
1337
1338 gdb will look at the target memory map when a load command is given, if any
1339 areas to be programmed lie within the target flash area the vFlash packets
1340 will be used.
1341
1342 If the target needs configuring before gdb programming, a script can be executed.
1343 @smallexample
1344 target_script 0 gdb_program_config config.script
1345 @end smallexample
1346
1347 To verify any flash programming the gdb command @option{compare-sections}
1348 can be used.
1349
1350 @node TCL and OpenOCD
1351 @chapter TCL and OpenOCD
1352 @cindex TCL and OpenOCD
1353 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1354 support.
1355
1356 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1357
1358 The command and file interfaces are fairly straightforward, while the network
1359 port is geared toward intergration with external clients. A small example
1360 of an external TCL script that can connect to openocd is shown below.
1361
1362 @verbatim
1363 # Simple tcl client to connect to openocd
1364 puts "Use empty line to exit"
1365 set fo [socket 127.0.0.1 6666]
1366 puts -nonewline stdout "> "
1367 flush stdout
1368 while {[gets stdin line] >= 0} {
1369 if {$line eq {}} break
1370 puts $fo $line
1371 flush $fo
1372 gets $fo line
1373 puts $line
1374 puts -nonewline stdout "> "
1375 flush stdout
1376 }
1377 close $fo
1378 @end verbatim
1379
1380 This script can easily be modified to front various GUIs or be a sub
1381 component of a larger framework for control and interaction.
1382
1383
1384 @node TCL scripting API
1385 @chapter TCL scripting API
1386 @cindex TCL scripting API
1387 API rules
1388
1389 The commands are stateless. E.g. the telnet command line has a concept
1390 of currently active target, the Tcl API proc's take this sort of state
1391 information as an argument to each proc.
1392
1393 There are three main types of return values: single value, name value
1394 pair list and lists.
1395
1396 Name value pair. The proc 'foo' below returns a name/value pair
1397 list.
1398
1399 @verbatim
1400
1401 > set foo(me) Duane
1402 > set foo(you) Oyvind
1403 > set foo(mouse) Micky
1404 > set foo(duck) Donald
1405
1406 If one does this:
1407
1408 > set foo
1409
1410 The result is:
1411
1412 me Duane you Oyvind mouse Micky duck Donald
1413
1414 Thus, to get the names of the associative array is easy:
1415
1416 foreach { name value } [set foo] {
1417 puts "Name: $name, Value: $value"
1418 }
1419 @end verbatim
1420
1421 Lists returned must be relatively small. Otherwise a range
1422 should be passed in to the proc in question.
1423
1424 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1425 is the low level API upon which "flash banks" is implemented.
1426
1427 OpenOCD commands can consist of two words, e.g. "flash banks". The
1428 startup.tcl "unknown" proc will translate this into a tcl proc
1429 called "flash_banks".
1430
1431
1432 @node Upgrading
1433 @chapter Deprecated/Removed Commands
1434 @cindex Deprecated/Removed Commands
1435 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1436
1437 @itemize @bullet
1438 @item @b{load_binary}
1439 @cindex load_binary
1440 use @option{load_image} command with same args
1441 @item @b{dump_binary}
1442 @cindex dump_binary
1443 use @option{dump_image} command with same args
1444 @item @b{flash erase}
1445 @cindex flash erase
1446 use @option{flash erase_sector} command with same args
1447 @item @b{flash write}
1448 @cindex flash write
1449 use @option{flash write_bank} command with same args
1450 @item @b{flash write_binary}
1451 @cindex flash write_binary
1452 use @option{flash write_bank} command with same args
1453 @item @b{arm7_9 fast_writes}
1454 @cindex arm7_9 fast_writes
1455 use @option{arm7_9 fast_memory_access} command with same args
1456 @item @b{flash auto_erase}
1457 @cindex flash auto_erase
1458 use @option{flash write_image} command passing @option{erase} as the first parameter.
