update jtag_speed/khz docs a bit.
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (OpenOCD)
27 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About OpenOCD.
46 * Developers:: OpenOCD developers
47 * Building:: Building OpenOCD
48 * Running:: Running OpenOCD
49 * Configuration:: OpenOCD Configuration.
50 * Target library:: Target library
51 * Commands:: OpenOCD Commands
52 * Sample Scripts:: Sample Target Scripts
53 * GDB and OpenOCD:: Using GDB and OpenOCD
54 * TCL and OpenOCD:: Using TCL and OpenOCD
55 * TCL scripting API:: Tcl scripting API
56 * Upgrading:: Deprecated/Removed Commands
57 * FAQ:: Frequently Asked Questions
58 * License:: GNU Free Documentation License
59 * Index:: Main index.
60 @end menu
61
62 @node About
63 @unnumbered About
64 @cindex about
65
66 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
67 and boundary-scan testing for embedded target devices. The targets are interfaced
68 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
69 connection types in the future.
70
71 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
72 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
73 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
74 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
75
76 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
77 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
78 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
79
80 @node Developers
81 @chapter Developers
82 @cindex developers
83
84 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
85 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
86 Others interested in improving the state of free and open debug and testing technology
87 are welcome to participate.
88
89 Other developers have contributed support for additional targets and flashes as well
90 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
91
92 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
93
94 @node Building
95 @chapter Building
96 @cindex building OpenOCD
97
98 You can download the current SVN version with SVN client of your choice from the
99 following repositories:
100
101 (@uref{svn://svn.berlios.de/openocd/trunk})
102
103 or
104
105 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
106
107 Using the SVN command line client, you can use the following command to fetch the
108 latest version (make sure there is no (non-svn) directory called "openocd" in the
109 current directory):
110
111 @smallexample
112 svn checkout svn://svn.berlios.de/openocd/trunk openocd
113 @end smallexample
114
115 Building OpenOCD requires a recent version of the GNU autotools.
116 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
117 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
118 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
119 paths, resulting in obscure dependency errors (This is an observation I've gathered
120 from the logs of one user - correct me if I'm wrong).
121
122 You further need the appropriate driver files, if you want to build support for
123 a FTDI FT2232 based interface:
124 @itemize @bullet
125 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
126 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
127 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
128 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
129 @end itemize
130
131 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
132 see contrib/libftdi for more details.
133
134 In general, the D2XX driver provides superior performance (several times as fast),
135 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
136 a kernel module, only a user space library.
137
138 To build OpenOCD (on both Linux and Cygwin), use the following commands:
139 @smallexample
140 ./bootstrap
141 @end smallexample
142 Bootstrap generates the configure script, and prepares building on your system.
143 @smallexample
144 ./configure
145 @end smallexample
146 Configure generates the Makefiles used to build OpenOCD.
147 @smallexample
148 make
149 @end smallexample
150 Make builds OpenOCD, and places the final executable in ./src/.
151
152 The configure script takes several options, specifying which JTAG interfaces
153 should be included:
154
155 @itemize @bullet
156 @item
157 @option{--enable-parport}
158 @item
159 @option{--enable-parport_ppdev}
160 @item
161 @option{--enable-parport_giveio}
162 @item
163 @option{--enable-amtjtagaccel}
164 @item
165 @option{--enable-ft2232_ftd2xx}
166 @footnote{Using the latest D2XX drivers from FTDI and following their installation
167 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
168 build properly.}
169 @item
170 @option{--enable-ft2232_libftdi}
171 @item
172 @option{--with-ftd2xx=/path/to/d2xx/}
173 @item
174 @option{--enable-gw16012}
175 @item
176 @option{--enable-usbprog}
177 @item
178 @option{--enable-presto_libftdi}
179 @item
180 @option{--enable-presto_ftd2xx}
181 @item
182 @option{--enable-jlink}
183 @end itemize
184
185 If you want to access the parallel port using the PPDEV interface you have to specify
186 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
187 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
188 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
189
190 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
191 absolute path containing no spaces.
192
193 Linux users should copy the various parts of the D2XX package to the appropriate
194 locations, i.e. /usr/include, /usr/lib.
195
196 @node Running
197 @chapter Running
198 @cindex running OpenOCD
199 @cindex --configfile
200 @cindex --debug_level
201 @cindex --logfile
202 @cindex --search
203 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
204 Run with @option{--help} or @option{-h} to view the available command line switches.
205
206 It reads its configuration by default from the file openocd.cfg located in the current
207 working directory. This may be overwritten with the @option{-f <configfile>} command line
208 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
209 are executed in order.
210
211 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
212
213 To enable debug output (when reporting problems or working on OpenOCD itself), use
214 the @option{-d} command line switch. This sets the debug_level to "3", outputting
215 the most information, including debug messages. The default setting is "2", outputting
216 only informational messages, warnings and errors. You can also change this setting
217 from within a telnet or gdb session (@option{debug_level <n>}).
218
219 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
220
221 Search paths for config/script files can be added to OpenOCD by using
222 the @option{-s <search>} switch. The current directory and the OpenOCD target library
223 is in the search path by default.
224
225 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
226 with the target. In general, it is possible for the JTAG controller to be unresponsive until
227 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
228
229 @node Configuration
230 @chapter Configuration
231 @cindex configuration
232 OpenOCD runs as a daemon, and reads it current configuration
233 by default from the file openocd.cfg in the current directory. A different configuration
234 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
235
236 The configuration file is used to specify on which ports the daemon listens for new
237 connections, the JTAG interface used to connect to the target, the layout of the JTAG
238 chain, the targets that should be debugged, and connected flashes.
