daemon_startup is now retired in favour of adding "init" and "reset halt/init/run...
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (OpenOCD)
27 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About OpenOCD.
46 * Developers:: OpenOCD developers
47 * Building:: Building OpenOCD
48 * Running:: Running OpenOCD
49 * Configuration:: OpenOCD Configuration.
50 * Target library:: Target library
51 * Commands:: OpenOCD Commands
52 * Sample Scripts:: Sample Target Scripts
53 * GDB and OpenOCD:: Using GDB and OpenOCD
54 * TCL and OpenOCD:: Using TCL and OpenOCD
55 * TCL scripting API:: Tcl scripting API
56 * Upgrading:: Deprecated/Removed Commands
57 * FAQ:: Frequently Asked Questions
58 * License:: GNU Free Documentation License
59 * Index:: Main index.
60 @end menu
61
62 @node About
63 @unnumbered About
64 @cindex about
65
66 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
67 and boundary-scan testing for embedded target devices. The targets are interfaced
68 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
69 connection types in the future.
70
71 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
72 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
73 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
74 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
75
76 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
77 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
78 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
79
80 @node Developers
81 @chapter Developers
82 @cindex developers
83
84 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
85 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
86 Others interested in improving the state of free and open debug and testing technology
87 are welcome to participate.
88
89 Other developers have contributed support for additional targets and flashes as well
90 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
91
92 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
93
94 @node Building
95 @chapter Building
96 @cindex building OpenOCD
97
98 You can download the current SVN version with SVN client of your choice from the
99 following repositories:
100
101 (@uref{svn://svn.berlios.de/openocd/trunk})
102
103 or
104
105 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
106
107 Using the SVN command line client, you can use the following command to fetch the
108 latest version (make sure there is no (non-svn) directory called "openocd" in the
109 current directory):
110
111 @smallexample
112 svn checkout svn://svn.berlios.de/openocd/trunk openocd
113 @end smallexample
114
115 Building OpenOCD requires a recent version of the GNU autotools.
116 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
117 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
118 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
119 paths, resulting in obscure dependency errors (This is an observation I've gathered
120 from the logs of one user - correct me if I'm wrong).
121
122 You further need the appropriate driver files, if you want to build support for
123 a FTDI FT2232 based interface:
124 @itemize @bullet
125 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
126 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
127 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
128 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
129 @end itemize
130
131 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
132 see contrib/libftdi for more details.
133
134 In general, the D2XX driver provides superior performance (several times as fast),
135 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
136 a kernel module, only a user space library.
137
138 To build OpenOCD (on both Linux and Cygwin), use the following commands:
139 @smallexample
140 ./bootstrap
141 @end smallexample
142 Bootstrap generates the configure script, and prepares building on your system.
143 @smallexample
144 ./configure
145 @end smallexample
146 Configure generates the Makefiles used to build OpenOCD.
147 @smallexample
148 make
149 @end smallexample
150 Make builds OpenOCD, and places the final executable in ./src/.
151
152 The configure script takes several options, specifying which JTAG interfaces
153 should be included:
154
155 @itemize @bullet
156 @item
157 @option{--enable-parport}
158 @item
159 @option{--enable-parport_ppdev}
160 @item
161 @option{--enable-parport_giveio}
162 @item
163 @option{--enable-amtjtagaccel}
164 @item
165 @option{--enable-ft2232_ftd2xx}
166 @footnote{Using the latest D2XX drivers from FTDI and following their installation
167 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
168 build properly.}
169 @item
170 @option{--enable-ft2232_libftdi}
171 @item
172 @option{--with-ftd2xx=/path/to/d2xx/}
173 @item
174 @option{--enable-gw16012}
175 @item
176 @option{--enable-usbprog}
177 @item
178 @option{--enable-presto_libftdi}
179 @item
180 @option{--enable-presto_ftd2xx}
181 @item
182 @option{--enable-jlink}
183 @end itemize
184
185 If you want to access the parallel port using the PPDEV interface you have to specify
186 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
187 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
188 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
189
190 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
191 absolute path containing no spaces.
192
193 Linux users should copy the various parts of the D2XX package to the appropriate
194 locations, i.e. /usr/include, /usr/lib.
195
196 @node Running
197 @chapter Running
198 @cindex running OpenOCD
199 @cindex --configfile
200 @cindex --debug_level
201 @cindex --logfile
202 @cindex --search
203 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
204 Run with @option{--help} or @option{-h} to view the available command line switches.
205
206 It reads its configuration by default from the file openocd.cfg located in the current
207 working directory. This may be overwritten with the @option{-f <configfile>} command line
208 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
209 are executed in order.
210
211 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
212
213 To enable debug output (when reporting problems or working on OpenOCD itself), use
214 the @option{-d} command line switch. This sets the debug_level to "3", outputting
215 the most information, including debug messages. The default setting is "2", outputting
216 only informational messages, warnings and errors. You can also change this setting
217 from within a telnet or gdb session (@option{debug_level <n>}).
218
219 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
220
221 Search paths for config/script files can be added to OpenOCD by using
222 the @option{-s <search>} switch. The current directory and the OpenOCD target library
223 is in the search path by default.
224
225 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
226 with the target. In general, it is possible for the JTAG controller to be unresponsive until
227 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
228
229 @node Configuration
230 @chapter Configuration
231 @cindex configuration
232 OpenOCD runs as a daemon, and reads it current configuration
233 by default from the file openocd.cfg in the current directory. A different configuration
234 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
235
236 The configuration file is used to specify on which ports the daemon listens for new
237 connections, the JTAG interface used to connect to the target, the layout of the JTAG
238 chain, the targets that should be debugged, and connected flashes.
