retired
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (openocd)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (openocd)
27 @subtitle Edition @value{EDITION} for openocd version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (openocd) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About Openocd.
46 * Developers:: Openocd developers
47 * Building:: Building Openocd
48 * Running:: Running Openocd
49 * Configuration:: Openocd Configuration.
50 * Commands:: Openocd Commands
51 * Sample Scripts:: Sample Target Scripts
52 * GDB and Openocd:: Using GDB and Openocd
53 * FAQ:: Frequently Asked Questions
54 * License:: GNU Free Documentation License
55 * Index:: Main index.
56 @end menu
57
58 @node About
59 @unnumbered About
60 @cindex about
61
62 The Open On-Chip Debugger (openocd) aims to provide debugging, in-system programming
63 and boundary-scan testing for embedded target devices. The targets are interfaced
64 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
65 connection types in the future.
66
67 Openocd currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
68 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
69 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
70 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
71
72 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
73 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
74 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
75
76 @node Developers
77 @chapter Developers
78 @cindex developers
79
80 Openocd has been created by Dominic Rath as part of a diploma thesis written at the
81 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
82 Others interested in improving the state of free and open debug and testing technology
83 are welcome to participate.
84
85 Other developers have contributed support for additional targets and flashes as well
86 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
87
88 @node Building
89 @chapter Building
90 @cindex building openocd
91
92 You can download the current SVN version with SVN client of your choice from the
93 following repositories:
94
95 (@uref{svn://svn.berlios.de/openocd/trunk})
96
97 or
98
99 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
100
101 Using the SVN command line client, you could use the following command to fetch the
102 latest version (make sure there is no (non-svn) directory called "openocd" in the
103 current directory):
104
105 @smallexample
106 svn checkout svn://svn.berlios.de/openocd/trunk openocd
107 @end smallexample
108
109 Building the OpenOCD requires a recent version of the GNU autotools.
110 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
111 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
112 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
113 paths, resulting in obscure dependency errors (This is an observation I've gathered
114 from the logs of one user - correct me if I'm wrong).
115
116 You further need the appropriate driver files, if you want to build support for
117 a FTDI FT2232 based interface:
118 @itemize @bullet
119 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
120 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
121 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
122 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
123 @end itemize
124
125 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
126 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
127
128 In general, the D2XX driver provides superior performance (several times as fast),
129 but has the draw-back of being binary-only - though that isn't as worse, as it isn't
130 a kernel module, only a user space library.
131
132 To build OpenOCD (on both Linux and Cygwin), use the following commands:
133 @smallexample
134 ./bootstrap
135 @end smallexample
136 Bootstrap generates the configure script, and prepares building on your system.
137 @smallexample
138 ./configure
139 @end smallexample
140 Configure generates the Makefiles used to build OpenOCD.
141 @smallexample
142 make
143 @end smallexample
144 Make builds the OpenOCD, and places the final executable in ./src/.
145
146 The configure script takes several options, specifying which JTAG interfaces
147 should be included:
148
149 @itemize @bullet
150 @item
151 @option{--enable-parport}
152 @item
153 @option{--enable-parport_ppdev}
154 @item
155 @option{--enable-amtjtagaccel}
156 @item
157 @option{--enable-ft2232_ftd2xx}
158 @footnote{Using the latest D2XX drivers from FTDI and following their installation
159 instructions, I had to use @option{--enable-ft2232_libftd2xx} for the OpenOCD to
160 build properly.}
161 @item
162 @option{--enable-ft2232_libftdi}
163 @item
164 @option{--with-ftd2xx=/path/to/d2xx/}
165 @end itemize
166
167 If you want to access the parallel port using the PPDEV interface you have to specify
168 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
169 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
170 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
171
172 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
173 absolute path containing no spaces.
174
175 Linux users should copy the various parts of the D2XX package to the appropriate
176 locations, i.e. /usr/include, /usr/lib.
177
178 @node Running
179 @chapter Running
180 @cindex running openocd
181 @cindex --configfile
182 @cindex --debug_level
183 @cindex --logfile
184 @cindex --search
185 The OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
186 Run with @option{--help} or @option{-h} to view the available command line arguments.
187
188 It reads its configuration by default from the file openocd.cfg located in the current
189 working directory. This may be overwritten with the @option{-f <configfile>} command line
190 switch.
191
192 To enable debug output (when reporting problems or working on OpenOCD itself), use
193 the @option{-d} command line switch. This sets the debug_level to "3", outputting
194 the most information, including debug messages. The default setting is "2", outputting
195 only informational messages, warnings and errors. You can also change this setting
196 from within a telnet or gdb session (@option{debug_level <n>}).
197
198 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
199
200 Search paths for config/script files can be added to openocd by using
201 the @option{-s <search>} switch.
202
203 @node Configuration
204 @chapter Configuration
205 @cindex configuration
206 The Open On-Chip Debugger (OpenOCD) runs as a daemon, and reads it current configuration
207 by default from the file openocd.cfg in the current directory. A different configuration
208 file can be specified with the @option{-f <conf.file>} given at the openocd command line.
209
210 The configuration file is used to specify on which ports the daemon listens for new
211 connections, the JTAG interface used to connect to the target, the layout of the JTAG
212 chain, the targets that should be debugged, and connected flashes.
213
214 @section Daemon configuration
215
216 @itemize @bullet
217 @item @b{telnet_port} <@var{number}>
218 @cindex telnet_port
219 Port on which to listen for incoming telnet connections
220 @item @b{gdb_port} <@var{number}>
221 @cindex gdb_port
222 First port on which to listen for incoming GDB connections. The GDB port for the
223 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
224 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
225 @cindex gdb_detach
226 Configures what openocd will do when gdb detaches from the daeman.
227 Default behaviour is <@var{resume}>
228 @item @b{gdb_memory_map} <@var{enable|disable}>
229 @cindex gdb_memory_map
230 Set to <@var{enable}> so that openocd will send the memory configuration to gdb when
231 requested. gdb will then know when to set hardware breakpoints, and program flash
232 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
233 for flash programming to work.
234 Default behaviour is <@var{disable}>
235 @item @b{gdb_flash_program} <@var{enable|disable}>
236 @cindex gdb_flash_program
237 Set to <@var{enable}> so that openocd will program the flash memory when a
238 vFlash packet is received.
239 Default behaviour is <@var{disable}>
240 @item @b{daemon_startup} <@var{mode}> either @samp{attach} or @samp{reset}
241 @cindex daemon_startup
242 Tells the OpenOCD whether it should reset the target when the daemon is launched, or
243 if it should just attach to the target.
244 @end itemize
245
246 @section JTAG interface configuration
247
248 @itemize @bullet
249 @item @b{interface} <@var{name}>
250 @cindex interface
251 Use the interface driver <@var{name}> to connect to the target. Currently supported
252 interfaces are
253 @itemize @minus
254 @item parport
255 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
256 @end itemize
257 @itemize @minus
258 @item amt_jtagaccel
259 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
260 mode parallel port
261 @end itemize
262 @itemize @minus
263 @item ft2232
264 FTDI FT2232 based devices using either the open-source libftdi or the binary only
265 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
266 platform. The libftdi uses libusb, and should be portable to all systems that provide
267 libusb.
268 @end itemize
269 @itemize @minus
270 @item ep93xx
271 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
272 @end itemize
273 @end itemize
274
275 @itemize @bullet
276 @item @b{jtag_speed} <@var{number}>
277 @cindex jtag_speed
278 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
279 speed. The actual effect of this option depends on the JTAG interface used.
280
281 @itemize @minus
282 @item wiggler: maximum speed / @var{number}
283 @item ft2232: 6MHz / (@var{number}+1)
284 @item amt jtagaccel: 8 / 2**@var{number}
285 @end itemize
286
287 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
288 especially true for synthesized cores (-S).
289
290 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
291 @cindex reset_config
292 The configuration of the reset signals available on the JTAG interface AND the target.
293 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
294 then OpenOCD can't use it. <@var{signals}> can be @samp{none}, @samp{trst_only},
295 @samp{srst_only} or @samp{trst_and_srst}.
