Add 'docs' and 'doxygen' targets to top-level Makefile.
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD
55 * Developers:: OpenOCD Developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * Tcl Scripting API:: Tcl Scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target Library:: Target Library
76 * FAQ:: Frequently Asked Questions
77 * Tcl Crash Course:: Tcl Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main Index
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) compliant taps on your target board.
96
97 @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
98 based, parallel port based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
102 ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3, and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}.
125
126 @section Coding Style
127 @cindex Coding Style
128
129 The following rules try to describe formatting and naming conventions that should be
130 followed to make the whole OpenOCD code look more consistent. The ultimate goal of
131 coding style should be readability, and these rules may be ignored for a particular
132 (small) piece of code if that makes it more readable.
133
134 @subsection Formatting rules:
135 @itemize @bullet
136 @item remove any trailing white space
137 @item use TAB characters for indentation, not spaces
138 @item displayed TAB width is 4 characters
139 @item make sure NOT to use DOS '\r\n' line feeds
140 @item do not add more than 2 empty lines to source files
141 @item do not add trailing empty lines to source files
142 @item do not use C++ style comments (//)
143 @item lines may be reasonably wide - there's no anachronistic 80 characters limit
144 @end itemize
145
146 @subsection Naming rules:
147 @itemize @bullet
148 @item identifiers use lower-case letters only
149 @item identifiers consisting of multiple words use underline characters between consecutive words
150 @item macros use upper-case letters only
151 @item structure names shall be appended with '_s'
152 @item typedefs shall be appended with '_t'
153 @end itemize
154
155 @subsection Function calls:
156 @itemize @bullet
157 @item function calls have no space between the functions name and the parameter
158 list: my_func(param1, param2, ...)
159 @end itemize
160
161 @node Building
162 @chapter Building
163 @cindex building OpenOCD
164
165 @section Pre-Built Tools
166 If you are interested in getting actual work done rather than building
167 OpenOCD, then check if your interface supplier provides binaries for
168 you. Chances are that that binary is from some SVN version that is more
169 stable than SVN trunk where bleeding edge development takes place.
170
171 @section Packagers Please Read!
172
173 You are a @b{PACKAGER} of OpenOCD if you
174
175 @enumerate
176 @item @b{Sell dongles} and include pre-built binaries
177 @item @b{Supply tools} i.e.: A complete development solution
178 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
179 @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro
180 @end enumerate
181
182 As a @b{PACKAGER} - you are at the top of the food chain. You solve
183 problems for downstream users. What you fix or solve - solves hundreds
184 if not thousands of user questions. If something does not work for you
185 please let us know. That said, would also like you to follow a few
186 suggestions:
187
188 @enumerate
189 @item @b{Always build with printer ports enabled.}
190 @item @b{Try to use LIBFTDI + LIBUSB where possible. You cover more bases.}
191 @end enumerate
192
193 @itemize @bullet
194 @item @b{Why YES to LIBFTDI + LIBUSB?}
195 @itemize @bullet
196 @item @b{LESS} work - libusb perhaps already there
197 @item @b{LESS} work - identical code, multiple platforms
198 @item @b{MORE} dongles are supported
199 @item @b{MORE} platforms are supported
200 @item @b{MORE} complete solution
201 @end itemize
202 @item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)?
203 @itemize @bullet
204 @item @b{LESS} speed - some say it is slower
205 @item @b{LESS} complex to distribute (external dependencies)
206 @end itemize
207 @end itemize
208
209 @section Building From Source
210
211 You can download the current SVN version with an SVN client of your choice from the
212 following repositories:
213
214 @uref{svn://svn.berlios.de/openocd/trunk}
215
216 or
217
218 @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk}
219
220 Using the SVN command line client, you can use the following command to fetch the
221 latest version (make sure there is no (non-svn) directory called "openocd" in the
222 current directory):
223
224 @example
225 svn checkout svn://svn.berlios.de/openocd/trunk openocd
226 @end example
227
228 Building OpenOCD requires a recent version of the GNU autotools (autoconf >= 2.59 and automake >= 1.9).
229 For building on Windows,
230 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
231 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
232 paths, resulting in obscure dependency errors (This is an observation I've gathered
233 from the logs of one user - correct me if I'm wrong).