239
240 @section Daemon configuration
241
242 @itemize @bullet
243 @item @b{init} This command terminates the configuration stage and enters the normal
244 command mode. This can be useful to add commands to the startup scripts and commands
245 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
246 add "init" and "reset" at the end of the config script or at the end of the
247 OpenOCD command line using the @option{-c} command line switch.
248 @cindex init
249 @item @b{telnet_port} <@var{number}>
250 @cindex telnet_port
251 Port on which to listen for incoming telnet connections
252 @item @b{gdb_port} <@var{number}>
253 @cindex gdb_port
254 First port on which to listen for incoming GDB connections. The GDB port for the
255 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
256 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
257 @cindex gdb_detach
258 Configures what OpenOCD will do when gdb detaches from the daeman.
259 Default behaviour is <@var{resume}>
260 @item @b{gdb_memory_map} <@var{enable|disable}>
261 @cindex gdb_memory_map
262 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
263 requested. gdb will then know when to set hardware breakpoints, and program flash
264 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
265 for flash programming to work.
266 Default behaviour is <@var{enable}>
267 @item @b{gdb_flash_program} <@var{enable|disable}>
268 @cindex gdb_flash_program
269 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
270 vFlash packet is received.
271 Default behaviour is <@var{enable}>
272 at item @b{tcl_port} <@var{number}>
273 at cindex tcl_port
274 Port on which to listen for incoming TCL syntax. This port is intended as
275 a simplified RPC connection that can be used by clients to issue commands
276 and get the output from the TCL engine.
277 @end itemize
278
279 @section JTAG interface configuration
280
281 @itemize @bullet
282 @item @b{interface} <@var{name}>
283 @cindex interface
284 Use the interface driver <@var{name}> to connect to the target. Currently supported
285 interfaces are
286 @itemize @minus
287 @item @b{parport}
288 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
289 @end itemize
290 @itemize @minus
291 @item @b{amt_jtagaccel}
292 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
293 mode parallel port
294 @end itemize
295 @itemize @minus
296 @item @b{ft2232}
297 FTDI FT2232 based devices using either the open-source libftdi or the binary only
298 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
299 platform. The libftdi uses libusb, and should be portable to all systems that provide
300 libusb.
301 @end itemize
302 @itemize @minus
303 @item @b{ep93xx}
304 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
305 @end itemize
306 @itemize @minus
307 @item @b{presto}
308 ASIX PRESTO USB JTAG programmer.
309 @end itemize
310 @itemize @minus
311 @item @b{usbprog}
312 usbprog is a freely programmable USB adapter.
313 @end itemize
314 @itemize @minus
315 @item @b{gw16012}
316 Gateworks GW16012 JTAG programmer.
317 @end itemize
318 @itemize @minus
319 @item @b{jlink}
320 Segger jlink usb adapter
321 @end itemize
322 @end itemize
323
324 @itemize @bullet
325 @item @b{jtag_speed} <@var{reset speed}> <@var{post reset speed}>
326 @cindex jtag_speed
327 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
328 speed. The actual effect of this option depends on the JTAG interface used. Reset
329 speed is used during reset and post reset speed after reset. post reset speed
330 is optional, in which case the reset speed is used.
331 @itemize @minus
332
333 @item wiggler: maximum speed / @var{number}
334 @item ft2232: 6MHz / (@var{number}+1)
335 @item amt jtagaccel: 8 / 2**@var{number}
336 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
337 @end itemize
338
339 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
340 especially true for synthesized cores (-S).
341
342 @item @b{jtag_khz} <@var{reset speed kHz}> <@var{post reset speed kHz}>
343 @cindex jtag_khz
344 Same as jtag_speed, except that the speed is specified in maximum kHz. If
345 the device can not support the rate asked for, or can not translate from
346 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
347 is not supported, then an error is reported.
348
349 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
350 @cindex reset_config
351 The configuration of the reset signals available on the JTAG interface AND the target.
352 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
353 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
354 @option{srst_only} or @option{trst_and_srst}.
355
356 [@var{combination}] is an optional value specifying broken reset signal implementations.
357 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
358 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
359 that the system is reset together with the test logic (only hypothetical, I haven't
360 seen hardware with such a bug, and can be worked around).
361 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
362 The default behaviour if no option given is @option{separate}.
363
364 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
365 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
366 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
367 (default) and @option{srst_push_pull} for the system reset. These values only affect
368 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
369
370 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
371 @cindex jtag_device
372 Describes the devices that form the JTAG daisy chain, with the first device being
373 the one closest to TDO. The parameters are the length of the instruction register
374 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
375 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
376 The IDCODE instruction will in future be used to query devices for their JTAG
377 identification code. This line is the same for all ARM7 and ARM9 devices.
378 Other devices, like CPLDs, require different parameters. An example configuration
379 line for a Xilinx XC9500 CPLD would look like this:
380 @smallexample
381 jtag_device 8 0x01 0x0e3 0xfe
382 @end smallexample
383 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
384 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
385 The IDCODE instruction is 0xfe.
386
387 @item @b{jtag_nsrst_delay} <@var{ms}>
388 @cindex jtag_nsrst_delay
389 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
390 starting new JTAG operations.
391 @item @b{jtag_ntrst_delay} <@var{ms}>
392 @cindex jtag_ntrst_delay
393 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
394 starting new JTAG operations.
395
396 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
397 or on-chip features) keep a reset line asserted for some time after the external reset
398 got deasserted.
399 @end itemize
400
401 @section parport options
402
403 @itemize @bullet
404 @item @b{parport_port} <@var{number}>
405 @cindex parport_port
406 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
407 the @file{/dev/parport} device
408
409 When using PPDEV to access the parallel port, use the number of the parallel port:
410 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
411 you may encounter a problem.