239
240 @section Daemon configuration
241
242 @itemize @bullet
243 @item @b{init} This command terminates the configuration stage and enters the normal
244 command mode. This can be useful to add commands to the startup scripts and commands
245 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
246 add "init" and "reset" at the end of the config script or at the end of the
247 OpenOCD command line using the @option{-c} command line switch.
248 @cindex init
249 @item @b{telnet_port} <@var{number}>
250 @cindex telnet_port
251 Port on which to listen for incoming telnet connections
252 @item @b{gdb_port} <@var{number}>
253 @cindex gdb_port
254 First port on which to listen for incoming GDB connections. The GDB port for the
255 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
256 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
257 @cindex gdb_detach
258 Configures what OpenOCD will do when gdb detaches from the daeman.
259 Default behaviour is <@var{resume}>
260 @item @b{gdb_memory_map} <@var{enable|disable}>
261 @cindex gdb_memory_map
262 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
263 requested. gdb will then know when to set hardware breakpoints, and program flash
264 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
265 for flash programming to work.
266 Default behaviour is <@var{enable}>
267 @item @b{gdb_flash_program} <@var{enable|disable}>
268 @cindex gdb_flash_program
269 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
270 vFlash packet is received.
271 Default behaviour is <@var{enable}>
272 at item @b{tcl_port} <@var{number}>
273 at cindex tcl_port
274 Port on which to listen for incoming TCL syntax. This port is intended as
275 a simplified RPC connection that can be used by clients to issue commands
276 and get the output from the TCL engine.
277 @end itemize
278
279 @section JTAG interface configuration
280
281 @itemize @bullet
282 @item @b{interface} <@var{name}>
283 @cindex interface
284 Use the interface driver <@var{name}> to connect to the target. Currently supported
285 interfaces are
286 @itemize @minus
287 @item @b{parport}
288 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
289 @end itemize
290 @itemize @minus
291 @item @b{amt_jtagaccel}
292 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
293 mode parallel port
294 @end itemize
295 @itemize @minus
296 @item @b{ft2232}
297 FTDI FT2232 based devices using either the open-source libftdi or the binary only
298 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
299 platform. The libftdi uses libusb, and should be portable to all systems that provide
300 libusb.
301 @end itemize
302 @itemize @minus
303 @item @b{ep93xx}
304 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
305 @end itemize
306 @itemize @minus
307 @item @b{presto}
308 ASIX PRESTO USB JTAG programmer.
309 @end itemize
310 @itemize @minus
311 @item @b{usbprog}
312 usbprog is a freely programmable USB adapter.
313 @end itemize
314 @itemize @minus
315 @item @b{gw16012}
316 Gateworks GW16012 JTAG programmer.
317 @end itemize
318 @itemize @minus
319 @item @b{jlink}
320 Segger jlink usb adapter
321 @end itemize
322 @end itemize
323
324 @itemize @bullet
325 @item @b{jtag_speed} <@var{reset speed}>
326 @cindex jtag_speed
327 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
328 speed. The actual effect of this option depends on the JTAG interface used.
329
330 The speed used during reset can be adjusted using setting jtag_speed during
331 pre_reset and post_reset events.
332 @itemize @minus
333
334 @item wiggler: maximum speed / @var{number}
335 @item ft2232: 6MHz / (@var{number}+1)
336 @item amt jtagaccel: 8 / 2**@var{number}
337 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
338 @end itemize
339
340 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
341 especially true for synthesized cores (-S).
342
343 @item @b{jtag_khz} <@var{reset speed kHz}>
344 @cindex jtag_khz
345 Same as jtag_speed, except that the speed is specified in maximum kHz. If
346 the device can not support the rate asked for, or can not translate from
347 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
348 is not supported, then an error is reported.
349
350 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
351 @cindex reset_config
352 The configuration of the reset signals available on the JTAG interface AND the target.
353 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
354 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
355 @option{srst_only} or @option{trst_and_srst}.
356
357 [@var{combination}] is an optional value specifying broken reset signal implementations.
358 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
359 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
360 that the system is reset together with the test logic (only hypothetical, I haven't
361 seen hardware with such a bug, and can be worked around).
362 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
363 The default behaviour if no option given is @option{separate}.
364
365 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
366 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
367 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
368 (default) and @option{srst_push_pull} for the system reset. These values only affect
369 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
370
371 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
372 @cindex jtag_device
373 Describes the devices that form the JTAG daisy chain, with the first device being
374 the one closest to TDO. The parameters are the length of the instruction register
375 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
376 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
377 The IDCODE instruction will in future be used to query devices for their JTAG
378 identification code. This line is the same for all ARM7 and ARM9 devices.
379 Other devices, like CPLDs, require different parameters. An example configuration
380 line for a Xilinx XC9500 CPLD would look like this:
381 @smallexample
382 jtag_device 8 0x01 0x0e3 0xfe
383 @end smallexample
384 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
385 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
386 The IDCODE instruction is 0xfe.
387
388 @item @b{jtag_nsrst_delay} <@var{ms}>
389 @cindex jtag_nsrst_delay
390 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
391 starting new JTAG operations.
392 @item @b{jtag_ntrst_delay} <@var{ms}>
393 @cindex jtag_ntrst_delay
394 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
395 starting new JTAG operations.
396
397 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
398 or on-chip features) keep a reset line asserted for some time after the external reset
399 got deasserted.
400 @end itemize
401
402 @section parport options
403
404 @itemize @bullet
405 @item @b{parport_port} <@var{number}>
406 @cindex parport_port
407 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
408 the @file{/dev/parport} device
409
410 When using PPDEV to access the parallel port, use the number of the parallel port:
411 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
412 you may encounter a problem.