234
235 You further need the appropriate driver files, if you want to build support for
236 a FTDI FT2232 based interface:
237
238 @itemize @bullet
239 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
240 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
241 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
242 homepage (@uref{http://www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
243 @end itemize
244
245 libftdi is supported under Windows. Do not use versions earlier than 0.14.
246
247 In general, the D2XX driver provides superior performance (several times as fast),
248 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
249 a kernel module, only a user space library.
250
251 To build OpenOCD (on both Linux and Cygwin), use the following commands:
252
253 @example
254 ./bootstrap
255 @end example
256
257 Bootstrap generates the configure script, and prepares building on your system.
258
259 @example
260 ./configure [options, see below]
261 @end example
262
263 Configure generates the Makefiles used to build OpenOCD.
264
265 @example
266 make
267 make install
268 @end example
269
270 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
271
272 The configure script takes several options, specifying which JTAG interfaces
273 should be included (among other things):
274
275 @itemize @bullet
276 @item
277 @option{--enable-parport} - Enable building the PC parallel port driver.
278 @item
279 @option{--enable-parport_ppdev} - Enable use of ppdev (/dev/parportN) for parport.
280 @item
281 @option{--enable-parport_giveio} - Enable use of giveio for parport instead of ioperm.
282 @item
283 @option{--enable-amtjtagaccel} - Enable building the Amontec JTAG-Accelerator driver.
284 @item
285 @option{--enable-ecosboard} - Enable building support for eCosBoard based JTAG debugger.
286 @item
287 @option{--enable-ioutil} - Enable ioutil functions - useful for standalone OpenOCD implementations.
288 @item
289 @option{--enable-httpd} - Enable builtin httpd server - useful for standalone OpenOCD implementations.
290 @item
291 @option{--enable-ep93xx} - Enable building support for EP93xx based SBCs.
292 @item
293 @option{--enable-at91rm9200} - Enable building support for AT91RM9200 based SBCs.
294 @item
295 @option{--enable-gw16012} - Enable building support for the Gateworks GW16012 JTAG programmer.
296 @item
297 @option{--enable-ft2232_ftd2xx} - Numerous USB type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
298 @item
299 @option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin).
300 @item
301 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
302 @item
303 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only. Equivalent of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
304 @item
305 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
306 @item
307 @option{--enable-presto_libftdi} - Enable building support for ASIX Presto programmer using the libftdi driver.
308 @item
309 @option{--enable-presto_ftd2xx} - Enable building support for ASIX Presto programmer using the FTD2XX driver.
310 @item
311 @option{--enable-usbprog} - Enable building support for the USBprog JTAG programmer.
312 @item
313 @option{--enable-oocd_trace} - Enable building support for the OpenOCD+trace ETM capture device.
314 @item
315 @option{--enable-jlink} - Enable building support for the Segger J-Link JTAG programmer.
316 @item
317 @option{--enable-vsllink} - Enable building support for the Versaloon-Link JTAG programmer.
318 @item
319 @option{--enable-rlink} - Enable building support for the Raisonance RLink JTAG programmer.
320 @item
321 @option{--enable-arm-jtag-ew} - Enable building support for the Olimex ARM-JTAG-EW programmer.
322 @item
323 @option{--enable-dummy} - Enable building the dummy port driver.
324 @end itemize
325
326 @section Parallel Port Dongles
327
328 If you want to access the parallel port using the PPDEV interface you have to specify
329 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
330 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
331 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
332
333 The same is true for the @option{--enable-parport_giveio} option, you have to
334 use both the @option{--enable-parport} AND the @option{--enable-parport_giveio} option if you want to use giveio instead of ioperm parallel port access method.
335
336 @section FT2232C Based USB Dongles
337
338 There are 2 methods of using the FTD2232, either (1) using the
339 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
340 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
341
342 The FTDICHIP drivers come as either a (win32) ZIP file, or a (Linux)
343 TAR.GZ file. You must unpack them ``some where'' convient. As of this
344 writing (12/26/2008) FTDICHIP does not supply means to install these
345 files ``in an appropriate place'' As a result, there are two
346 ``./configure'' options that help.