412 @item @b{parport_cable} <@var{name}>
413 @cindex parport_cable
414 The layout of the parallel port cable used to connect to the target.
415 Currently supported cables are
416 @itemize @minus
417 @item @b{wiggler}
418 @cindex wiggler
419 The original Wiggler layout, also supported by several clones, such
420 as the Olimex ARM-JTAG
421 @item @b{old_amt_wiggler}
422 @cindex old_amt_wiggler
423 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
424 version available from the website uses the original Wiggler layout ('@var{wiggler}')
425 @item @b{chameleon}
426 @cindex chameleon
427 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
428 @item @b{dlc5}
429 @cindex dlc5
430 The Xilinx Parallel cable III.
431 @item @b{triton}
432 @cindex triton
433 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
434 This is also the layout used by the HollyGates design
435 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
436 @item @b{flashlink}
437 @cindex flashlink
438 The ST Parallel cable.
439 @end itemize
440 @item @b{parport_write_on_exit} <@var{on|off}>
441 @cindex parport_write_on_exit
442 This will configure the parallel driver to write a known value to the parallel
443 interface on exiting OpenOCD
444 @end itemize
445
446 @section amt_jtagaccel options
447 @itemize @bullet
448 @item @b{parport_port} <@var{number}>
449 @cindex parport_port
450 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
451 @file{/dev/parport} device
452 @end itemize
453 @section ft2232 options
454
455 @itemize @bullet
456 @item @b{ft2232_device_desc} <@var{description}>
457 @cindex ft2232_device_desc
458 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
459 default value is used. This setting is only valid if compiled with FTD2XX support.
460 @item @b{ft2232_layout} <@var{name}>
461 @cindex ft2232_layout
462 The layout of the FT2232 GPIO signals used to control output-enables and reset
463 signals. Valid layouts are
464 @itemize @minus
465 @item @b{usbjtag}
466 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
467 @item @b{jtagkey}
468 Amontec JTAGkey and JTAGkey-tiny
469 @item @b{signalyzer}
470 Signalyzer
471 @item @b{olimex-jtag}
472 Olimex ARM-USB-OCD
473 @item @b{m5960}
474 American Microsystems M5960
475 @item @b{evb_lm3s811}
476 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
477 SRST signals on external connector
478 @item @b{comstick}
479 Hitex STR9 comstick
480 @item @b{stm32stick}
481 Hitex STM32 Performance Stick
482 @item @b{flyswatter}
483 Tin Can Tools Flyswatter
484 @item @b{turtelizer2}
485 egnite Software turtelizer2
486 @item @b{oocdlink}
487 OOCDLink
488 @end itemize
489
490 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
491 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
492 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
493 @smallexample
494 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
495 @end smallexample
496 @item @b{ft2232_latency} <@var{ms}>
497 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
498 ft2232_read() fails to return the expected number of bytes. This can be caused by
499 USB communication delays and has proved hard to reproduce and debug. Setting the
500 FT2232 latency timer to a larger value increases delays for short USB packages but it
501 also reduces the risk of timeouts before receiving the expected number of bytes.
502 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
503 @end itemize
504
505 @section ep93xx options
506 @cindex ep93xx options
507 Currently, there are no options available for the ep93xx interface.
508
509 @page
510 @section Target configuration
511
512 @itemize @bullet
513 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
514 <@var{variant}>
515 @cindex target
516 Defines a target that should be debugged. Currently supported types are:
517 @itemize @minus
518 @item @b{arm7tdmi}
519 @item @b{arm720t}
520 @item @b{arm9tdmi}
521 @item @b{arm920t}
522 @item @b{arm922t}
523 @item @b{arm926ejs}
524 @item @b{arm966e}
525 @item @b{cortex_m3}
526 @item @b{feroceon}
527 @item @b{xscale}
528 @end itemize
529
530 If you want to use a target board that is not on this list, see Adding a new
531 target board
532
533 Endianess may be @option{little} or @option{big}.
534
535
536 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
537 completely independent (like the LPC2000 series), or where the JTAG interface is
538 unavailable for some time during startup (like the STR7 series), you can't use
539 @option{reset_halt} or @option{reset_init}.
540
541 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
542 @cindex target_script
543 Event is one of the following:
544 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
545 @option{pre_resume} or @option{gdb_program_config}.
546 @option{post_reset} and @option{reset} will produce the same results.
547
548 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
549 @cindex run_and_halt_time
550 The amount of time the debugger should wait after releasing reset before it asserts
551 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
552 reset modes.
553 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
554 <@var{backup}|@var{nobackup}>
555 @cindex working_area
556 Specifies a working area for the debugger to use. This may be used to speed-up
557 downloads to target memory and flash operations, or to perform otherwise unavailable
558 operations (some coprocessor operations on ARM7/9 systems, for example). The last
559 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
560 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
561 @end itemize
562
563 @subsection arm7tdmi options
564 @cindex arm7tdmi options
565 target arm7tdmi <@var{endianess}> <@var{jtag#}>
566 The arm7tdmi target definition requires at least one additional argument, specifying
567 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
568 The optional [@var{variant}] parameter has been removed in recent versions.
569 The correct feature set is determined at runtime.
570
571 @subsection arm720t options
572 @cindex arm720t options
573 ARM720t options are similar to ARM7TDMI options.
574
575 @subsection arm9tdmi options
576 @cindex arm9tdmi options
577 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
578 @option{arm920t}, @option{arm922t} and @option{arm940t}.
579 This enables the hardware single-stepping support found on these cores.
580
581 @subsection arm920t options
582 @cindex arm920t options
583 ARM920t options are similar to ARM9TDMI options.
584
585 @subsection arm966e options
586 @cindex arm966e options
587 ARM966e options are similar to ARM9TDMI options.
588
589 @subsection cortex_m3 options
590 @cindex cortex_m3 options
591 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
592 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
593 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
594 be detected and the normal reset behaviour used.
595
596 @subsection xscale options
597 @cindex xscale options
598 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
599 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
600
601 @section Flash configuration
602 @cindex Flash configuration
603
604 @itemize @bullet
605 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
606 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
607 @cindex flash bank
608 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
609 and <@var{bus_width}> bytes using the selected flash <driver>.
610 @end itemize
611
612 @subsection lpc2000 options
613 @cindex lpc2000 options
614
615 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
616 <@var{clock}> [@var{calc_checksum}]
617 LPC flashes don't require the chip and bus width to be specified. Additional
618 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
619 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
620 of the target this flash belongs to (first is 0), the frequency at which the core
621 is currently running (in kHz - must be an integral number), and the optional keyword
622 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
623 vector table.
624
625 @subsection cfi options
626 @cindex cfi options
627
628 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
629 <@var{target#}>
630 CFI flashes require the number of the target they're connected to as an additional
631 argument. The CFI driver makes use of a working area (specified for the target)
632 to significantly speed up operation.