413 @item @b{parport_cable} <@var{name}>
414 @cindex parport_cable
415 The layout of the parallel port cable used to connect to the target.
416 Currently supported cables are
417 @itemize @minus
418 @item @b{wiggler}
419 @cindex wiggler
420 The original Wiggler layout, also supported by several clones, such
421 as the Olimex ARM-JTAG
422 @item @b{old_amt_wiggler}
423 @cindex old_amt_wiggler
424 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
425 version available from the website uses the original Wiggler layout ('@var{wiggler}')
426 @item @b{chameleon}
427 @cindex chameleon
428 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
429 @item @b{dlc5}
430 @cindex dlc5
431 The Xilinx Parallel cable III.
432 @item @b{triton}
433 @cindex triton
434 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
435 This is also the layout used by the HollyGates design
436 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
437 @item @b{flashlink}
438 @cindex flashlink
439 The ST Parallel cable.
440 @end itemize
441 @item @b{parport_write_on_exit} <@var{on|off}>
442 @cindex parport_write_on_exit
443 This will configure the parallel driver to write a known value to the parallel
444 interface on exiting OpenOCD
445 @end itemize
446
447 @section amt_jtagaccel options
448 @itemize @bullet
449 @item @b{parport_port} <@var{number}>
450 @cindex parport_port
451 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
452 @file{/dev/parport} device
453 @end itemize
454 @section ft2232 options
455
456 @itemize @bullet
457 @item @b{ft2232_device_desc} <@var{description}>
458 @cindex ft2232_device_desc
459 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
460 default value is used. This setting is only valid if compiled with FTD2XX support.
461 @item @b{ft2232_layout} <@var{name}>
462 @cindex ft2232_layout
463 The layout of the FT2232 GPIO signals used to control output-enables and reset
464 signals. Valid layouts are
465 @itemize @minus
466 @item @b{usbjtag}
467 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
468 @item @b{jtagkey}
469 Amontec JTAGkey and JTAGkey-tiny
470 @item @b{signalyzer}
471 Signalyzer
472 @item @b{olimex-jtag}
473 Olimex ARM-USB-OCD
474 @item @b{m5960}
475 American Microsystems M5960
476 @item @b{evb_lm3s811}
477 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
478 SRST signals on external connector
479 @item @b{comstick}
480 Hitex STR9 comstick
481 @item @b{stm32stick}
482 Hitex STM32 Performance Stick
483 @item @b{flyswatter}
484 Tin Can Tools Flyswatter
485 @item @b{turtelizer2}
486 egnite Software turtelizer2
487 @item @b{oocdlink}
488 OOCDLink
489 @end itemize
490
491 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
492 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
493 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
494 @smallexample
495 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
496 @end smallexample
497 @item @b{ft2232_latency} <@var{ms}>
498 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
499 ft2232_read() fails to return the expected number of bytes. This can be caused by
500 USB communication delays and has proved hard to reproduce and debug. Setting the
501 FT2232 latency timer to a larger value increases delays for short USB packages but it
502 also reduces the risk of timeouts before receiving the expected number of bytes.
503 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
504 @end itemize
505
506 @section ep93xx options
507 @cindex ep93xx options
508 Currently, there are no options available for the ep93xx interface.
509
510 @page
511 @section Target configuration
512
513 @itemize @bullet
514 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
515 <@var{variant}>
516 @cindex target
517 Defines a target that should be debugged. Currently supported types are:
518 @itemize @minus
519 @item @b{arm7tdmi}
520 @item @b{arm720t}
521 @item @b{arm9tdmi}
522 @item @b{arm920t}
523 @item @b{arm922t}
524 @item @b{arm926ejs}
525 @item @b{arm966e}
526 @item @b{cortex_m3}
527 @item @b{feroceon}
528 @item @b{xscale}
529 @end itemize
530
531 If you want to use a target board that is not on this list, see Adding a new
532 target board
533
534 Endianess may be @option{little} or @option{big}.
535
536 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
537 @cindex target_script
538 Event is one of the following:
539 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
540 @option{pre_resume} or @option{gdb_program_config}.
541 @option{post_reset} and @option{reset} will produce the same results.
542
543 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
544 @cindex run_and_halt_time
545 The amount of time the debugger should wait after releasing reset before it asserts
546 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
547 reset modes.
548 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
549 <@var{backup}|@var{nobackup}>
550 @cindex working_area
551 Specifies a working area for the debugger to use. This may be used to speed-up
552 downloads to target memory and flash operations, or to perform otherwise unavailable
553 operations (some coprocessor operations on ARM7/9 systems, for example). The last
554 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
555 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
556 @end itemize
557
558 @subsection arm7tdmi options
559 @cindex arm7tdmi options
560 target arm7tdmi <@var{endianess}> <@var{jtag#}>
561 The arm7tdmi target definition requires at least one additional argument, specifying
562 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
563 The optional [@var{variant}] parameter has been removed in recent versions.
564 The correct feature set is determined at runtime.
565
566 @subsection arm720t options
567 @cindex arm720t options
568 ARM720t options are similar to ARM7TDMI options.
569
570 @subsection arm9tdmi options
571 @cindex arm9tdmi options
572 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
573 @option{arm920t}, @option{arm922t} and @option{arm940t}.
574 This enables the hardware single-stepping support found on these cores.
575
576 @subsection arm920t options
577 @cindex arm920t options
578 ARM920t options are similar to ARM9TDMI options.
579
580 @subsection arm966e options
581 @cindex arm966e options
582 ARM966e options are similar to ARM9TDMI options.
583
584 @subsection cortex_m3 options
585 @cindex cortex_m3 options
586 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
587 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
588 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
589 be detected and the normal reset behaviour used.
590
591 @subsection xscale options
592 @cindex xscale options
593 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
594 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
595
596 @section Flash configuration
597 @cindex Flash configuration
598
599 @itemize @bullet
600 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
601 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
602 @cindex flash bank
603 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
604 and <@var{bus_width}> bytes using the selected flash <driver>.
605 @end itemize
606
607 @subsection lpc2000 options
608 @cindex lpc2000 options
609
610 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
611 <@var{clock}> [@var{calc_checksum}]
612 LPC flashes don't require the chip and bus width to be specified. Additional
613 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
614 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
615 of the target this flash belongs to (first is 0), the frequency at which the core
616 is currently running (in kHz - must be an integral number), and the optional keyword
617 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
618 vector table.
619
620 @subsection cfi options
621 @cindex cfi options
622
623 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
624 <@var{target#}>
625 CFI flashes require the number of the target they're connected to as an additional
626 argument. The CFI driver makes use of a working area (specified for the target)
627 to significantly speed up operation.
628
629 @var{chip_width} and @var{bus_width} are specified in bytes.
630
631 @subsection at91sam7 options
632 @cindex at91sam7 options
633
634 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
635 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
636 reading the chip-id and type.