347
348 Below is an example build process:
349
350 1) Check out the latest version of ``openocd'' from SVN.
351
352 2) Download & unpack either the Windows or Linux FTD2xx drivers
353 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
354
355 @example
356 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
357 /home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents.
358 @end example
359
360 3) Configure with these options:
361
362 @example
363 Cygwin FTDICHIP solution:
364 ./configure --prefix=/home/duane/mytools \
365 --enable-ft2232_ftd2xx \
366 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
367
368 Linux FTDICHIP solution:
369 ./configure --prefix=/home/duane/mytools \
370 --enable-ft2232_ftd2xx \
371 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
372
373 Cygwin/Linux LIBFTDI solution:
374 Assumes:
375 1a) For Windows: The Windows port of LIBUSB is in place.
376 1b) For Linux: libusb has been built/installed and is in place.
377
378 2) And libftdi has been built and installed
379 Note: libftdi - relies upon libusb.
380
381 ./configure --prefix=/home/duane/mytools \
382 --enable-ft2232_libftdi
383
384 @end example
385
386 4) Then just type ``make'', and perhaps ``make install''.
387
388
389 @section Miscellaneous Configure Options
390
391 @itemize @bullet
392 @item
393 @option{--disable-option-checking} - Ignore unrecognized @option{--enable} and @option{--with} options.
394 @item
395 @option{--enable-gccwarnings} - Enable extra gcc warnings during build.
396 Default is enabled.
397 @item
398 @option{--enable-release} - Enable building of an OpenOCD release, generally
399 this is for developers. It simply omits the svn version string when the
400 openocd @option{-v} is executed.
401 @end itemize
402
403 @node JTAG Hardware Dongles
404 @chapter JTAG Hardware Dongles
405 @cindex dongles
406 @cindex FTDI
407 @cindex wiggler
408 @cindex zy1000
409 @cindex printer port
410 @cindex USB Adapter
411 @cindex rtck
412
413 Defined: @b{dongle}: A small device that plugins into a computer and serves as
414 an adapter .... [snip]
415
416 In the OpenOCD case, this generally refers to @b{a small adapater} one
417 attaches to your computer via USB or the Parallel Printer Port. The
418 execption being the Zylin ZY1000 which is a small box you attach via
419 an ethernet cable. The Zylin ZY1000 has the advantage that it does not
420 require any drivers to be installed on the developer PC. It also has
421 a built in web interface. It supports RTCK/RCLK or adaptive clocking
422 and has a built in relay to power cycle targets remotely.
423
424
425 @section Choosing a Dongle
426
427 There are three things you should keep in mind when choosing a dongle.
428
429 @enumerate
430 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
431 @item @b{Connection} Printer Ports - Does your computer have one?
432 @item @b{Connection} Is that long printer bit-bang cable practical?
433 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
434 @end enumerate
435
436 @section Stand alone Systems
437
438 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
439 dongle, but a standalone box. The ZY1000 has the advantage that it does
440 not require any drivers installed on the developer PC. It also has
441 a built in web interface. It supports RTCK/RCLK or adaptive clocking
442 and has a built in relay to power cycle targets remotely.
443
444 @section USB FT2232 Based
445
446 There are many USB JTAG dongles on the market, many of them are based
447 on a chip from ``Future Technology Devices International'' (FTDI)
448 known as the FTDI FT2232.