1459 @end itemize
1460
1461 @node FAQ
1462 @chapter FAQ
1463 @cindex faq
1464 @enumerate
1465 @item OpenOCD complains about a missing cygwin1.dll.
1466
1467 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1468 claims to come with all the necessary dlls. When using Cygwin, try launching
1469 OpenOCD from the Cygwin shell.
1470
1471 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1472 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1473 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1474
1475 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1476 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1477 software breakpoints consume one of the two available hardware breakpoints,
1478 and are therefore disabled by default. If your code is running from RAM, you
1479 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1480 your code resides in Flash, you can't use software breakpoints, but you can force
1481 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1482
1483 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1484 and works sometimes fine.
1485
1486 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1487 clock at the time you're programming the flash. If you've specified the crystal's
1488 frequency, make sure the PLL is disabled, if you've specified the full core speed
1489 (e.g. 60MHz), make sure the PLL is enabled.
1490
1491 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1492 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1493 out while waiting for end of scan, rtck was disabled".
1494
1495 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1496 settings in your PC BIOS (ECP, EPP, and different versions of those).
1497
1498 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1499 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1500 memory read caused data abort".
1501
1502 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1503 beyond the last valid frame. It might be possible to prevent this by setting up
1504 a proper "initial" stack frame, if you happen to know what exactly has to
1505 be done, feel free to add this here.
1506
1507 @item I get the following message in the OpenOCD console (or log file):
1508 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1509
1510 This warning doesn't indicate any serious problem, as long as you don't want to
1511 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1512 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1513 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1514 independently. With this setup, it's not possible to halt the core right out of
1515 reset, everything else should work fine.
1516
1517 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1518 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1519 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1520 quit with an error message. Is there a stability issue with OpenOCD?
1521
1522 No, this is not a stability issue concerning OpenOCD. Most users have solved
1523 this issue by simply using a self-powered USB hub, which they connect their
1524 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1525 supply stable enough for the Amontec JTAGkey to be operated.
1526
1527 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1528 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1529 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1530 What does that mean and what might be the reason for this?
1531
1532 First of all, the reason might be the USB power supply. Try using a self-powered
1533 hub instead of a direct connection to your computer. Secondly, the error code 4
1534 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1535 chip ran into some sort of error - this points us to a USB problem.
1536
1537 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1538 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1539 What does that mean and what might be the reason for this?
1540
1541 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1542 has closed the connection to OpenOCD. This might be a GDB issue.
1543
1544 @item In the configuration file in the section where flash device configurations
1545 are described, there is a parameter for specifying the clock frequency for
1546 LPC2000 internal flash devices (e.g.
1547 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1548 which must be specified in kilohertz. However, I do have a quartz crystal of a
1549 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1550 Is it possible to specify real numbers for the clock frequency?
1551
1552 No. The clock frequency specified here must be given as an integral number.
1553 However, this clock frequency is used by the In-Application-Programming (IAP)
1554 routines of the LPC2000 family only, which seems to be very tolerant concerning
1555 the given clock frequency, so a slight difference between the specified clock
1556 frequency and the actual clock frequency will not cause any trouble.
1557
1558 @item Do I have to keep a specific order for the commands in the configuration file?
1559
1560 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1561 listed for the JTAG scan chain must be given in the right order (jtag_device),
1562 with the device closest to the TDO-Pin being listed first. In general,
1563 whenever objects of the same type exist which require an index number, then
1564 these objects must be given in the right order (jtag_devices, targets and flash
1565 banks - a target references a jtag_device and a flash bank references a target).
1566
1567 @item Sometimes my debugging session terminates with an error. When I look into the
1568 log file, I can see these error messages: Error: arm7_9_common.c:561
1569 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1570
1571 TODO.
1572
1573 @end enumerate
1574
1575 @include fdl.texi
1576
1577 @node Index
1578 @unnumbered Index
1579
1580 @printindex cp
1581
1582 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)