637
638 @subsection str7 options
639 @cindex str7 options
640
641 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
642 variant can be either STR71x, STR73x or STR75x.
643
644 @subsection str9 options
645 @cindex str9 options
646
647 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
648 The str9 needs the flash controller to be configured prior to Flash programming, eg.
649 @smallexample
650 str9x flash_config 0 4 2 0 0x80000
651 @end smallexample
652 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
653
654 @subsection str9 options (str9xpec driver)
655
656 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
657 Before using the flash commands the turbo mode will need enabling using str9xpec
658 @option{enable_turbo} <@var{num>.}
659
660 Only use this driver for locking/unlocking the device or configuring the option bytes.
661 Use the standard str9 driver for programming.
662
663 @subsection stellaris (LM3Sxxx) options
664 @cindex stellaris (LM3Sxxx) options
665
666 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
667 stellaris flash plugin only require the @var{target#}.
668
669 @subsection stm32x options
670 @cindex stm32x options
671
672 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
673 stm32x flash plugin only require the @var{target#}.
674
675 @node Target library
676 @chapter Target library
677 @cindex Target library
678
679 OpenOCD comes with a target configuration script library. These scripts can be
680 used as-is or serve as a starting point.
681
682 The target library is published together with the openocd executable and
683 the path to the target library is in the OpenOCD script search path.
684 Similarly there are example scripts for configuring the JTAG interface.
685
686 The command line below uses the example parport configuration scripts
687 that ship with OpenOCD, then configures the str710.cfg target and
688 finally issues the init and reset command. The communication speed
689 is set to 10kHz for reset and 8MHz for post reset.
690
691
692 @smallexample
693 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
694 @end smallexample
695
696
697 To list the target scripts available:
698
699 @smallexample
700 $ ls /usr/local/lib/openocd/target
701
702 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
703 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
704 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
705 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
706 @end smallexample
707
708
709 @node Commands
710 @chapter Commands
711 @cindex commands
712
713 OpenOCD allows user interaction through a GDB server (default: port 3333),
714 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
715 is available from both the telnet interface and a GDB session. To issue commands to the
716 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
717 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
718 GDB session.
719
720 The TCL interface is used as a simplified RPC mechanism that feeds all the
721 input into the TCL interpreter and returns the output from the evaluation of
722 the commands.
723
724 @section Daemon
725
726 @itemize @bullet
727 @item @b{sleep} <@var{msec}>
728 @cindex sleep
729 Wait for n milliseconds before resuming. Useful in connection with script files
730 (@var{script} command and @var{target_script} configuration).
731
732 @item @b{shutdown}
733 @cindex shutdown
734 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
735
736 @item @b{debug_level} [@var{n}]
737 @cindex debug_level
738 Display or adjust debug level to n<0-3>
739
740 @item @b{fast} [@var{enable/disable}]
741 @cindex fast
742 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
743 downloads and fast memory access will work if the JTAG interface isn't too fast and
744 the core doesn't run at a too low frequency. Note that this option only changes the default
745 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
746 individually.
747
748 The target specific "dangerous" optimisation tweaking options may come and go
749 as more robust and user friendly ways are found to ensure maximum throughput
750 and robustness with a minimum of configuration.
751
752 Typically the "fast enable" is specified first on the command line:
753
754 @smallexample
755 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
756 @end smallexample
757
758 @item @b{log_output} <@var{file}>
759 @cindex log_output
760 Redirect logging to <file> (default: stderr)
761
762 @item @b{script} <@var{file}>
763 @cindex script
764 Execute commands from <file>
765
766 @end itemize
767
768 @subsection Target state handling
769 @itemize @bullet
770 @item @b{poll} [@option{on}|@option{off}]
771 @cindex poll
772 Poll the target for its current state. If the target is in debug mode, architecture
773 specific information about the current state is printed. An optional parameter
774 allows continuous polling to be enabled and disabled.
775
776 @item @b{halt} [@option{ms}]
777 @cindex halt
778 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
779 Default [@option{ms}] is 5 seconds if no arg given.
780 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
781 will stop OpenOCD from waiting.
782
783 @item @b{wait_halt} [@option{ms}]
784 @cindex wait_halt
785 Wait for the target to enter debug mode. Optional [@option{ms}] is
786 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
787 arg given.
788
789 @item @b{resume} [@var{address}]
790 @cindex resume
791 Resume the target at its current code position, or at an optional address.
792 OpenOCD will wait 5 seconds for the target to resume.
793
794 @item @b{step} [@var{address}]
795 @cindex step
796 Single-step the target at its current code position, or at an optional address.
797
798 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
799 |@option{run_and_init}]
800 @cindex reset
801 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
802
803 With no arguments a "reset run" is executed
804 @itemize @minus
805 @item @b{run}
806 @cindex reset run
807 Let the target run.
808 @item @b{halt}
809 @cindex reset halt
810 Immediately halt the target (works only with certain configurations).
811 @item @b{init}
812 @cindex reset init
813 Immediately halt the target, and execute the reset script (works only with certain
814 configurations)
815 @item @b{run_and_halt}
816 @cindex reset run_and_halt
817 Let the target run for a certain amount of time, then request a halt.
818 @item @b{run_and_init}
819 @cindex reset run_and_init
820 Let the target run for a certain amount of time, then request a halt. Execute the
821 reset script once the target enters debug mode.
822 @end itemize
823 The runtime can be set using the @option{run_and_halt_time} command.
824 @end itemize
825
826 @subsection Memory access commands
827 These commands allow accesses of a specific size to the memory system:
828 @itemize @bullet
829 @item @b{mdw} <@var{addr}> [@var{count}]
830 @cindex mdw
831 display memory words
832 @item @b{mdh} <@var{addr}> [@var{count}]
833 @cindex mdh
834 display memory half-words
835 @item @b{mdb} <@var{addr}> [@var{count}]
836 @cindex mdb
837 display memory bytes
838 @item @b{mww} <@var{addr}> <@var{value}>
839 @cindex mww
840 write memory word
841 @item @b{mwh} <@var{addr}> <@var{value}>
842 @cindex mwh
843 write memory half-word
844 @item @b{mwb} <@var{addr}> <@var{value}>
845 @cindex mwb
846 write memory byte
847
848 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
849 @cindex load_image
850 Load image <@var{file}> to target memory at <@var{address}>
851 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
852 @cindex dump_image
853 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
854 (binary) <@var{file}>.