296 [@var{combination}] is an optional value specifying broken reset signal implementations.
297 @samp{srst_pulls_trst} states that the testlogic is reset together with the reset of
298 the system (e.g. Philips LPC2000, "broken" board layout), @samp{trst_pulls_srst} says
299 that the system is reset together with the test logic (only hypothetical, I haven't
300 seen hardware with such a bug, and can be worked around).
301
302 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
303 reset lines to be specified. Possible values are @samp{trst_push_pull} (default)
304 and @samp{trst_open_drain} for the test reset signal, and @samp{srst_open_drain}
305 (default) and @samp{srst_push_pull} for the system reset. These values only affect
306 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
307
308 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
309 @cindex jtag_device
310 Describes the devices that form the JTAG daisy chain, with the first device being
311 the one closest to TDO. The parameters are the length of the instruction register
312 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
313 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
314 The IDCODE instruction will in future be used to query devices for their JTAG
315 identification code. This line is the same for all ARM7 and ARM9 devices.
316 Other devices, like CPLDs, require different parameters. An example configuration
317 line for a Xilinx XC9500 CPLD would look like this:
318 @smallexample
319 jtag_device 8 0x01 0x0e3 0xfe
320 @end smallexample
321 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
322 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
323 The IDCODE instruction is 0xfe.
324
325 @item @b{jtag_nsrst_delay} <@var{ms}>
326 @cindex jtag_nsrst_delay
327 How long (in miliseconds) the OpenOCD should wait after deasserting nSRST before
328 starting new JTAG operations.
329 @item @b{jtag_ntrst_delay} <@var{ms}>
330 @cindex jtag_ntrst_delay
331 How long (in miliseconds) the OpenOCD should wait after deasserting nTRST before
332 starting new JTAG operations.
333
334 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
335 or on-chip features) keep a reset line asserted for some time after the external reset
336 got deasserted.
337 @end itemize
338
339 @section parport options
340
341 @itemize @bullet
342 @item @b{parport_port} <@var{number}>
343 @cindex parport_port
344 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
345 the @file{/dev/parport} device
346
347 When using PPDEV to access the parallel port, use the number of the parallel port:
348 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
349 you may encounter a problem.
350 @item @b{parport_cable} <@var{name}>
351 @cindex parport_cable
352 The layout of the parallel port cable used to connect to the target.
353 Currently supported cables are
354 @itemize @minus
355 @item wiggler
356 @cindex wiggler
357 Original Wiggler layout, also supported by several clones, such
358 as the Olimex ARM-JTAG
359 @item old_amt_wiggler
360 @cindex old_amt_wiggler
361 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
362 version available from the website uses the original Wiggler layout ('@var{wiggler}')
363 @item chameleon
364 @cindex chameleon
365 Describes the connection of the Amontec Chameleon's CPLD when operated in
366 configuration mode. This is only used to program the Chameleon itself, not
367 a connected target.
368 @item dlc5
369 @cindex dlc5
370 Xilinx Parallel cable III.
371 @item triton
372 @cindex triton
373 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
374 This is also the layout used by the HollyGates design
375 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
376 @item flashlink
377 @cindex flashlink
378 ST Parallel cable.
379 @end itemize
380 @item @b{parport_write_on_exit} <@var{on|off}>
381 @cindex parport_write_on_exit
382 This will configure the parallel driver to write a known value to the parallel
383 interface on exiting openocd
384 @end itemize
385
386 @section amt_jtagaccel options
387 @itemize @bullet
388 @item @b{parport_port} <@var{number}>
389 @cindex parport_port
390 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
391 @file{/dev/parport} device
392 @end itemize
393 @section ft2232 options
394
395 @itemize @bullet
396 @item @b{ft2232_device_desc} <@var{description}>
397 @cindex ft2232_device_desc
398 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
399 default value is used. This setting is only valid if compiled with FTD2XX support.
400 @item @b{ft2232_layout} <@var{name}>
401 @cindex ft2232_layout
402 The layout of the FT2232 GPIO signals used to control output-enables and reset
403 signals. Valid layouts are
404 @itemize @minus
405 @item usbjtag
406 The "USBJTAG-1" layout described in the original OpenOCD diploma thesis
407 @item jtagkey
408 Amontec JTAGkey and JTAGkey-tiny
409 @item signalyzer
410 Signalyzer
411 @item olimex-jtag
412 Olimex ARM-USB-OCD
413 @item m5960
414 American Microsystems M5960
415 @item evb_lm3s811
416 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
417 SRST signals on external connector
418 @item comstick
419 Hitex STR9 comstick
420 @item stm32stick
421 Hitex STM32 Performance Stick
422 @item flyswatter
423 Tin Can Tools Flyswatter
424 @item turtelizer2
425 egnite Software turtelizer2
426 @item oocdlink
427 OOCDLink
428 @end itemize
429
430 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
431 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
432 default values are used. This command is not available on Windows.
433 @item @b{ft2232_latency} <@var{ms}>
434 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
435 ft2232_read() fails to return the expected number of bytes. This can be caused by
436 USB communication delays and has proved hard to reproduce and debug. Setting the
437 FT2232 latency timer to a larger value increases delays for short USB packages but it
438 also reduces the risk of timeouts before receiving the expected number of bytes.
439 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
440 @end itemize
441
442 @section ep93xx options
443 @cindex ep93xx options
444 Currently, there are no options available for the ep93xx interface.
445
446 @page
447 @section Target configuration
448
449 @itemize @bullet
450 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
451 <@var{variant}>
452 @cindex target
453 Defines a target that should be debugged. Currently supported types are:
454 @itemize @minus
455 @item arm7tdmi
456 @item arm720t
457 @item arm9tdmi
458 @item arm920t
459 @item arm922t
460 @item arm926ejs
461 @item arm966e
462 @item cortex_m3
463 @item feroceon
464 @item xscale
465 @end itemize
466
467 If you want to use a target board that is not on this list, see Adding a new
468 target board
469
470 Endianess may be @option{little} or @option{big}.
471
472 The reset_mode specifies what should happen to the target when a reset occurs:
473 @itemize @minus
474 @item reset_halt
475 @cindex reset_halt
476 Immediately request a target halt after reset. This allows targets to be debugged
477 from the very first instruction. This is only possible with targets and JTAG
478 interfaces that correctly implement the reset signals.
479 @item reset_init
480 @cindex reset_init
481 Similar to @option{reset_halt}, but executes the script file defined to handle the
482 'reset' event for the target. Like @option{reset_halt} this only works with
483 correct reset implementations.
484 @item reset_run
485 @cindex reset_run
486 Simply let the target run after a reset.
487 @item run_and_halt
488 @cindex run_and_halt
489 Let the target run for some time (default: 1s), and then request halt.
490 @item run_and_init
491 @cindex run_and_init
492 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
493 to run for some time, then halted, and the @option{reset} event script is executed.
494 @end itemize
495
496 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
497 completely independent (like the LPC2000 series), or where the JTAG interface is
498 unavailable for some time during startup (like the STR7 series), you can't use
499 @option{reset_halt} or @option{reset_init}.
500
501 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
502 @cindex target_script
503 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
504
505 TODO: describe exact semantic of events
506 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
507 @cindex run_and_halt_time
508 The amount of time the debugger should wait after releasing reset before it asserts
509 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
510 reset modes.
511 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
512 <@var{backup}|@var{nobackup}>
513 @cindex working_area
514 Specifies a working area for the debugger to use. This may be used to speed-up
515 downloads to target memory and flash operations, or to perform otherwise unavailable
516 operations (some coprocessor operations on ARM7/9 systems, for example). The last
517 parameter decides whether the memory should be preserved <@var{backup}>. If possible, use
518 a working_area that doesn't need to be backed up, as that slows down operation.