633
634 @var{chip_width} and @var{bus_width} are specified in bytes.
635
636 @subsection at91sam7 options
637 @cindex at91sam7 options
638
639 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
640 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
641 reading the chip-id and type.
642
643 @subsection str7 options
644 @cindex str7 options
645
646 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
647 variant can be either STR71x, STR73x or STR75x.
648
649 @subsection str9 options
650 @cindex str9 options
651
652 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
653 The str9 needs the flash controller to be configured prior to Flash programming, eg.
654 @smallexample
655 str9x flash_config 0 4 2 0 0x80000
656 @end smallexample
657 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
658
659 @subsection str9 options (str9xpec driver)
660
661 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
662 Before using the flash commands the turbo mode will need enabling using str9xpec
663 @option{enable_turbo} <@var{num>.}
664
665 Only use this driver for locking/unlocking the device or configuring the option bytes.
666 Use the standard str9 driver for programming.
667
668 @subsection stellaris (LM3Sxxx) options
669 @cindex stellaris (LM3Sxxx) options
670
671 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
672 stellaris flash plugin only require the @var{target#}.
673
674 @subsection stm32x options
675 @cindex stm32x options
676
677 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
678 stm32x flash plugin only require the @var{target#}.
679
680 @node Target library
681 @chapter Target library
682 @cindex Target library
683
684 OpenOCD comes with a target configuration script library. These scripts can be
685 used as-is or serve as a starting point.
686
687 The target library is published together with the openocd executable and
688 the path to the target library is in the OpenOCD script search path.
689 Similarly there are example scripts for configuring the JTAG interface.
690
691 The command line below uses the example parport configuration scripts
692 that ship with OpenOCD, then configures the str710.cfg target and
693 finally issues the init and reset command. The communication speed
694 is set to 10kHz for reset and 8MHz for post reset.
695
696
697 @smallexample
698 openocd -f interface/parport.cfg -c "jtag_khz 10 8000" -f target/str710.cfg -c "init" -c "reset"
699 @end smallexample
700
701
702 To list the target scripts available:
703
704 @smallexample
705 $ ls /usr/local/lib/openocd/target
706
707 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
708 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
709 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
710 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
711 @end smallexample
712
713
714 @node Commands
715 @chapter Commands
716 @cindex commands
717
718 OpenOCD allows user interaction through a GDB server (default: port 3333),
719 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
720 is available from both the telnet interface and a GDB session. To issue commands to the
721 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
722 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
723 GDB session.
724
725 The TCL interface is used as a simplified RPC mechanism that feeds all the
726 input into the TCL interpreter and returns the output from the evaluation of
727 the commands.
728
729 @section Daemon
730
731 @itemize @bullet
732 @item @b{sleep} <@var{msec}>
733 @cindex sleep
734 Wait for n milliseconds before resuming. Useful in connection with script files
735 (@var{script} command and @var{target_script} configuration).
736
737 @item @b{shutdown}
738 @cindex shutdown
739 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
740
741 @item @b{debug_level} [@var{n}]
742 @cindex debug_level
743 Display or adjust debug level to n<0-3>
744
745 @item @b{fast} [@var{enable/disable}]
746 @cindex fast
747 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
748 downloads and fast memory access will work if the JTAG interface isn't too fast and
749 the core doesn't run at a too low frequency. Note that this option only changes the default
750 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
751 individually.
752
753 The target specific "dangerous" optimisation tweaking options may come and go
754 as more robust and user friendly ways are found to ensure maximum throughput
755 and robustness with a minimum of configuration.
756
757 Typically the "fast enable" is specified first on the command line:
758
759 @smallexample
760 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
761 @end smallexample
762
763 @item @b{log_output} <@var{file}>
764 @cindex log_output
765 Redirect logging to <file> (default: stderr)
766
767 @item @b{script} <@var{file}>
768 @cindex script
769 Execute commands from <file>
770
771 @end itemize
772
773 @subsection Target state handling
774 @itemize @bullet
775 @item @b{poll} [@option{on}|@option{off}]
776 @cindex poll
777 Poll the target for its current state. If the target is in debug mode, architecture
778 specific information about the current state is printed. An optional parameter
779 allows continuous polling to be enabled and disabled.
780
781 @item @b{halt} [@option{ms}]
782 @cindex halt
783 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
784 Default [@option{ms}] is 5 seconds if no arg given.
785 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
786 will stop OpenOCD from waiting.
787
788 @item @b{wait_halt} [@option{ms}]
789 @cindex wait_halt
790 Wait for the target to enter debug mode. Optional [@option{ms}] is
791 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
792 arg given.
793
794 @item @b{resume} [@var{address}]
795 @cindex resume
796 Resume the target at its current code position, or at an optional address.
797 OpenOCD will wait 5 seconds for the target to resume.
798
799 @item @b{step} [@var{address}]
800 @cindex step
801 Single-step the target at its current code position, or at an optional address.
802
803 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
804 |@option{run_and_init}]
805 @cindex reset
806 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
807 This optional parameter overrides the setting specified in the configuration file,
808 making the new behaviour the default for the @option{reset} command.
809
810 With no arguments a "reset run" is executed
811 @itemize @minus
812 @item @b{run}
813 @cindex reset run
814 Let the target run.
815 @item @b{halt}
816 @cindex reset halt
817 Immediately halt the target (works only with certain configurations).
818 @item @b{init}
819 @cindex reset init
820 Immediately halt the target, and execute the reset script (works only with certain
821 configurations)
822 @item @b{run_and_halt}
823 @cindex reset run_and_halt
824 Let the target run for a certain amount of time, then request a halt.
825 @item @b{run_and_init}
826 @cindex reset run_and_init
827 Let the target run for a certain amount of time, then request a halt. Execute the
828 reset script once the target enters debug mode.