855 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
856 @cindex verify_image
857 Verify <@var{file}> against target memory starting at <@var{address}>.
858 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
859 @end itemize
860
861 @subsection Flash commands
862 @cindex Flash commands
863 @itemize @bullet
864 @item @b{flash banks}
865 @cindex flash banks
866 List configured flash banks
867 @item @b{flash info} <@var{num}>
868 @cindex flash info
869 Print info about flash bank <@option{num}>
870 @item @b{flash probe} <@var{num}>
871 @cindex flash probe
872 Identify the flash, or validate the parameters of the configured flash. Operation
873 depends on the flash type.
874 @item @b{flash erase_check} <@var{num}>
875 @cindex flash erase_check
876 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
877 updates the erase state information displayed by @option{flash info}. That means you have
878 to issue an @option{erase_check} command after erasing or programming the device to get
879 updated information.
880 @item @b{flash protect_check} <@var{num}>
881 @cindex flash protect_check
882 Check protection state of sectors in flash bank <num>.
883 @option{flash erase_sector} using the same syntax.
884 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
885 @cindex flash erase_sector
886 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
887 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
888 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
889 the CFI driver).
890 @item @b{flash erase_address} <@var{address}> <@var{length}>
891 @cindex flash erase_address
892 Erase sectors starting at <@var{address}> for <@var{length}> bytes
893 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
894 @cindex flash write_bank
895 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
896 <@option{offset}> bytes from the beginning of the bank.
897 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
898 @cindex flash write_image
899 Write the image <@var{file}> to the current target's flash bank(s). A relocation
900 [@var{offset}] can be specified and the file [@var{type}] can be specified
901 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
902 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
903 if the @option{erase} parameter is given.
904 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
905 @cindex flash protect
906 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
907 <@var{last}> of @option{flash bank} <@var{num}>.
908 @end itemize
909
910 @page
911 @section Target Specific Commands
912 @cindex Target Specific Commands
913
914 @subsection AT91SAM7 specific commands
915 @cindex AT91SAM7 specific commands
916 The flash configuration is deduced from the chip identification register. The flash
917 controller handles erases automatically on a page (128/265 byte) basis so erase is
918 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
919 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
920 that can be erased separatly. Only an EraseAll command is supported by the controller
921 for each flash plane and this is called with
922 @itemize @bullet
923 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
924 bulk erase flash planes first_plane to last_plane.
925 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
926 @cindex at91sam7 gpnvm
927 set or clear a gpnvm bit for the processor
928 @end itemize
929
930 @subsection STR9 specific commands
931 @cindex STR9 specific commands
932 These are flash specific commands when using the str9xpec driver.
933 @itemize @bullet
934 @item @b{str9xpec enable_turbo} <@var{num}>
935 @cindex str9xpec enable_turbo
936 enable turbo mode, simply this will remove the str9 from the chain and talk
937 directly to the embedded flash controller.
938 @item @b{str9xpec disable_turbo} <@var{num}>
939 @cindex str9xpec disable_turbo
940 restore the str9 into jtag chain.
941 @item @b{str9xpec lock} <@var{num}>
942 @cindex str9xpec lock
943 lock str9 device. The str9 will only respond to an unlock command that will
944 erase the device.
945 @item @b{str9xpec unlock} <@var{num}>
946 @cindex str9xpec unlock
947 unlock str9 device.
948 @item @b{str9xpec options_read} <@var{num}>
949 @cindex str9xpec options_read
950 read str9 option bytes.
951 @item @b{str9xpec options_write} <@var{num}>
952 @cindex str9xpec options_write
953 write str9 option bytes.
954 @end itemize
955
956 @subsection STR9 configuration
957 @cindex STR9 configuration
958 @itemize @bullet
959 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
960 <@var{BBADR}> <@var{NBBADR}>
961 @cindex str9x flash_config
962 Configure str9 flash controller.
963 @smallexample
964 eg. str9x flash_config 0 4 2 0 0x80000
965 This will setup
966 BBSR - Boot Bank Size register
967 NBBSR - Non Boot Bank Size register
968 BBADR - Boot Bank Start Address register
969 NBBADR - Boot Bank Start Address register
970 @end smallexample
971 @end itemize
972
973 @subsection STR9 option byte configuration
974 @cindex STR9 option byte configuration
975 @itemize @bullet
976 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
977 @cindex str9xpec options_cmap
978 configure str9 boot bank.
979 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
980 @cindex str9xpec options_lvdthd
981 configure str9 lvd threshold.
982 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
983 @cindex str9xpec options_lvdsel
984 configure str9 lvd source.
985 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
986 @cindex str9xpec options_lvdwarn
987 configure str9 lvd reset warning source.
988 @end itemize
989
990 @subsection STM32x specific commands
991 @cindex STM32x specific commands
992
993 These are flash specific commands when using the stm32x driver.
994 @itemize @bullet
995 @item @b{stm32x lock} <@var{num}>
996 @cindex stm32x lock
997 lock stm32 device.
998 @item @b{stm32x unlock} <@var{num}>
999 @cindex stm32x unlock
1000 unlock stm32 device.
1001 @item @b{stm32x options_read} <@var{num}>
1002 @cindex stm32x options_read
1003 read stm32 option bytes.
1004 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1005 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1006 @cindex stm32x options_write
1007 write stm32 option bytes.
1008 @item @b{stm32x mass_erase} <@var{num}>
1009 @cindex stm32x mass_erase
1010 mass erase flash memory.
1011 @end itemize
1012
1013 @subsection Stellaris specific commands
1014 @cindex Stellaris specific commands
1015
1016 These are flash specific commands when using the Stellaris driver.
1017 @itemize @bullet
1018 @item @b{stellaris mass_erase} <@var{num}>
1019 @cindex stellaris mass_erase
1020 mass erase flash memory.