519 @end itemize
520
521 @subsection arm7tdmi options
522 @cindex arm7tdmi options
523 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
524 The arm7tdmi target definition requires at least one additional argument, specifying
525 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
526 The optional [@var{variant}] parameter has been removed in recent versions.
527 The correct feature set is determined at runtime.
528
529 @subsection arm720t options
530 @cindex arm720t options
531 ARM720t options are similar to ARM7TDMI options.
532
533 @subsection arm9tdmi options
534 @cindex arm9tdmi options
535 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
536 @option{arm920t}, @option{arm922t} and @option{arm940t}.
537 This enables the hardware single-stepping support found on these cores.
538
539 @subsection arm920t options
540 @cindex arm920t options
541 ARM920t options are similar to ARM9TDMI options.
542
543 @subsection arm966e options
544 @cindex arm966e options
545 ARM966e options are similar to ARM9TDMI options.
546
547 @subsection xscale options
548 @cindex xscale options
549 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
550 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
551
552 @section Flash configuration
553 @cindex Flash configuration
554
555 @itemize @bullet
556 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
557 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
558 @cindex flash bank
559 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
560 and <@var{bus_width}> bytes using the selected flash <driver>.
561
562 @item @b{flash auto_erase} <@option{on}|@option{off}>
563 @cindex flash auto_erase
564 auto erase flash banks prior to writing. Currently only works when using
565 @option{flash write_image} command. Default is @option{off}.
566 @end itemize
567
568 @subsection lpc2000 options
569 @cindex lpc2000 options
570
571 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
572 <@var{clock}> [@var{calc_checksum}]
573 LPC flashes don't require the chip and bus width to be specified. Additional
574 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
575 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
576 of the target this flash belongs to (first is 0), the frequency at which the core
577 is currently running (in kHz - must be an integral number), and the optional keyword
578 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
579 vector table.
580
581 @subsection cfi options
582 @cindex cfi options
583
584 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
585 <@var{target#}>
586 CFI flashes require the number of the target they're connected to as an additional
587 argument. The CFI driver makes use of a working area (specified for the target)
588 to significantly speed up operation.
589
590 @var{chip_width} and @var{bus_width} are specified in bytes.
591
592 @subsection at91sam7 options
593 @cindex at91sam7 options
594
595 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
596 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
597 reading the chip-id and type.
598
599 @subsection str7 options
600 @cindex str7 options
601
602 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
603 variant can be either STR71x, STR73x or STR75x.
604
605 @subsection str9 options
606 @cindex str9 options
607
608 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
609 The str9 needs the flash controller to be configured prior to Flash programming, eg.
610 @smallexample
611 str9x flash_config 0 4 2 0 0x80000
612 @end smallexample
613 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
614
615 @subsection str9 options (str9xpec driver)
616
617 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
618 Before using the flash commands the turbo mode will need enabling using str9xpec
619 @option{enable_turbo} <@var{num>.}
620
621 Only use this driver for locking/unlocking the device or configuring the option bytes.
622 Use the standard str9 driver for programming.
623
624 @subsection stellaris (LM3Sxxx) options
625 @cindex stellaris (LM3Sxxx) options
626
627 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
628 stellaris flash plugin only require the @var{target#}.
629
630 @subsection stm32x options
631 @cindex stm32x options
632
633 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
634 stm32x flash plugin only require the @var{target#}.
635
636 @node Commands
637 @chapter Commands
638 @cindex commands
639
640 The Open On-Chip Debugger (OpenOCD) allows user interaction through a telnet interface
641 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
642 is available from both the telnet interface and a GDB session. To issue commands to the
643 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
644 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
645 GDB session.
646
647 @section Daemon
648
649 @itemize @bullet
650 @item @b{sleep} <@var{msec}>
651 @cindex sleep
652 Wait for n milliseconds before resuming. Useful in connection with script files
653 (@var{script} command and @var{target_script} configuration).
654
655 @item @b{shutdown}
656 @cindex shutdown
657 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
658
659 @item @b{debug_level} [@var{n}]
660 @cindex debug_level
661 Display or adjust debug level to n<0-3>
662
663 @item @b{log_output} <@var{file}>
664 @cindex log_output
665 Redirect logging to <file> (default: stderr)
666
667 @item @b{script} <@var{file}>
668 @cindex script
669 Execute commands from <file>
670
671 @end itemize
672
673 @subsection Target state handling
674 @itemize @bullet
675 @item @b{poll} [@option{on}|@option{off}]
676 @cindex poll
677 Poll the target for its current state. If the target is in debug mode, architecture
678 specific information about the current state are printed. An optional parameter
679 allows continuous polling to be enabled and disabled.
680
681 @item @b{halt} [@option{ms}]
682 @cindex halt
683 Send a halt request to the target and waits for it to halt for [@option{ms}].
684 Default [@option{ms}] is 5 seconds if no arg given.
685 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
686 will stop openocd from waiting.
687
688 @item @b{wait_halt} [@option{ms}]
689 @cindex wait_halt
690 Wait for the target to enter debug mode. Optional [@option{ms}] is
691 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
692 arg given.
693
694 @item @b{resume} [@var{address}]
695 @cindex resume
696 Resume the target at its current code position, or at an optional address.
697 Openocd will wait 5 seconds for the target to resume.
698
699 @item @b{step} [@var{address}]
700 @cindex step
701 Single-step the target at its current code position, or at an optional address.
702
703 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
704 |@option{run_and_init}]
705 @cindex reset
706 Do a hard-reset. The optional parameter specifies what should happen after the reset.
707 This optional parameter overwrites the setting specified in the configuration file,
708 making the new behaviour the default for the @option{reset} command.
709 @itemize @minus
710 @item run
711 @cindex reset run
712 Let the target run.
713 @item halt
714 @cindex reset halt
715 Immediately halt the target (works only with certain configurations).
716 @item init
717 @cindex reset init
718 Immediately halt the target, and execute the reset script (works only with certain
719 configurations)
720 @item run_and_halt
721 @cindex reset run_and_halt
722 Let the target run for a certain amount of time, then request a halt.
723 @item run_and_init
724 @cindex reset run_and_init
725 Let the target run for a certain amount of time, then request a halt. Execute the
726 reset script once the target entered debug mode.
727 @end itemize
728 @end itemize
729
730 @subsection Memory access commands
731 These commands allow accesses of a specific size to the memory system:
732 @itemize @bullet
733 @item @b{mdw} <@var{addr}> [@var{count}]
734 @cindex mdw
735 display memory words
736 @item @b{mdh} <@var{addr}> [@var{count}]
737 @cindex mdh
738 display memory half-words
739 @item @b{mdb} <@var{addr}> [@var{count}]
740 @cindex mdb
741 display memory bytes
742 @item @b{mww} <@var{addr}> <@var{value}>
743 @cindex mww
744 write memory word
745 @item @b{mwh} <@var{addr}> <@var{value}>
746 @cindex mwh
747 write memory half-word
748 @item @b{mwb} <@var{addr}> <@var{value}>
749 @cindex mwb
750 write memory byte
751
752 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
753 @cindex load_image
754 Load image <@var{file}> to target memory at <@var{address}>
755 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
756 @cindex dump_image
757 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
758 (binary) <@var{file}>.
759 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
760 @cindex verify_image
761 Verify <@var{file}> to target memory starting at <@var{address}>.
762 This will first attempt using a crc checksum, if this fails it will try a binary compare.
763 @item @b{load_binary} <@var{file}> <@var{address}> [DEPRECATED]
764 @cindex load_binary
765 Load binary <@var{file}> to target memory at <@var{address}>
766 @item @b{dump_binary} <@var{file}> <@var{address}> <@var{size}> [DEPRECATED]
767 @cindex dump_binary
768 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
769 (binary) <@var{file}>.
770 @end itemize
771
772 @subsection Flash commands
773 @cindex Flash commands
774 @itemize @bullet
775 @item @b{flash banks}
776 @cindex flash banks
777 List configured flash banks
778 @item @b{flash info} <@var{num}>
779 @cindex flash info
780 Print info about flash bank <@option{num}>
781 @item @b{flash probe} <@var{num}>
782 @cindex flash probe
783 Identify the flash, or validate the parameters of the configured flash. Operation
784 depends on the flash type.