829 @end itemize
830 @end itemize
831
832 @subsection Memory access commands
833 These commands allow accesses of a specific size to the memory system:
834 @itemize @bullet
835 @item @b{mdw} <@var{addr}> [@var{count}]
836 @cindex mdw
837 display memory words
838 @item @b{mdh} <@var{addr}> [@var{count}]
839 @cindex mdh
840 display memory half-words
841 @item @b{mdb} <@var{addr}> [@var{count}]
842 @cindex mdb
843 display memory bytes
844 @item @b{mww} <@var{addr}> <@var{value}>
845 @cindex mww
846 write memory word
847 @item @b{mwh} <@var{addr}> <@var{value}>
848 @cindex mwh
849 write memory half-word
850 @item @b{mwb} <@var{addr}> <@var{value}>
851 @cindex mwb
852 write memory byte
853
854 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
855 @cindex load_image
856 Load image <@var{file}> to target memory at <@var{address}>
857 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
858 @cindex dump_image
859 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
860 (binary) <@var{file}>.
861 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
862 @cindex verify_image
863 Verify <@var{file}> against target memory starting at <@var{address}>.
864 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
865 @end itemize
866
867 @subsection Flash commands
868 @cindex Flash commands
869 @itemize @bullet
870 @item @b{flash banks}
871 @cindex flash banks
872 List configured flash banks
873 @item @b{flash info} <@var{num}>
874 @cindex flash info
875 Print info about flash bank <@option{num}>
876 @item @b{flash probe} <@var{num}>
877 @cindex flash probe
878 Identify the flash, or validate the parameters of the configured flash. Operation
879 depends on the flash type.
880 @item @b{flash erase_check} <@var{num}>
881 @cindex flash erase_check
882 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
883 updates the erase state information displayed by @option{flash info}. That means you have
884 to issue an @option{erase_check} command after erasing or programming the device to get
885 updated information.
886 @item @b{flash protect_check} <@var{num}>
887 @cindex flash protect_check
888 Check protection state of sectors in flash bank <num>.
889 @option{flash erase_sector} using the same syntax.
890 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
891 @cindex flash erase_sector
892 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
893 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
894 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
895 the CFI driver).
896 @item @b{flash erase_address} <@var{address}> <@var{length}>
897 @cindex flash erase_address
898 Erase sectors starting at <@var{address}> for <@var{length}> bytes
899 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
900 @cindex flash write_bank
901 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
902 <@option{offset}> bytes from the beginning of the bank.
903 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
904 @cindex flash write_image
905 Write the image <@var{file}> to the current target's flash bank(s). A relocation
906 [@var{offset}] can be specified and the file [@var{type}] can be specified
907 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
908 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
909 if the @option{erase} parameter is given.
910 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
911 @cindex flash protect
912 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
913 <@var{last}> of @option{flash bank} <@var{num}>.
914 @end itemize
915
916 @page
917 @section Target Specific Commands
918 @cindex Target Specific Commands
919
920 @subsection AT91SAM7 specific commands
921 @cindex AT91SAM7 specific commands
922 The flash configuration is deduced from the chip identification register. The flash
923 controller handles erases automatically on a page (128/265 byte) basis so erase is
924 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
925 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
926 that can be erased separatly. Only an EraseAll command is supported by the controller
927 for each flash plane and this is called with
928 @itemize @bullet
929 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
930 bulk erase flash planes first_plane to last_plane.
931 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
932 @cindex at91sam7 gpnvm
933 set or clear a gpnvm bit for the processor
934 @end itemize
935
936 @subsection STR9 specific commands
937 @cindex STR9 specific commands
938 These are flash specific commands when using the str9xpec driver.
939 @itemize @bullet
940 @item @b{str9xpec enable_turbo} <@var{num}>
941 @cindex str9xpec enable_turbo
942 enable turbo mode, simply this will remove the str9 from the chain and talk
943 directly to the embedded flash controller.
944 @item @b{str9xpec disable_turbo} <@var{num}>
945 @cindex str9xpec disable_turbo
946 restore the str9 into jtag chain.
947 @item @b{str9xpec lock} <@var{num}>
948 @cindex str9xpec lock
949 lock str9 device. The str9 will only respond to an unlock command that will
950 erase the device.
951 @item @b{str9xpec unlock} <@var{num}>
952 @cindex str9xpec unlock
953 unlock str9 device.
954 @item @b{str9xpec options_read} <@var{num}>
955 @cindex str9xpec options_read
956 read str9 option bytes.
957 @item @b{str9xpec options_write} <@var{num}>
958 @cindex str9xpec options_write
959 write str9 option bytes.
960 @end itemize
961
962 @subsection STR9 configuration
963 @cindex STR9 configuration
964 @itemize @bullet
965 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
966 <@var{BBADR}> <@var{NBBADR}>
967 @cindex str9x flash_config
968 Configure str9 flash controller.
969 @smallexample
970 eg. str9x flash_config 0 4 2 0 0x80000
971 This will setup
972 BBSR - Boot Bank Size register
973 NBBSR - Non Boot Bank Size register
974 BBADR - Boot Bank Start Address register
975 NBBADR - Boot Bank Start Address register
976 @end smallexample
977 @end itemize
978
979 @subsection STR9 option byte configuration
980 @cindex STR9 option byte configuration
981 @itemize @bullet
982 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
983 @cindex str9xpec options_cmap
984 configure str9 boot bank.
985 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
986 @cindex str9xpec options_lvdthd
987 configure str9 lvd threshold.
988 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
989 @cindex str9xpec options_lvdsel
990 configure str9 lvd source.
991 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
992 @cindex str9xpec options_lvdwarn
993 configure str9 lvd reset warning source.
994 @end itemize
995
996 @subsection STM32x specific commands
997 @cindex STM32x specific commands
998
999 These are flash specific commands when using the stm32x driver.
1000 @itemize @bullet
1001 @item @b{stm32x lock} <@var{num}>
1002 @cindex stm32x lock
1003 lock stm32 device.
1004 @item @b{stm32x unlock} <@var{num}>
1005 @cindex stm32x unlock
1006 unlock stm32 device.
1007 @item @b{stm32x options_read} <@var{num}>
1008 @cindex stm32x options_read
1009 read stm32 option bytes.
1010 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1011 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1012 @cindex stm32x options_write
1013 write stm32 option bytes.