1021 @end itemize
1022
1023 @page
1024 @section Architecture Specific Commands
1025 @cindex Architecture Specific Commands
1026
1027 @subsection ARMV4/5 specific commands
1028 @cindex ARMV4/5 specific commands
1029
1030 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1031 or Intel XScale (XScale isn't supported yet).
1032 @itemize @bullet
1033 @item @b{armv4_5 reg}
1034 @cindex armv4_5 reg
1035 Display a list of all banked core registers, fetching the current value from every
1036 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1037 register value.
1038 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1039 @cindex armv4_5 core_mode
1040 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1041 The target is resumed in the currently set @option{core_mode}.
1042 @end itemize
1043
1044 @subsection ARM7/9 specific commands
1045 @cindex ARM7/9 specific commands
1046
1047 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1048 ARM920t or ARM926EJ-S.
1049 @itemize @bullet
1050 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1051 @cindex arm7_9 sw_bkpts
1052 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1053 one of the watchpoint registers to implement software breakpoints. Disabling
1054 SW Bkpts frees that register again.
1055 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1056 @cindex arm7_9 force_hw_bkpts
1057 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1058 breakpoints are turned into hardware breakpoints.
1059 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1060 @cindex arm7_9 dbgrq
1061 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1062 safe for all but ARM7TDMI--S cores (like Philips LPC).
1063 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1064 @cindex arm7_9 fast_memory_access
1065 Allow OpenOCD to read and write memory without checking completion of
1066 the operation. This provides a huge speed increase, especially with USB JTAG
1067 cables (FT2232), but might be unsafe if used with targets running at a very low
1068 speed, like the 32kHz startup clock of an AT91RM9200.
1069 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1070 @cindex arm7_9 dcc_downloads
1071 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1072 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1073 unsafe, especially with targets running at a very low speed. This command was introduced
1074 with OpenOCD rev. 60.
1075 @end itemize
1076
1077 @subsection ARM720T specific commands
1078 @cindex ARM720T specific commands
1079
1080 @itemize @bullet
1081 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1082 @cindex arm720t cp15
1083 display/modify cp15 register <@option{num}> [@option{value}].
1084 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1085 @cindex arm720t md<bhw>_phys
1086 Display memory at physical address addr.
1087 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1088 @cindex arm720t mw<bhw>_phys
1089 Write memory at physical address addr.
1090 @item @b{arm720t virt2phys} <@var{va}>
1091 @cindex arm720t virt2phys
1092 Translate a virtual address to a physical address.
1093 @end itemize
1094
1095 @subsection ARM9TDMI specific commands
1096 @cindex ARM9TDMI specific commands
1097
1098 @itemize @bullet
1099 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1100 @cindex arm9tdmi vector_catch
1101 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1102 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1103 @option{irq} @option{fiq}.
1104
1105 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1106 @end itemize
1107
1108 @subsection ARM966E specific commands
1109 @cindex ARM966E specific commands
1110
1111 @itemize @bullet
1112 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1113 @cindex arm966e cp15
1114 display/modify cp15 register <@option{num}> [@option{value}].
1115 @end itemize
1116
1117 @subsection ARM920T specific commands
1118 @cindex ARM920T specific commands
1119
1120 @itemize @bullet
1121 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1122 @cindex arm920t cp15
1123 display/modify cp15 register <@option{num}> [@option{value}].
1124 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1125 @cindex arm920t cp15i
1126 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1127 @item @b{arm920t cache_info}
1128 @cindex arm920t cache_info
1129 Print information about the caches found. This allows you to see if your target
1130 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1131 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1132 @cindex arm920t md<bhw>_phys
1133 Display memory at physical address addr.
1134 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1135 @cindex arm920t mw<bhw>_phys
1136 Write memory at physical address addr.
1137 @item @b{arm920t read_cache} <@var{filename}>
1138 @cindex arm920t read_cache
1139 Dump the content of ICache and DCache to a file.
1140 @item @b{arm920t read_mmu} <@var{filename}>
1141 @cindex arm920t read_mmu
1142 Dump the content of the ITLB and DTLB to a file.
1143 @item @b{arm920t virt2phys} <@var{va}>
1144 @cindex arm920t virt2phys
1145 Translate a virtual address to a physical address.
1146 @end itemize
1147
1148 @subsection ARM926EJS specific commands
1149 @cindex ARM926EJS specific commands
1150
1151 @itemize @bullet
1152 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1153 @cindex arm926ejs cp15
1154 display/modify cp15 register <@option{num}> [@option{value}].
1155 @item @b{arm926ejs cache_info}
1156 @cindex arm926ejs cache_info
1157 Print information about the caches found.
1158 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1159 @cindex arm926ejs md<bhw>_phys
1160 Display memory at physical address addr.
1161 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1162 @cindex arm926ejs mw<bhw>_phys
1163 Write memory at physical address addr.
1164 @item @b{arm926ejs virt2phys} <@var{va}>
1165 @cindex arm926ejs virt2phys
1166 Translate a virtual address to a physical address.
1167 @end itemize
1168
1169 @page
1170 @section Debug commands
1171 @cindex Debug commands
1172 The following commands give direct access to the core, and are most likely
1173 only useful while debugging OpenOCD.
1174 @itemize @bullet
1175 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1176 @cindex arm7_9 write_xpsr
1177 Immediately write either the current program status register (CPSR) or the saved
1178 program status register (SPSR), without changing the register cache (as displayed
1179 by the @option{reg} and @option{armv4_5 reg} commands).
1180 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1181 <@var{0=cpsr},@var{1=spsr}>
1182 @cindex arm7_9 write_xpsr_im8
1183 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1184 operation (similar to @option{write_xpsr}).
1185 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1186 @cindex arm7_9 write_core_reg
1187 Write a core register, without changing the register cache (as displayed by the
1188 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1189 encoding of the [M4:M0] bits of the PSR.