785 @item @b{flash erase_check} <@var{num}>
786 @cindex flash erase_check
787 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
788 updates the erase state information displayed by @option{flash info}. That means you have
789 to issue an @option{erase_check} command after erasing or programming the device to get
790 updated information.
791 @item @b{flash protect_check} <@var{num}>
792 @cindex flash protect_check
793 Check protection state of sectors in flash bank <num>.
794
795 @item @b{flash erase} <@var{num}> <@var{first}> <@var{last}> [DEPRECATED]
796 @cindex flash erase
797 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
798 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
799 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
800 the CFI driver). This command was replaced by the new command
801 @option{flash erase_sector} using the same syntax.
802 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
803 @cindex flash erase_sector
804 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
805 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
806 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
807 the CFI driver).
808 @item @b{flash erase_address} <@var{address}> <@var{length}>
809 @cindex flash erase_address
810 Erase sectors starting at <@var{address}> for <@var{length}> number of bytes
811 @item @b{flash write} <@var{num}> <@var{file}> <@var{offset}> [DEPRECATED]
812 @cindex flash write
813 Write the binary <@var{file}> to flash bank <@var{num}>, starting at <@var{offset}>
814 bytes from the beginning of the bank. This command was replaced by the new command
815 @option{flash write_binary} using the same syntax.
816 @item @b{flash write_binary} <@var{num}> <@var{file}> <@var{offset}>
817 @cindex flash write_binary
818 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
819 <@option{offset}> bytes from the beginning of the bank.
820 @item @b{flash write_image} <@var{file}> [@var{offset}] [@var{type}]
821 @cindex flash write_image
822 Write the image <@var{file}> to the current target's flash bank(s). A relocation
823 [@var{offset}] can be specified and the file [@var{type}] can be specified
824 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
825 (ELF file) or @option{s19} (Motorola s19).
826 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
827 @cindex flash protect
828 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
829 <@var{last}> of @option{flash bank} <@var{num}>.
830 @item @b{flash auto_erase} <@var{on}|@var{off}>
831 @cindex flash auto_erase
832 Enable (@option{on}) to erase flash banks prior to writing using the flash @option{write_image} command
833 only. Default is (@option{off}), flash banks have to be erased using @option{flash erase} command.
834 @end itemize
835
836 @page
837 @section Target Specific Commands
838 @cindex Target Specific Commands
839
840 @subsection AT91SAM7 specific commands
841 @cindex AT91SAM7 specific commands
842 The flash configuration is deduced from the chip identification register. The flash
843 controller handles erases automatically on a page (128/265 byte) basis so erase is
844 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
845 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
846 that can be erased separatly.Only an EraseAll command is supported by the controller
847 for each flash plane and this is called with
848 @itemize @bullet
849 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
850 bulk erase flash planes first_plane to last_plane.
851 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
852 @cindex at91sam7 gpnvm
853 set or clear a gpnvm bit for the processor
854 @end itemize
855
856 @subsection STR9 specific commands
857 @cindex STR9 specific commands
858 These are flash specific commands when using the str9xpec driver.
859 @itemize @bullet
860 @item @b{str9xpec enable_turbo} <@var{num}>
861 @cindex str9xpec enable_turbo
862 enable turbo mode, simply this will remove the str9 from the chain and talk
863 directly to the embedded flash controller.
864 @item @b{str9xpec disable_turbo} <@var{num}>
865 @cindex str9xpec disable_turbo
866 restore the str9 into jtag chain.
867 @item @b{str9xpec lock} <@var{num}>
868 @cindex str9xpec lock
869 lock str9 device. The str9 will only respond to an unlock command that will
870 erase the device.
871 @item @b{str9xpec unlock} <@var{num}>
872 @cindex str9xpec unlock
873 unlock str9 device.
874 @item @b{str9xpec options_read} <@var{num}>
875 @cindex str9xpec options_read
876 read str9 option bytes.
877 @item @b{str9xpec options_write} <@var{num}>
878 @cindex str9xpec options_write
879 write str9 option bytes.
880 @end itemize
881
882 @subsection STR9 configuration
883 @cindex STR9 configuration
884 @itemize @bullet
885 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
886 <@var{BBADR}> <@var{NBBADR}>
887 @cindex str9x flash_config
888 Configure str9 flash controller.
889 @smallexample
890 eg. str9x flash_config 0 4 2 0 0x80000
891 This will setup
892 BBSR - Boot Bank Size register
893 NBBSR - Non Boot Bank Size register
894 BBADR - Boot Bank Start Address register
895 NBBADR - Boot Bank Start Address register
896 @end smallexample
897 @end itemize
898
899 @subsection STR9 option byte configuration
900 @cindex STR9 option byte configuration
901 @itemize @bullet
902 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
903 @cindex str9xpec options_cmap
904 configure str9 boot bank.
905 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
906 @cindex str9xpec options_lvdthd
907 configure str9 lvd threshold.
908 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
909 @cindex str9xpec options_lvdsel
910 configure str9 lvd source.
911 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
912 @cindex str9xpec options_lvdwarn
913 configure str9 lvd reset warning source.
914 @end itemize
915
916 @subsection STM32x specific commands
917 @cindex STM32x specific commands
918
919 These are flash specific commands when using the stm32x driver.
920 @itemize @bullet
921 @item @b{stm32x lock} <@var{num}>
922 @cindex stm32x lock
923 lock stm32 device.
924 @item @b{stm32x unlock} <@var{num}>
925 @cindex stm32x unlock
926 unlock stm32 device.
927 @item @b{stm32x options_read} <@var{num}>
928 @cindex stm32x options_read
929 read stm32 option bytes.
930 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
931 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
932 @cindex stm32x options_write
933 write stm32 option bytes.
934 @item @b{stm32x mass_erase} <@var{num}>
935 @cindex stm32x mass_erase
936 mass erase flash memory.
937 @end itemize
938
939 @page
940 @section Architecture Specific Commands
941 @cindex Architecture Specific Commands
942
943 @subsection ARMV4/5 specific commands
944 @cindex ARMV4/5 specific commands
945
946 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
947 or Intel XScale (XScale isn't supported yet).
948 @itemize @bullet
949 @item @b{armv4_5 reg}
950 @cindex armv4_5 reg
951 Display a list of all banked core registers, fetching the current value from every
952 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
953 register value.
954 @item @b{armv4_5 core_mode} [@option{arm}|@option{thumb}]
955 @cindex armv4_5 core_mode
956 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
957 The target is resumed in the currently set @option{core_mode}.
958 @end itemize
959
960 @subsection ARM7/9 specific commands
961 @cindex ARM7/9 specific commands
962
963 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
964 ARM920t or ARM926EJ-S.
965 @itemize @bullet
966 @item @b{arm7_9 sw_bkpts} <@option{enable}|@option{disable}>
967 @cindex arm7_9 sw_bkpts
968 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
969 one of the watchpoint registers to implement software breakpoints. Disabling
970 SW Bkpts frees that register again.
971 @item @b{arm7_9 force_hw_bkpts} <@option{enable}|@option{disable}>
972 @cindex arm7_9 force_hw_bkpts
973 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
974 breakpoints are turned into hardware breakpoints.
975 @item @b{arm7_9 dbgrq} <@option{enable}|@option{disable}>
976 @cindex arm7_9 dbgrq
977 Enable use of the DBGRQ bit to force entry into debug mode. This should be
978 safe for all but ARM7TDMI--S cores (like Philips LPC).
979 @item @b{arm7_9 fast_writes} <@option{enable}|@option{disable}>
980 @cindex arm7_9 fast_writes [DEPRECATED]
981 See @option{arm7_9 fast_memory_access} instead.
982 @item @b{arm7_9 fast_memory_access} <@option{enable}|@option{disable}>
983 @cindex arm7_9 fast_memory_access
984 Allow the OpenOCD to read and write memory without checking completion of
985 the operation. This provides a huge speed increase, especially with USB JTAG
986 cables (FT2232), but might be unsafe if used with targets running at a very low
987 speed, like the 32kHz startup clock of an AT91RM9200.