1014 @item @b{stm32x mass_erase} <@var{num}>
1015 @cindex stm32x mass_erase
1016 mass erase flash memory.
1017 @end itemize
1018
1019 @subsection Stellaris specific commands
1020 @cindex Stellaris specific commands
1021
1022 These are flash specific commands when using the Stellaris driver.
1023 @itemize @bullet
1024 @item @b{stellaris mass_erase} <@var{num}>
1025 @cindex stellaris mass_erase
1026 mass erase flash memory.
1027 @end itemize
1028
1029 @page
1030 @section Architecture Specific Commands
1031 @cindex Architecture Specific Commands
1032
1033 @subsection ARMV4/5 specific commands
1034 @cindex ARMV4/5 specific commands
1035
1036 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1037 or Intel XScale (XScale isn't supported yet).
1038 @itemize @bullet
1039 @item @b{armv4_5 reg}
1040 @cindex armv4_5 reg
1041 Display a list of all banked core registers, fetching the current value from every
1042 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1043 register value.
1044 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1045 @cindex armv4_5 core_mode
1046 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1047 The target is resumed in the currently set @option{core_mode}.
1048 @end itemize
1049
1050 @subsection ARM7/9 specific commands
1051 @cindex ARM7/9 specific commands
1052
1053 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1054 ARM920t or ARM926EJ-S.
1055 @itemize @bullet
1056 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1057 @cindex arm7_9 sw_bkpts
1058 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1059 one of the watchpoint registers to implement software breakpoints. Disabling
1060 SW Bkpts frees that register again.
1061 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1062 @cindex arm7_9 force_hw_bkpts
1063 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1064 breakpoints are turned into hardware breakpoints.
1065 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1066 @cindex arm7_9 dbgrq
1067 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1068 safe for all but ARM7TDMI--S cores (like Philips LPC).
1069 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1070 @cindex arm7_9 fast_memory_access
1071 Allow OpenOCD to read and write memory without checking completion of
1072 the operation. This provides a huge speed increase, especially with USB JTAG
1073 cables (FT2232), but might be unsafe if used with targets running at a very low
1074 speed, like the 32kHz startup clock of an AT91RM9200.
1075 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1076 @cindex arm7_9 dcc_downloads
1077 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1078 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1079 unsafe, especially with targets running at a very low speed. This command was introduced
1080 with OpenOCD rev. 60.
1081 @end itemize
1082
1083 @subsection ARM720T specific commands
1084 @cindex ARM720T specific commands
1085
1086 @itemize @bullet
1087 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1088 @cindex arm720t cp15
1089 display/modify cp15 register <@option{num}> [@option{value}].
1090 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1091 @cindex arm720t md<bhw>_phys
1092 Display memory at physical address addr.
1093 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1094 @cindex arm720t mw<bhw>_phys
1095 Write memory at physical address addr.
1096 @item @b{arm720t virt2phys} <@var{va}>
1097 @cindex arm720t virt2phys
1098 Translate a virtual address to a physical address.
1099 @end itemize
1100
1101 @subsection ARM9TDMI specific commands
1102 @cindex ARM9TDMI specific commands
1103
1104 @itemize @bullet
1105 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1106 @cindex arm9tdmi vector_catch
1107 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1108 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1109 @option{irq} @option{fiq}.
1110
1111 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1112 @end itemize
1113
1114 @subsection ARM966E specific commands
1115 @cindex ARM966E specific commands
1116
1117 @itemize @bullet
1118 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1119 @cindex arm966e cp15
1120 display/modify cp15 register <@option{num}> [@option{value}].
1121 @end itemize
1122
1123 @subsection ARM920T specific commands
1124 @cindex ARM920T specific commands
1125
1126 @itemize @bullet
1127 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1128 @cindex arm920t cp15
1129 display/modify cp15 register <@option{num}> [@option{value}].
1130 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1131 @cindex arm920t cp15i
1132 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1133 @item @b{arm920t cache_info}
1134 @cindex arm920t cache_info
1135 Print information about the caches found. This allows you to see if your target
1136 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1137 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1138 @cindex arm920t md<bhw>_phys
1139 Display memory at physical address addr.
1140 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1141 @cindex arm920t mw<bhw>_phys
1142 Write memory at physical address addr.
1143 @item @b{arm920t read_cache} <@var{filename}>
1144 @cindex arm920t read_cache
1145 Dump the content of ICache and DCache to a file.
1146 @item @b{arm920t read_mmu} <@var{filename}>
1147 @cindex arm920t read_mmu
1148 Dump the content of the ITLB and DTLB to a file.
1149 @item @b{arm920t virt2phys} <@var{va}>
1150 @cindex arm920t virt2phys
1151 Translate a virtual address to a physical address.
1152 @end itemize
1153
1154 @subsection ARM926EJS specific commands
1155 @cindex ARM926EJS specific commands
1156
1157 @itemize @bullet
1158 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1159 @cindex arm926ejs cp15
1160 display/modify cp15 register <@option{num}> [@option{value}].
1161 @item @b{arm926ejs cache_info}
1162 @cindex arm926ejs cache_info
1163 Print information about the caches found.
1164 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1165 @cindex arm926ejs md<bhw>_phys
1166 Display memory at physical address addr.
1167 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1168 @cindex arm926ejs mw<bhw>_phys
1169 Write memory at physical address addr.
1170 @item @b{arm926ejs virt2phys} <@var{va}>
1171 @cindex arm926ejs virt2phys
1172 Translate a virtual address to a physical address.
1173 @end itemize
1174
1175 @page
1176 @section Debug commands
1177 @cindex Debug commands
1178 The following commands give direct access to the core, and are most likely
1179 only useful while debugging OpenOCD.
1180 @itemize @bullet
1181 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1182 @cindex arm7_9 write_xpsr
1183 Immediately write either the current program status register (CPSR) or the saved
1184 program status register (SPSR), without changing the register cache (as displayed
1185 by the @option{reg} and @option{armv4_5 reg} commands).