1190 @end itemize
1191
1192 @page
1193 @section JTAG commands
1194 @cindex JTAG commands
1195 @itemize @bullet
1196 @item @b{scan_chain}
1197 @cindex scan_chain
1198 Print current scan chain configuration.
1199 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1200 @cindex jtag_reset
1201 Toggle reset lines.
1202 @item @b{endstate} <@var{tap_state}>
1203 @cindex endstate
1204 Finish JTAG operations in <@var{tap_state}>.
1205 @item @b{runtest} <@var{num_cycles}>
1206 @cindex runtest
1207 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1208 @item @b{statemove} [@var{tap_state}]
1209 @cindex statemove
1210 Move to current endstate or [@var{tap_state}]
1211 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1212 @cindex irscan
1213 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1214 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1215 @cindex drscan
1216 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1217 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1218 @cindex verify_ircapture
1219 Verify value captured during Capture-IR. Default is enabled.
1220 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1221 @cindex var
1222 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1223 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1224 @cindex field
1225 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1226 @end itemize
1227
1228 @page
1229 @section Target Requests
1230 @cindex Target Requests
1231 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1232 See libdcc in the contrib dir for more details.
1233 @itemize @bullet
1234 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1235 @cindex target_request debugmsgs
1236 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1237 @end itemize
1238
1239 @node Sample Scripts
1240 @chapter Sample Scripts
1241 @cindex scripts
1242
1243 This page shows how to use the target library.
1244
1245 The configuration script can be divided in the following section:
1246 @itemize @bullet
1247 @item daemon configuration
1248 @item interface
1249 @item jtag scan chain
1250 @item target configuration
1251 @item flash configuration
1252 @end itemize
1253
1254 Detailed information about each section can be found at OpenOCD configuration.
1255
1256 @section AT91R40008 example
1257 @cindex AT91R40008 example
1258 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1259 the CPU upon startup of the OpenOCD daemon.
1260 @smallexample
1261 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1262 @end smallexample
1263
1264
1265 @node GDB and OpenOCD
1266 @chapter GDB and OpenOCD
1267 @cindex GDB and OpenOCD
1268 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1269 to debug remote targets.
1270
1271 @section Connecting to gdb
1272 @cindex Connecting to gdb
1273 A connection is typically started as follows:
1274 @smallexample
1275 target remote localhost:3333
1276 @end smallexample
1277 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1278
1279 To see a list of available OpenOCD commands type @option{monitor help} on the
1280 gdb commandline.
1281
1282 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1283 to be sent by the gdb server (openocd) to gdb. Typical information includes
1284 packet size and device memory map.
1285
1286 Previous versions of OpenOCD required the following gdb options to increase
1287 the packet size and speed up gdb communication.
1288 @smallexample
1289 set remote memory-write-packet-size 1024
1290 set remote memory-write-packet-size fixed
1291 set remote memory-read-packet-size 1024
1292 set remote memory-read-packet-size fixed
1293 @end smallexample
1294 This is now handled in the @option{qSupported} PacketSize.
1295
1296 @section Programming using gdb
1297 @cindex Programming using gdb
1298
1299 By default the target memory map is sent to gdb, this can be disabled by
1300 the following OpenOCD config option:
1301 @smallexample
1302 gdb_memory_map disable
1303 @end smallexample
1304 For this to function correctly a valid flash config must also be configured
1305 in OpenOCD. For faster performance you should also configure a valid
1306 working area.
1307
1308 Informing gdb of the memory map of the target will enable gdb to protect any
1309 flash area of the target and use hardware breakpoints by default. This means
1310 that the OpenOCD option @option{arm7_9 force_hw_bkpts} is not required when
1311 using a memory map.
1312
1313 To view the configured memory map in gdb, use the gdb command @option{info mem}
1314 All other unasigned addresses within gdb are treated as RAM.
1315
1316 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1317 this can be changed to the old behaviour by using the following gdb command.
1318 @smallexample
1319 set mem inaccessible-by-default off
1320 @end smallexample
1321
1322 If @option{gdb_flash_program enable} is also used, gdb will be able to
1323 program any flash memory using the vFlash interface.
1324
1325 gdb will look at the target memory map when a load command is given, if any
1326 areas to be programmed lie within the target flash area the vFlash packets
1327 will be used.
1328
1329 If the target needs configuring before gdb programming, a script can be executed.
1330 @smallexample
1331 target_script 0 gdb_program_config config.script
1332 @end smallexample
1333
1334 To verify any flash programming the gdb command @option{compare-sections}
1335 can be used.
1336
1337 @node TCL and OpenOCD
1338 @chapter TCL and OpenOCD
1339 @cindex TCL and OpenOCD
1340 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1341 support.
1342
1343 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1344
1345 The command and file interfaces are fairly straightforward, while the network
1346 port is geared toward intergration with external clients. A small example
1347 of an external TCL script that can connect to openocd is shown below.
1348
1349 @verbatim
1350 # Simple tcl client to connect to openocd
1351 puts "Use empty line to exit"
1352 set fo [socket 127.0.0.1 6666]
1353 puts -nonewline stdout "> "
1354 flush stdout
1355 while {[gets stdin line] >= 0} {
1356 if {$line eq {}} break
1357 puts $fo $line
1358 flush $fo
1359 gets $fo line
1360 puts $line
1361 puts -nonewline stdout "> "
1362 flush stdout
1363 }
1364 close $fo
1365 @end verbatim
1366
1367 This script can easily be modified to front various GUIs or be a sub
1368 component of a larger framework for control and interaction.
1369
1370
1371 @node TCL scripting API
1372 @chapter TCL scripting API
1373 @cindex TCL scripting API
1374 API rules
1375
1376 The commands are stateless. E.g. the telnet command line has a concept
1377 of currently active target, the Tcl API proc's take this sort of state
1378 information as an argument to each proc.
1379
1380 There are three main types of return values: single value, name value
1381 pair list and lists.
1382
1383 Name value pair. The proc 'foo' below returns a name/value pair
1384 list.