988 @item @b{arm7_9 dcc_downloads} <@option{enable}|@option{disable}>
989 @cindex arm7_9 dcc_downloads
990 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
991 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
992 unsafe, especially with targets running at a very low speed. This command was introduced
993 with OpenOCD rev. 60.
994 @end itemize
995
996 @subsection ARM920T specific commands
997 @cindex ARM920T specific commands
998
999 @itemize @bullet
1000 @item @b{arm920t cache_info}
1001 @cindex arm920t cache_info
1002 Print information about the caches found. This allows you to see if your target
1003 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1004 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1005 @cindex arm920t md<bhw>_phys
1006 Display memory at physical address addr.
1007 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1008 @cindex arm920t mw<bhw>_phys
1009 Write memory at physical address addr.
1010 @item @b{arm920t read_cache} <@var{filename}>
1011 @cindex arm920t read_cache
1012 Dump the content of ICache and DCache to a file.
1013 @item @b{arm920t read_mmu} <@var{filename}>
1014 @cindex arm920t read_mmu
1015 Dump the content of the ITLB and DTLB to a file.
1016 @item @b{arm920t virt2phys} <@var{VA}>
1017 @cindex arm920t virt2phys
1018 Translate a virtual address to a physical address.
1019 @end itemize
1020
1021 @page
1022 @section Debug commands
1023 @cindex Debug commands
1024 The following commands give direct access to the core, and are most likely
1025 only useful while debugging the OpenOCD.
1026 @itemize @bullet
1027 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1028 @cindex arm7_9 write_xpsr
1029 Immediately write either the current program status register (CPSR) or the saved
1030 program status register (SPSR), without changing the register cache (as displayed
1031 by the @option{reg} and @option{armv4_5 reg} commands).
1032 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1033 <@var{0=cpsr},@var{1=spsr}>
1034 @cindex arm7_9 write_xpsr_im8
1035 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1036 operation (similar to @option{write_xpsr}).
1037 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1038 @cindex arm7_9 write_core_reg
1039 Write a core register, without changing the register cache (as displayed by the
1040 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1041 encoding of the [M4:M0] bits of the PSR.
1042 @end itemize
1043
1044 @page
1045 @section JTAG commands
1046 @cindex JTAG commands
1047 @itemize @bullet
1048 @item @b{scan_chain}
1049 @cindex scan_chain
1050 Print current scan chain configuration.
1051 @item @b{jtag_reset}
1052 @cindex jtag_reset
1053 Toggle reset lines <@var{trst}> <@var{srst}>.
1054 @item @b{endstate} <@var{tap_state}>
1055 @cindex endstate
1056 Finish JTAG operations in <@var{tap_state}>.
1057 @item @b{runtest} <@var{num_cycles}>
1058 @cindex runtest
1059 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1060 @item @b{statemove} [@var{tap_state}]
1061 @cindex statemove
1062 Move to current endstate or [@var{tap_state}]
1063 @item @b{irscan}
1064 @cindex irscan
1065 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1066 @item @b{drscan}
1067 @cindex drscan
1068 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1069 @item @b{verify_ircapture}
1070 @cindex verify_ircapture
1071 Verify value captured during Capture-IR <@option{enable}|@option{disable}>
1072 @item @b{var}
1073 @cindex var
1074 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1075 @item @b{field}
1076 @cindex field
1077 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1078 @end itemize
1079
1080 @node Sample Scripts
1081 @chapter Sample Scripts
1082 @cindex scripts
1083
1084 This page will collect some script examples for different CPUs.
1085
1086 The configuration script can be divided in the following section:
1087 @itemize @bullet
1088 @item daemon configuration
1089 @item interface
1090 @item jtag scan chain
1091 @item target configuration
1092 @item flash configuration
1093 @end itemize
1094
1095 Detailed information about each section can be found at OpenOCD configuration
1096
1097 @section OMAP5912 Flash Debug
1098 @cindex OMAP5912 Flash Debug
1099 The following two scripts were used with a wiggler PP and and a TI OMAP5912
1100 dual core processor - (@uref{http://www.ti.com}), on a OMAP5912 OSK board
1101 - (@uref{http://www.spectrumdigital.com}).
1102 @subsection Openocd config
1103 @smallexample
1104 #daemon configuration
1105 telnet_port 4444
1106 gdb_port 3333
1107
1108 #interface
1109 interface parport
1110 parport_port 0x378
1111 parport_cable wiggler
1112 jtag_speed 0
1113
1114 #use combined on interfaces or targets that can't set TRST/SRST separately
1115 reset_config trst_and_srst
1116
1117 #jtag scan chain
1118 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1119 jtag_device 38 0x0 0x0 0x0
1120 jtag_device 4 0x1 0x0 0xe
1121 jtag_device 8 0x0 0x0 0x0
1122
1123 #target configuration
1124 daemon_startup reset
1125
1126 #target <type> <endianness> <reset mode> <chainpos> <variant>
1127 target arm926ejs little run_and_init 1 arm926ejs
1128 target_script 0 reset omap5912_osk.init
1129 run_and_halt_time 0 30
1130
1131 # omap5912 lcd frame buffer as working area
1132 working_area 0 0x20000000 0x3e800 nobackup
1133
1134 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1135 flash bank cfi 0x00000000 0x1000000 2 2 0
1136 @end smallexample
1137
1138 @subsection Openocd init
1139 @smallexample
1140 #
1141 # halt target
1142 #
1143 poll
1144 sleep 1
1145 halt
1146 wait_halt
1147 #
1148 # disable wdt
1149 #
1150 mww 0xfffec808 0x000000f5
1151 mww 0xfffec808 0x000000a0
1152
1153 mww 0xfffeb048 0x0000aaaa
1154 sleep 500
1155 mww 0xfffeb048 0x00005555
1156 sleep 500
1157 #
1158 # detect flash
1159 #
1160 flash probe 0
1161
1162 @end smallexample
1163
1164 @section STR71x Script
1165 @cindex STR71x Script
1166 The following script was used with an Amontec JTAGkey and a STR710 / STR711 CPU:
1167 @smallexample
1168 #daemon configuration
1169 telnet_port 4444
1170 gdb_port 3333
1171
1172 #interface
1173 interface ft2232
1174 ft2232_device_desc "Amontec JTAGkey A"
1175 ft2232_layout jtagkey
1176 ft2232_vid_pid 0x0403 0xcff8
1177 jtag_speed 0
1178
1179 #use combined on interfaces or targets that can't set TRST/SRST separately
1180 reset_config trst_and_srst srst_pulls_trst
1181
1182 #jtag scan chain
1183 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1184 jtag_device 4 0x1 0xf 0xe
1185
1186 #target configuration
1187 daemon_startup reset
1188
1189 #target <type> <startup mode>
1190 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1191 target arm7tdmi little run_and_halt 0 arm7tdmi
1192 run_and_halt_time 0 30
1193
1194 working_area 0 0x2000C000 0x4000 nobackup
1195
1196 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1197 flash bank str7x 0x40000000 0x00040000 0 0 0 STR71x
1198 @end smallexample
1199
1200 @section STR750 Script
1201 @cindex STR750 Script
1202 The following script was used with an Amontec JTAGkey and a STR750 CPU:
1203 @smallexample
1204 #daemon configuration
1205 telnet_port 4444
1206 gdb_port 3333
1207
1208 #interface
1209 interface ft2232
1210 ft2232_device_desc "Amontec JTAGkey A"
1211 ft2232_layout jtagkey
1212 ft2232_vid_pid 0x0403 0xcff8