1186 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1187 <@var{0=cpsr},@var{1=spsr}>
1188 @cindex arm7_9 write_xpsr_im8
1189 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1190 operation (similar to @option{write_xpsr}).
1191 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1192 @cindex arm7_9 write_core_reg
1193 Write a core register, without changing the register cache (as displayed by the
1194 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1195 encoding of the [M4:M0] bits of the PSR.
1196 @end itemize
1197
1198 @page
1199 @section JTAG commands
1200 @cindex JTAG commands
1201 @itemize @bullet
1202 @item @b{scan_chain}
1203 @cindex scan_chain
1204 Print current scan chain configuration.
1205 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1206 @cindex jtag_reset
1207 Toggle reset lines.
1208 @item @b{endstate} <@var{tap_state}>
1209 @cindex endstate
1210 Finish JTAG operations in <@var{tap_state}>.
1211 @item @b{runtest} <@var{num_cycles}>
1212 @cindex runtest
1213 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1214 @item @b{statemove} [@var{tap_state}]
1215 @cindex statemove
1216 Move to current endstate or [@var{tap_state}]
1217 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1218 @cindex irscan
1219 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1220 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1221 @cindex drscan
1222 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1223 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1224 @cindex verify_ircapture
1225 Verify value captured during Capture-IR. Default is enabled.
1226 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1227 @cindex var
1228 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1229 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1230 @cindex field
1231 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1232 @end itemize
1233
1234 @page
1235 @section Target Requests
1236 @cindex Target Requests
1237 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1238 See libdcc in the contrib dir for more details.
1239 @itemize @bullet
1240 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1241 @cindex target_request debugmsgs
1242 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1243 @end itemize
1244
1245 @node Sample Scripts
1246 @chapter Sample Scripts
1247 @cindex scripts
1248
1249 This page shows how to use the target library.
1250
1251 The configuration script can be divided in the following section:
1252 @itemize @bullet
1253 @item daemon configuration
1254 @item interface
1255 @item jtag scan chain
1256 @item target configuration
1257 @item flash configuration
1258 @end itemize
1259
1260 Detailed information about each section can be found at OpenOCD configuration.
1261
1262 @section AT91R40008 example
1263 @cindex AT91R40008 example
1264 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1265 the CPU upon startup of the OpenOCD daemon.
1266 @smallexample
1267 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1268 @end smallexample
1269
1270
1271 @node GDB and OpenOCD
1272 @chapter GDB and OpenOCD
1273 @cindex GDB and OpenOCD
1274 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1275 to debug remote targets.
1276
1277 @section Connecting to gdb
1278 @cindex Connecting to gdb
1279 A connection is typically started as follows:
1280 @smallexample
1281 target remote localhost:3333
1282 @end smallexample
1283 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1284
1285 To see a list of available OpenOCD commands type @option{monitor help} on the
1286 gdb commandline.
1287
1288 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1289 to be sent by the gdb server (openocd) to gdb. Typical information includes
1290 packet size and device memory map.
1291
1292 Previous versions of OpenOCD required the following gdb options to increase
1293 the packet size and speed up gdb communication.
1294 @smallexample
1295 set remote memory-write-packet-size 1024
1296 set remote memory-write-packet-size fixed
1297 set remote memory-read-packet-size 1024
1298 set remote memory-read-packet-size fixed
1299 @end smallexample
1300 This is now handled in the @option{qSupported} PacketSize.
1301
1302 @section Programming using gdb
1303 @cindex Programming using gdb
1304
1305 By default the target memory map is sent to gdb, this can be disabled by
1306 the following OpenOCD config option:
1307 @smallexample
1308 gdb_memory_map disable
1309 @end smallexample
1310 For this to function correctly a valid flash config must also be configured
1311 in OpenOCD. For faster performance you should also configure a valid
1312 working area.
1313
1314 Informing gdb of the memory map of the target will enable gdb to protect any
1315 flash area of the target and use hardware breakpoints by default. This means
1316 that the OpenOCD option @option{arm7_9 force_hw_bkpts} is not required when
1317 using a memory map.
1318
1319 To view the configured memory map in gdb, use the gdb command @option{info mem}
1320 All other unasigned addresses within gdb are treated as RAM.
1321
1322 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1323 this can be changed to the old behaviour by using the following gdb command.
1324 @smallexample
1325 set mem inaccessible-by-default off
1326 @end smallexample
1327
1328 If @option{gdb_flash_program enable} is also used, gdb will be able to
1329 program any flash memory using the vFlash interface.
1330
1331 gdb will look at the target memory map when a load command is given, if any
1332 areas to be programmed lie within the target flash area the vFlash packets
1333 will be used.
1334
1335 If the target needs configuring before gdb programming, a script can be executed.
1336 @smallexample
1337 target_script 0 gdb_program_config config.script
1338 @end smallexample
1339
1340 To verify any flash programming the gdb command @option{compare-sections}
1341 can be used.
1342
1343 @node TCL and OpenOCD
1344 @chapter TCL and OpenOCD
1345 @cindex TCL and OpenOCD
1346 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1347 support.
1348
1349 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1350
1351 The command and file interfaces are fairly straightforward, while the network
1352 port is geared toward intergration with external clients. A small example
1353 of an external TCL script that can connect to openocd is shown below.
1354
1355 @verbatim
1356 # Simple tcl client to connect to openocd
1357 puts "Use empty line to exit"
1358 set fo [socket 127.0.0.1 6666]
1359 puts -nonewline stdout "> "
1360 flush stdout
1361 while {[gets stdin line] >= 0} {
1362 if {$line eq {}} break
1363 puts $fo $line
1364 flush $fo
1365 gets $fo line
1366 puts $line
1367 puts -nonewline stdout "> "
1368 flush stdout
1369 }
1370 close $fo
1371 @end verbatim
1372
1373 This script can easily be modified to front various GUIs or be a sub
1374 component of a larger framework for control and interaction.
1375
1376
1377 @node TCL scripting API
1378 @chapter TCL scripting API
1379 @cindex TCL scripting API
1380 API rules
1381
1382 The commands are stateless. E.g. the telnet command line has a concept
1383 of currently active target, the Tcl API proc's take this sort of state
1384 information as an argument to each proc.