1385
1386 @verbatim
1387
1388 > set foo(me) Duane
1389 > set foo(you) Oyvind
1390 > set foo(mouse) Micky
1391 > set foo(duck) Donald
1392
1393 If one does this:
1394
1395 > set foo
1396
1397 The result is:
1398
1399 me Duane you Oyvind mouse Micky duck Donald
1400
1401 Thus, to get the names of the associative array is easy:
1402
1403 foreach { name value } [set foo] {
1404 puts "Name: $name, Value: $value"
1405 }
1406 @end verbatim
1407
1408 Lists returned must be relatively small. Otherwise a range
1409 should be passed in to the proc in question.
1410
1411 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1412 is the low level API upon which "flash banks" is implemented.
1413
1414 OpenOCD commands can consist of two words, e.g. "flash banks". The
1415 startup.tcl "unknown" proc will translate this into a tcl proc
1416 called "flash_banks".
1417
1418
1419 @node Upgrading
1420 @chapter Deprecated/Removed Commands
1421 @cindex Deprecated/Removed Commands
1422 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1423
1424 @itemize @bullet
1425 @item @b{load_binary}
1426 @cindex load_binary
1427 use @option{load_image} command with same args
1428 @item @b{dump_binary}
1429 @cindex dump_binary
1430 use @option{dump_image} command with same args
1431 @item @b{flash erase}
1432 @cindex flash erase
1433 use @option{flash erase_sector} command with same args
1434 @item @b{flash write}
1435 @cindex flash write
1436 use @option{flash write_bank} command with same args
1437 @item @b{flash write_binary}
1438 @cindex flash write_binary
1439 use @option{flash write_bank} command with same args
1440 @item @b{arm7_9 fast_writes}
1441 @cindex arm7_9 fast_writes
1442 use @option{arm7_9 fast_memory_access} command with same args
1443 @item @b{flash auto_erase}
1444 @cindex flash auto_erase
1445 use @option{flash write_image} command passing @option{erase} as the first parameter.
1446 @item @b{daemon_startup}
1447 @cindex daemon_startup
1448 this config option has been removed, simply adding @option{init} and @option{reset halt} to
1449 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
1450 and @option{target cortex_m3 little reset_halt 0}.
1451 @end itemize
1452
1453 @node FAQ
1454 @chapter FAQ
1455 @cindex faq
1456 @enumerate
1457 @item OpenOCD complains about a missing cygwin1.dll.
1458
1459 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1460 claims to come with all the necessary dlls. When using Cygwin, try launching
1461 OpenOCD from the Cygwin shell.
1462
1463 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1464 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1465 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1466
1467 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1468 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1469 software breakpoints consume one of the two available hardware breakpoints,
1470 and are therefore disabled by default. If your code is running from RAM, you
1471 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1472 your code resides in Flash, you can't use software breakpoints, but you can force
1473 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1474
1475 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1476 and works sometimes fine.
1477
1478 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1479 clock at the time you're programming the flash. If you've specified the crystal's
1480 frequency, make sure the PLL is disabled, if you've specified the full core speed
1481 (e.g. 60MHz), make sure the PLL is enabled.
1482
1483 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1484 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1485 out while waiting for end of scan, rtck was disabled".
1486
1487 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1488 settings in your PC BIOS (ECP, EPP, and different versions of those).
1489
1490 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1491 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1492 memory read caused data abort".
1493
1494 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1495 beyond the last valid frame. It might be possible to prevent this by setting up
1496 a proper "initial" stack frame, if you happen to know what exactly has to
1497 be done, feel free to add this here.
1498
1499 @item I get the following message in the OpenOCD console (or log file):
1500 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1501
1502 This warning doesn't indicate any serious problem, as long as you don't want to
1503 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1504 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1505 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1506 independently. With this setup, it's not possible to halt the core right out of
1507 reset, everything else should work fine.
1508
1509 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1510 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1511 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1512 quit with an error message. Is there a stability issue with OpenOCD?
1513
1514 No, this is not a stability issue concerning OpenOCD. Most users have solved
1515 this issue by simply using a self-powered USB hub, which they connect their
1516 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1517 supply stable enough for the Amontec JTAGkey to be operated.
1518
1519 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1520 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1521 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1522 What does that mean and what might be the reason for this?
1523
1524 First of all, the reason might be the USB power supply. Try using a self-powered
1525 hub instead of a direct connection to your computer. Secondly, the error code 4
1526 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1527 chip ran into some sort of error - this points us to a USB problem.
1528
1529 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1530 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1531 What does that mean and what might be the reason for this?
1532
1533 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1534 has closed the connection to OpenOCD. This might be a GDB issue.
1535
1536 @item In the configuration file in the section where flash device configurations
1537 are described, there is a parameter for specifying the clock frequency for
1538 LPC2000 internal flash devices (e.g.
1539 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1540 which must be specified in kilohertz. However, I do have a quartz crystal of a
1541 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1542 Is it possible to specify real numbers for the clock frequency?
1543
1544 No. The clock frequency specified here must be given as an integral number.
1545 However, this clock frequency is used by the In-Application-Programming (IAP)
1546 routines of the LPC2000 family only, which seems to be very tolerant concerning
1547 the given clock frequency, so a slight difference between the specified clock
1548 frequency and the actual clock frequency will not cause any trouble.
1549
1550 @item Do I have to keep a specific order for the commands in the configuration file?
1551
1552 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1553 listed for the JTAG scan chain must be given in the right order (jtag_device),
1554 with the device closest to the TDO-Pin being listed first. In general,
1555 whenever objects of the same type exist which require an index number, then
1556 these objects must be given in the right order (jtag_devices, targets and flash
1557 banks - a target references a jtag_device and a flash bank references a target).
1558
1559 @item Sometimes my debugging session terminates with an error. When I look into the
1560 log file, I can see these error messages: Error: arm7_9_common.c:561
1561 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1562
1563 TODO.
1564
1565 @end enumerate
1566
1567 @include fdl.texi
1568
1569 @node Index
1570 @unnumbered Index
1571
1572 @printindex cp
1573
1574 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)