1213 jtag_speed 19
1214
1215 #use combined on interfaces or targets that can't set TRST/SRST separately
1216 #reset_config trst_and_srst srst_pulls_trst
1217 reset_config trst_and_srst srst_pulls_trst
1218
1219 #jtag scan chain
1220 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1221 jtag_device 4 0x1 0xf 0xe
1222
1223 #jtag nTRST and nSRST delay
1224 jtag_nsrst_delay 500
1225 jtag_ntrst_delay 500
1226
1227 #target configuration
1228 daemon_startup reset
1229
1230 #target <type> <startup mode>
1231 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1232 target arm7tdmi little run_and_halt 0 arm7tdmi
1233 run_and_halt_time 0 30
1234
1235 working_area 0 0x40000000 0x4000 nobackup
1236
1237 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1238 flash bank str7x 0x20000000 0x000040000 0 0 0 STR75x
1239 @end smallexample
1240
1241 @section STR912 Script
1242 @cindex STR912 Script
1243 The following script was used with an Amontec JTAGkey and a STR912 CPU:
1244 @smallexample
1245 #daemon configuration
1246 telnet_port 4444
1247 gdb_port 3333
1248
1249 #interface
1250 interface ft2232
1251 ft2232_device_desc "Amontec JTAGkey A"
1252 ft2232_layout jtagkey
1253 jtag_speed 1
1254
1255 #use combined on interfaces or targets that can't set TRST/SRST separately
1256 reset_config trst_and_srst
1257
1258 #jtag scan chain
1259 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1260 jtag_device 8 0x1 0x1 0xfe
1261 jtag_device 4 0x1 0xf 0xe
1262 jtag_device 5 0x1 0x1 0x1e
1263
1264 #target configuration
1265 daemon_startup reset
1266
1267 #target <type> <startup mode>
1268 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1269 target arm966e little reset_halt 1 arm966e
1270 run_and_halt_time 0 30
1271
1272 working_area 0 0x50000000 16384 nobackup
1273
1274 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1275 flash bank str9x 0x00000000 0x00080000 0 0 0
1276 @end smallexample
1277
1278 @section STR912 comstick
1279 @cindex STR912 comstick Script
1280 The following script was used with a Hitex STR9 Comstick:
1281 @smallexample
1282 #daemon configuration
1283 telnet_port 4444
1284 gdb_port 3333
1285
1286 #interface
1287 interface ft2232
1288 ft2232_device_desc "STR9-comStick A"
1289 ft2232_layout comstick
1290 jtag_speed 1
1291
1292 jtag_nsrst_delay 100
1293 jtag_ntrst_delay 100
1294
1295 #use combined on interfaces or targets that can't set TRST/SRST separately
1296 reset_config trst_and_srst
1297
1298 #jtag scan chain
1299 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1300 jtag_device 8 0x1 0x1 0xfe
1301 jtag_device 4 0x1 0xf 0xe
1302 jtag_device 5 0x1 0x1 0x1e
1303
1304 #target configuration
1305 daemon_startup reset
1306
1307 #target <type> <startup mode>
1308 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1309 target arm966e little reset_halt 1 arm966e
1310 run_and_halt_time 0 30
1311
1312 working_area 0 0x50000000 16384 nobackup
1313
1314 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1315 flash bank str9x 0x00000000 0x00080000 0 0 0
1316 @end smallexample
1317
1318 @section STM32x Script
1319 @cindex STM32x Script
1320 The following script was used with an Amontec JTAGkey and a STM32x CPU:
1321 @smallexample
1322 #daemon configuration
1323 telnet_port 4444
1324 gdb_port 3333
1325
1326 #interface
1327 interface ft2232
1328 ft2232_device_desc "Amontec JTAGkey A"
1329 ft2232_layout jtagkey
1330 jtag_speed 10
1331
1332 jtag_nsrst_delay 100
1333 jtag_ntrst_delay 100
1334
1335 #use combined on interfaces or targets that can't set TRST/SRST separately
1336 reset_config trst_and_srst
1337
1338 #jtag scan chain
1339 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1340 jtag_device 4 0x1 0xf 0xe
1341 jtag_device 5 0x1 0x1 0x1e
1342
1343 #target configuration
1344 daemon_startup reset
1345
1346 #target <type> <startup mode>
1347 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1348 target cortex_m3 little run_and_halt 0
1349 run_and_halt_time 0 30
1350
1351 working_area 0 0x20000000 16384 nobackup
1352
1353 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1354 flash bank stm32x 0x08000000 0x00020000 0 0 0
1355 @end smallexample
1356
1357 @section STM32x Performance Stick
1358 @cindex STM32x Performance Stick Script
1359 The following script was used with the Hitex STM32 Performance Stick
1360 @smallexample
1361 #daemon configuration
1362 telnet_port 4444
1363 gdb_port 3333
1364
1365 #interface
1366 interface ft2232
1367 ft2232_device_desc "STM32-PerformanceStick A"
1368 ft2232_layout stm32stick
1369 jtag_speed 10
1370
1371 jtag_nsrst_delay 100
1372 jtag_ntrst_delay 100
1373
1374 #use combined on interfaces or targets that can't set TRST/SRST separately
1375 reset_config trst_and_srst
1376
1377 #jtag scan chain
1378 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1379 jtag_device 4 0x1 0xf 0xe
1380 jtag_device 5 0x1 0x1 0x1e
1381 jtag_device 4 0x1 0xf 0xe
1382
1383 #target configuration
1384 daemon_startup reset
1385
1386 #target <type> <startup mode>
1387 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1388 target cortex_m3 little run_and_halt 0
1389 run_and_halt_time 0 30
1390
1391 working_area 0 0x20000000 16384 nobackup
1392
1393 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1394 flash bank stm32x 0x08000000 0x00020000 0 0 0
1395 @end smallexample
1396
1397 @section LPC2129 Script
1398 @cindex LPC2129 Script
1399 The following script was used with an wiggler PP and a LPC-2129 CPU:
1400 @smallexample
1401 #daemon configuration
1402 telnet_port 4444
1403 gdb_port 3333
1404
1405 #interface
1406 interface parport
1407 parport_port 0x378
1408 parport_cable wiggler
1409 jtag_speed 0
1410
1411 #use combined on interfaces or targets that can't set TRST/SRST separately
1412 reset_config trst_and_srst srst_pulls_trst
1413
1414 #jtag scan chain
1415 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1416 jtag_device 4 0x1 0xf 0xe
1417
1418 #target configuration
1419 daemon_startup reset
1420
1421 #target <type> <startup mode>
1422 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1423 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1424 run_and_halt_time 0 30
1425
1426 working_area 0 0x40000000 0x4000 nobackup
1427
1428 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1429 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1430 @end smallexample
1431
1432 @section LPC2148 Script
1433 @cindex LPC2148 Script
1434 The following script was used with an Amontec JTAGkey and a LPC2148 CPU:
1435 @smallexample
1436 #daemon configuration
1437 telnet_port 4444
1438 gdb_port 3333
1439
1440 #interface
1441 interface ft2232
1442 ft2232_device_desc "Amontec JTAGkey A"
1443 ft2232_layout jtagkey
1444 ft2232_vid_pid 0x0403 0xcff8
1445 jtag_speed 3
1446
1447 #use combined on interfaces or targets that can't set TRST/SRST separately
1448 reset_config trst_and_srst srst_pulls_trst
1449
1450 #jtag scan chain
1451 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1452 jtag_device 4 0x1 0xf 0xe
1453
1454 #target configuration
1455 daemon_startup reset
1456
1457 #target <type> <startup mode>
1458 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1459 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1460 run_and_halt_time 0 30
1461
1462 working_area 0 0x40000000 0x8000 nobackup
1463