1385
1386 There are three main types of return values: single value, name value
1387 pair list and lists.
1388
1389 Name value pair. The proc 'foo' below returns a name/value pair
1390 list.
1391
1392 @verbatim
1393
1394 > set foo(me) Duane
1395 > set foo(you) Oyvind
1396 > set foo(mouse) Micky
1397 > set foo(duck) Donald
1398
1399 If one does this:
1400
1401 > set foo
1402
1403 The result is:
1404
1405 me Duane you Oyvind mouse Micky duck Donald
1406
1407 Thus, to get the names of the associative array is easy:
1408
1409 foreach { name value } [set foo] {
1410 puts "Name: $name, Value: $value"
1411 }
1412 @end verbatim
1413
1414 Lists returned must be relatively small. Otherwise a range
1415 should be passed in to the proc in question.
1416
1417 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1418 is the low level API upon which "flash banks" is implemented.
1419
1420 OpenOCD commands can consist of two words, e.g. "flash banks". The
1421 startup.tcl "unknown" proc will translate this into a tcl proc
1422 called "flash_banks".
1423
1424
1425 @node Upgrading
1426 @chapter Deprecated/Removed Commands
1427 @cindex Deprecated/Removed Commands
1428 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1429
1430 @itemize @bullet
1431 @item @b{load_binary}
1432 @cindex load_binary
1433 use @option{load_image} command with same args
1434 @item @b{dump_binary}
1435 @cindex dump_binary
1436 use @option{dump_image} command with same args
1437 @item @b{flash erase}
1438 @cindex flash erase
1439 use @option{flash erase_sector} command with same args
1440 @item @b{flash write}
1441 @cindex flash write
1442 use @option{flash write_bank} command with same args
1443 @item @b{flash write_binary}
1444 @cindex flash write_binary
1445 use @option{flash write_bank} command with same args
1446 @item @b{arm7_9 fast_writes}
1447 @cindex arm7_9 fast_writes
1448 use @option{arm7_9 fast_memory_access} command with same args
1449 @item @b{flash auto_erase}
1450 @cindex flash auto_erase
1451 use @option{flash write_image} command passing @option{erase} as the first parameter.
1452 @end itemize
1453
1454 @node FAQ
1455 @chapter FAQ
1456 @cindex faq
1457 @enumerate
1458 @item OpenOCD complains about a missing cygwin1.dll.
1459
1460 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1461 claims to come with all the necessary dlls. When using Cygwin, try launching
1462 OpenOCD from the Cygwin shell.
1463
1464 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1465 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1466 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1467
1468 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1469 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1470 software breakpoints consume one of the two available hardware breakpoints,
1471 and are therefore disabled by default. If your code is running from RAM, you
1472 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1473 your code resides in Flash, you can't use software breakpoints, but you can force
1474 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1475
1476 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1477 and works sometimes fine.
1478
1479 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1480 clock at the time you're programming the flash. If you've specified the crystal's
1481 frequency, make sure the PLL is disabled, if you've specified the full core speed
1482 (e.g. 60MHz), make sure the PLL is enabled.
1483
1484 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1485 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1486 out while waiting for end of scan, rtck was disabled".
1487
1488 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1489 settings in your PC BIOS (ECP, EPP, and different versions of those).
1490
1491 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1492 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1493 memory read caused data abort".
1494
1495 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1496 beyond the last valid frame. It might be possible to prevent this by setting up
1497 a proper "initial" stack frame, if you happen to know what exactly has to
1498 be done, feel free to add this here.
1499
1500 @item I get the following message in the OpenOCD console (or log file):
1501 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1502
1503 This warning doesn't indicate any serious problem, as long as you don't want to
1504 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1505 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1506 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1507 independently. With this setup, it's not possible to halt the core right out of
1508 reset, everything else should work fine.
1509
1510 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1511 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1512 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1513 quit with an error message. Is there a stability issue with OpenOCD?
1514
1515 No, this is not a stability issue concerning OpenOCD. Most users have solved
1516 this issue by simply using a self-powered USB hub, which they connect their
1517 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1518 supply stable enough for the Amontec JTAGkey to be operated.
1519
1520 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1521 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1522 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1523 What does that mean and what might be the reason for this?
1524
1525 First of all, the reason might be the USB power supply. Try using a self-powered
1526 hub instead of a direct connection to your computer. Secondly, the error code 4
1527 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1528 chip ran into some sort of error - this points us to a USB problem.
1529
1530 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1531 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1532 What does that mean and what might be the reason for this?
1533
1534 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1535 has closed the connection to OpenOCD. This might be a GDB issue.
1536
1537 @item In the configuration file in the section where flash device configurations
1538 are described, there is a parameter for specifying the clock frequency for
1539 LPC2000 internal flash devices (e.g.
1540 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1541 which must be specified in kilohertz. However, I do have a quartz crystal of a
1542 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1543 Is it possible to specify real numbers for the clock frequency?
1544
1545 No. The clock frequency specified here must be given as an integral number.
1546 However, this clock frequency is used by the In-Application-Programming (IAP)
1547 routines of the LPC2000 family only, which seems to be very tolerant concerning
1548 the given clock frequency, so a slight difference between the specified clock
1549 frequency and the actual clock frequency will not cause any trouble.
1550
1551 @item Do I have to keep a specific order for the commands in the configuration file?
1552
1553 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1554 listed for the JTAG scan chain must be given in the right order (jtag_device),
1555 with the device closest to the TDO-Pin being listed first. In general,
1556 whenever objects of the same type exist which require an index number, then
1557 these objects must be given in the right order (jtag_devices, targets and flash
1558 banks - a target references a jtag_device and a flash bank references a target).
1559
1560 @item Sometimes my debugging session terminates with an error. When I look into the
1561 log file, I can see these error messages: Error: arm7_9_common.c:561
1562 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1563
1564 TODO.
1565
1566 @end enumerate
1567
1568 @include fdl.texi
1569
1570 @node Index
1571 @unnumbered Index
1572
1573 @printindex cp
1574
1575 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)