1464 #flash configuration
1465 flash bank lpc2000 0x0 0x7d000 0 0 0 lpc2000_v1 14765 calc_checksum
1466 @end smallexample
1467
1468 @section LPC2294 Script
1469 @cindex LPC2294 Script
1470 The following script was used with an Amontec JTAGkey and a LPC2294 CPU:
1471 @smallexample
1472 #daemon configuration
1473 telnet_port 4444
1474 gdb_port 3333
1475
1476 #interface
1477 interface ft2232
1478 ft2232_device_desc "Amontec JTAGkey A"
1479 ft2232_layout jtagkey
1480 ft2232_vid_pid 0x0403 0xcff8
1481 jtag_speed 3
1482
1483 #use combined on interfaces or targets that can't set TRST/SRST separately
1484 reset_config trst_and_srst srst_pulls_trst
1485
1486 #jtag scan chain
1487 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1488 jtag_device 4 0x1 0xf 0xe
1489
1490 #target configuration
1491 daemon_startup reset
1492
1493 #target <type> <startup mode>
1494 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1495 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1496 run_and_halt_time 0 30
1497
1498 working_area 0 0x40000000 0x4000 nobackup
1499
1500 #flash configuration
1501 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1502 @end smallexample
1503
1504 @section AT91R40008 Script
1505 @cindex AT91R40008 Script
1506 The following script was used with an Amontec JTAGkey and a AT91R40008 CPU:
1507 @smallexample
1508 #daemon configuration
1509 telnet_port 4444
1510 gdb_port 3333
1511
1512 #interface
1513 interface ft2232
1514 ft2232_device_desc "Amontec JTAGkey A"
1515 ft2232_layout jtagkey
1516 ft2232_vid_pid 0x0403 0xcff8
1517 jtag_speed 0
1518 jtag_nsrst_delay 200
1519 jtag_ntrst_delay 200
1520
1521 #use combined on interfaces or targets that can't set TRST/SRST separately
1522 reset_config srst_only srst_pulls_trst
1523
1524 #jtag scan chain
1525 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1526 jtag_device 4 0x1 0xf 0xe
1527
1528 #target configuration
1529 daemon_startup reset
1530
1531 #target <type> <startup mode>
1532 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1533 target arm7tdmi little run_and_halt 0 arm7tdmi
1534 run_and_halt_time 0 30
1535 @end smallexample
1536
1537 @section AT91SAM7s Script
1538 @cindex AT91SAM7s Script
1539 The following script was used with an Olimex ARM-JTAG-OCD and a AT91SAM7S64 CPU:
1540 @smallexample
1541 #daemon configuration
1542 telnet_port 4444
1543 gdb_port 3333
1544
1545 #interface
1546 interface ft2232
1547 ft2232_device_desc "Olimex OpenOCD JTAG A"
1548 ft2232_layout olimex-jtag
1549 ft2232_vid_pid 0x15BA 0x0003
1550 jtag_speed 0
1551 jtag_nsrst_delay 200
1552 jtag_ntrst_delay 200
1553
1554 #use combined on interfaces or targets that can't set TRST/SRST separately
1555 reset_config srst_only srst_pulls_trst
1556
1557 #jtag scan chain
1558 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1559 jtag_device 4 0x1 0xf 0xe
1560
1561 #target configuration
1562 daemon_startup reset
1563
1564 #target <type> <startup mode>
1565 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1566 target arm7tdmi little run_and_halt 0 arm7tdmi
1567 run_and_halt_time 0 30
1568
1569 # flash-options AT91
1570 working_area 0 0x00200000 0x4000 nobackup
1571 flash bank at91sam7 0 0 0 0 0
1572
1573 # Information:
1574 # erase command (telnet-interface) for complete flash:
1575 # flash erase <num> 0 numlockbits-1 (can be seen from output of flash info 0)
1576 # SAM7S64 with 16 lockbits and bank 0: flash erase 0 0 15
1577 # set/clear NVM-Bits:
1578 # at91sam7 gpnvm <num> <bit> <set|clear>
1579 # disable locking from SAM-BA:
1580 # flash protect 0 0 1 off
1581 @end smallexample
1582
1583 @section XSCALE IXP42x Script
1584 @cindex XSCALE IXP42x Script
1585 The following script was used with an Amontec JTAGkey-Tiny and a xscale ixp42x CPU:
1586 @smallexample
1587 #daemon configuration
1588 telnet_port 4444
1589 gdb_port 3333
1590
1591 #interface
1592 interface ft2232
1593 ft2232_device_desc "Amontec JTAGkey A"
1594 ft2232_layout jtagkey
1595 ft2232_vid_pid 0x0403 0xcff8
1596 jtag_speed 0
1597 jtag_nsrst_delay 200
1598 jtag_ntrst_delay 200
1599
1600 #use combined on interfaces or targets that can't set TRST/SRST separately
1601 reset_config srst_only srst_pulls_trst
1602
1603 #jtag scan chain
1604 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1605 jtag_device 7 0x1 0x7f 0x7e
1606
1607 #target configuration
1608 daemon_startup reset
1609
1610 #target <type> <startup mode>
1611 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1612 target xscale big run_and_halt 0 IXP42x
1613 run_and_halt_time 0 30
1614 @end smallexample
1615
1616 @section Cirrus Logic EP9301 Script
1617 @cindex Cirrus Logic EP9301 Script
1618 The following script was used with FT2232 based JTAG interfaces and a
1619 Cirrus Logic EP9301 processor on an Olimex CS-E9301 board.
1620 @smallexample
1621 #daemon configuration
1622 telnet_port 4444
1623 gdb_port 3333
1624
1625 #interface
1626 interface ft2232
1627
1628 #Olimex ARM-USB-OCD
1629 #ft2232_device_desc "Olimex OpenOCD JTAG"
1630 #ft2232_layout olimex-jtag
1631 #ft2232_vid_pid 0x15ba 0x0003
1632
1633 #Amontec JTAGkey (and JTAGkey-Tiny)
1634 #Serial is only necessary if more than one JTAGkey is connected
1635 ft2232_device_desc "Amontec JTAGkey A"
1636 #ft2232_serial AMTJKV31
1637 #ft2232_serial T1P3S2W8
1638 ft2232_layout jtagkey
1639 ft2232_vid_pid 0x0403 0xcff8
1640
1641 #wiggler/parallel port interface
1642 #interface parport
1643 #parport_port 0x378
1644 #parport_cable wiggler
1645 #jtag_speed 0
1646 jtag_speed 1
1647 reset_config trst_and_srst
1648
1649 #jtag scan chain
1650 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1651 jtag_device 4 0x1 0xf 0xe
1652
1653 jtag_nsrst_delay 100
1654 jtag_ntrst_delay 100
1655
1656 #target configuration
1657 daemon_startup attach
1658
1659 #target <type> <endianess> <reset mode>
1660 target arm920t little reset_halt 0
1661 working_area 0 0x80014000 0x1000 backup
1662
1663 #flash configuration
1664 #flash bank <driver> <base> <size> <chip_width> <bus_width> [driver_options ...]
1665 flash bank cfi 0x60000000 0x1000000 2 2 0
1666 @end smallexample
1667
1668 @section Hilscher netX 100 / 500 Script
1669 @cindex Hilscher netX 100 / 500 Script
1670 The following script was used with an Amontec JTAGkey and a Hilscher
1671 netX 500 CPU:
1672 @smallexample
1673 #daemon configuration
1674 telnet_port 4444
1675 gdb_port 3333
1676
1677 #interface
1678 interface ft2232
1679 ft2232_device_desc "Amontec JTAGkey A"
1680 ft2232_layout jtagkey
1681 ft2232_vid_pid 0x0403 0xcff8
1682 jtag_speed 5
1683
1684 #use combined on interfaces or targets that can't set TRST/SRST separately
1685 reset_config trst_and_srst
1686
1687 #jtag scan chain
1688 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1689 jtag_device 4 0x1 0xf 0xe
1690
1691 jtag_nsrst_delay 100
1692 jtag_ntrst_delay 100
1693
1694 #target configuration
1695 daemon_startup reset
1696
1697 #target <type> <endianness> <startup mode> <chainpos> <variant>
1698 target arm926ejs little run_and_halt 0 arm926ejs
1699 run_and_halt_time 0 500
1700 @end smallexample
1701
1702 @section Marvell/Intel PXA270 Script
1703 @cindex Marvell/Intel PXA270 Script
1704 @smallexample
1705 # config for Intel PXA270
1706 # not, as of 2007-06-22, openocd only works with the
1707 # libftd2xx library from ftdi. libftdi does not work.
1708
1709 telnet_port 3333
1710 gdb_port 4444
1711
1712 interface ft2232
1713 ft2232_layout olimex-jtag
1714 ft2232_vid_pid 0x15BA 0x0003
1715 ft2232_device_desc "Olimex OpenOCD JTAG"
1716 jtag_speed 0
1717 # set jtag_nsrst_delay to the delay introduced by your reset circuit
1718 # the rest of the needed delays are built into the openocd program
1719 jtag_nsrst_delay 260
1720 # set the jtag_ntrst_delay to the delay introduced by a reset circuit
1721 # the rest of the needed delays are built into the openocd program
1722 jtag_ntrst_delay 0
1723
1724 #use combined on interfaces or targets that can't set TRST/SRST separately
1725 reset_config trst_and_srst separate
1726
1727 #jtag scan chain
1728 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1729 jtag_device 7 0x1 0x7f 0x7e
1730
1731 #target configuration
1732 daemon_startup reset
1733
1734 target xscale little reset_halt 0 pxa27x
1735
1736 # maps to PXA internal RAM. If you are using a PXA255
1737 # you must initialize SDRAM or leave this option off
1738 working_area 0 0x5c000000 0x10000 nobackup
1739
1740 run_and_halt_time 0 30
1741
1742 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1743 # works for P30 flash
1744 flash bank cfi 0x00000000 0x1000000 2 4 0
1745 @end smallexample
1746
1747 @node GDB and Openocd
1748 @chapter GDB and Openocd
1749 @cindex GDB and Openocd
1750 Openocd complies with the remote gdbserver protocol, and as such can be used
1751 to debug remote targets.
1752
1753 @section Connecting to gdb
1754 @cindex Connecting to gdb
1755 A connection is typically started as follows:
1756 @smallexample
1757 target remote localhost:3333
1758 @end smallexample
1759 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1760
1761 To see a list of available openocd commands type @option{monitor help} on the
1762 gdb commandline.
1763
1764 Openocd supports the gdb @option{qSupported} packet, this enables information
1765 to be sent by the gdb server (openocd) to gdb. Typical information includes
1766 packet size and device memory map.
1767
1768 Previous versions of openocd required the following gdb options to increase
1769 the packet size and speed up gdb communication.
1770 @smallexample
1771 set remote memory-write-packet-size 1024
1772 set remote memory-write-packet-size fixed
1773 set remote memory-read-packet-size 1024
1774 set remote memory-read-packet-size fixed
1775 @end smallexample
1776 This is now handled in the @option{qSupported} PacketSize.
1777
1778 @section Programming using gdb
1779 @cindex Programming using gdb
1780
1781 By default the target memory map is not sent to gdb, this can be enabled by
1782 the following openocd config option:
1783 @smallexample
1784 gdb_memory_map enable
1785 @end smallexample
1786 For this to function correctly a valid flash config must also be configured
1787 in openocd. For speed also configure a valid working area.
1788
1789 Informing gdb of the memory map of the target will enable gdb to protect any
1790 flash area of the target and use hardware breakpoints by default. This means
1791 that the openocd option @option{arm7_9 force_hw_bkpts} is not required when
1792 using a memory map.
1793
1794 To view the configured memory map in gdb, use the gdb command @option{info mem}
1795 All other unasigned addresses within gdb are treated as RAM.
1796
1797 If @option{gdb_flash_program enable} is also used, gdb will be able to
1798 program any flash memory using the vFlash interface.
1799
1800 gdb will look at the target memory map when a load command is given, if any
1801 areas to be programmed lie within the target flash area the vFlash packets
1802 will be used.
1803
1804 Incase the target needs configuring before gdb programming, a script can be executed.
1805 @smallexample
1806 target_script 0 gdb_program_config config.script
1807 @end smallexample
1808
1809 To verify any flash programming the gdb command @option{compare-sections}
1810 can be used.
1811
1812 @node FAQ
1813 @chapter FAQ
1814 @cindex faq
1815 @enumerate
1816 @item OpenOCD complains about a missing cygwin1.dll.
1817
1818 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1819 claims to come with all the necessary dlls. When using Cygwin, try launching
1820 the OpenOCD from the Cygwin shell.
1821
1822 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1823 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1824 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1825
1826 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1827 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1828 software breakpoints consume one of the two available hardware breakpoints,
1829 and are therefore disabled by default. If your code is running from RAM, you
1830 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1831 your code resides in Flash, you can't use software breakpoints, but you can force
1832 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1833
1834 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1835 and works sometimes fine.
1836
1837 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1838 clock at the time you're programming the flash. If you've specified the crystal's
1839 frequency, make sure the PLL is disabled, if you've specified the full core speed
1840 (e.g. 60MHz), make sure the PLL is enabled.
1841
1842 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1843 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1844 out while waiting for end of scan, rtck was disabled".
1845
1846 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1847 settings in your PC BIOS (ECP, EPP, and different versions of those).
1848
1849 @item When debugging with the OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1850 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1851 memory read caused data abort".
1852
1853 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1854 beyond the last valid frame. It might be possible to prevent this by setting up
1855 a proper "initial" stack frame, if you happen to know what exactly has to
1856 be done, feel free to add this here.
1857
1858 @item I get the following message in the OpenOCD console (or log file):
1859 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1860
1861 This warning doesn't indicate any serious problem, as long as you don't want to
1862 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1863 trst_and_srst srst_pulls_trst} to tell the OpenOCD that either your board,
1864 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1865 independently. With this setup, it's not possible to halt the core right out of
1866 reset, everything else should work fine.
1867
1868 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1869 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1870 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1871 quit with an error message. Is there a stability issue with OpenOCD?
1872
1873 No, this is not a stability issue concerning OpenOCD. Most users have solved
1874 this issue by simply using a self-powered USB hub, which they connect their
1875 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1876 supply stable enough for the Amontec JTAGkey to be operated.
1877
1878 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1879 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1880 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1881 What does that mean and what might be the reason for this?
1882
1883 First of all, the reason might be the USB power supply. Try using a self-powered
1884 hub instead of a direct connection to your computer. Secondly, the error code 4
1885 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1886 chip ran into some sort of error - this points us to a USB problem.
1887
1888 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1889 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1890 What does that mean and what might be the reason for this?
1891
1892 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1893 has closed the connection to OpenOCD. This might be a GDB issue.
1894
1895 @item In the configuration file in the section where flash device configurations
1896 are described, there is a parameter for specifying the clock frequency for
1897 LPC2000 internal flash devices (e.g.
1898 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1899 which must be specified in kilohertz. However, I do have a quartz crystal of a
1900 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1901 Is it possible to specify real numbers for the clock frequency?
1902
1903 No. The clock frequency specified here must be given as an integral number.
1904 However, this clock frequency is used by the In-Application-Programming (IAP)
1905 routines of the LPC2000 family only, which seems to be very tolerant concerning
1906 the given clock frequency, so a slight difference between the specified clock
1907 frequency and the actual clock frequency will not cause any trouble.
1908
1909 @item Do I have to keep a specific order for the commands in the configuration file?
1910
1911 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1912 listed for the JTAG scan chain must be given in the right order (jtag_device),
1913 with the device closest to the TDO-Pin being listed first. In general,
1914 whenever objects of the same type exist which require an index number, then
1915 these objects must be given in the right order (jtag_devices, targets and flash
1916 banks - a target references a jtag_device and a flash bank references a target).
1917
1918 @item Sometimes my debugging session terminates with an error. When I look into the
1919 log file, I can see these error messages: Error: arm7_9_common.c:561
1920 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1921
1922 TODO.
1923
1924 @end enumerate
1925
1926 @include fdl.texi
1927
1928 @node Index
1929 @unnumbered Index
1930
1931 @printindex cp
1932
1933 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)