449
450 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
451
452 As of 28/Nov/2008, the following are supported:
453
454 @itemize @bullet
455 @item @b{usbjtag}
456 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
457 @item @b{jtagkey}
458 @* See: @url{http://www.amontec.com/jtagkey.shtml}
459 @item @b{oocdlink}
460 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
461 @item @b{signalyzer}
462 @* See: @url{http://www.signalyzer.com}
463 @item @b{evb_lm3s811}
464 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
465 @item @b{olimex-jtag}
466 @* See: @url{http://www.olimex.com}
467 @item @b{flyswatter}
468 @* See: @url{http://www.tincantools.com}
469 @item @b{turtelizer2}
470 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
471 @item @b{comstick}
472 @* Link: @url{http://www.hitex.com/index.php?id=383}
473 @item @b{stm32stick}
474 @* Link @url{http://www.hitex.com/stm32-stick}
475 @item @b{axm0432_jtag}
476 @* Axiom AXM-0432 Link @url{http://www.axman.com}
477 @end itemize
478
479 @section USB JLINK based
480 There are several OEM versions of the Segger @b{JLINK} adapter. It is
481 an example of a micro controller based JTAG adapter, it uses an
482 AT91SAM764 internally.
483
484 @itemize @bullet
485 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
486 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
487 @item @b{SEGGER JLINK}
488 @* Link: @url{http://www.segger.com/jlink.html}
489 @item @b{IAR J-Link}
490 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
491 @end itemize
492
493 @section USB RLINK based
494 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
495
496 @itemize @bullet
497 @item @b{Raisonance RLink}
498 @* Link: @url{http://www.raisonance.com/products/RLink.php}
499 @item @b{STM32 Primer}
500 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
501 @item @b{STM32 Primer2}
502 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
503 @end itemize
504
505 @section USB Other
506 @itemize @bullet
507 @item @b{USBprog}
508 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
509
510 @item @b{USB - Presto}
511 @* Link: @url{http://tools.asix.net/prg_presto.htm}
512
513 @item @b{Versaloon-Link}
514 @* Link: @url{http://www.simonqian.com/en/Versaloon}
515
516 @item @b{ARM-JTAG-EW}
517 @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
518 @end itemize
519
520 @section IBM PC Parallel Printer Port Based
521
522 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
523 and the MacGraigor Wiggler. There are many clones and variations of
524 these on the market.
525
526 @itemize @bullet
527
528 @item @b{Wiggler} - There are many clones of this.
529 @* Link: @url{http://www.macraigor.com/wiggler.htm}
530
531 @item @b{DLC5} - From XILINX - There are many clones of this
532 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
533 produced, PDF schematics are easily found and it is easy to make.
534
535 @item @b{Amontec - JTAG Accelerator}
536 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
537
538 @item @b{GW16402}
539 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
540
541 @item @b{Wiggler2}
542 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
543
544 @item @b{Wiggler_ntrst_inverted}
545 @* Yet another variation - See the source code, src/jtag/parport.c
546
547 @item @b{old_amt_wiggler}
548 @* Unknown - probably not on the market today
549
550 @item @b{arm-jtag}
551 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
552
553 @item @b{chameleon}
554 @* Link: @url{http://www.amontec.com/chameleon.shtml}
555
556 @item @b{Triton}
557 @* Unknown.
558
559 @item @b{Lattice}
560 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
561
562 @item @b{flashlink}
563 @* From ST Microsystems, link:
564 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
565 Title: FlashLINK JTAG programing cable for PSD and uPSD
566
567 @end itemize
568
569 @section Other...
570 @itemize @bullet
571
572 @item @b{ep93xx}
573 @* An EP93xx based Linux machine using the GPIO pins directly.
574
575 @item @b{at91rm9200}
576 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
577
578 @end itemize
579
580 @node Running
581 @chapter Running
582 @cindex running OpenOCD
583 @cindex --configfile
584 @cindex --debug_level
585 @cindex --logfile
586 @cindex --search
587
588 The @option{--help} option shows:
589 @verbatim
590 bash$ openocd --help
591
592 --help | -h display this help
593 --version | -v display OpenOCD version
594 --file | -f use configuration file <name>
595 --search | -s dir to search for config files and scripts
596 --debug | -d set debug level <0-3>
597 --log_output | -l redirect log output to file <name>
598 --command | -c run <command>
599 --pipe | -p use pipes when talking to gdb
600 @end verbatim
601
602 By default OpenOCD reads the file configuration file ``openocd.cfg''
603 in the current directory. To specify a different (or multiple)
604 configuration file, you can use the ``-f'' option. For example:
605
606 @example
607 openocd -f config1.cfg -f config2.cfg -f config3.cfg
608 @end example
609
610 Once started, OpenOCD runs as a daemon, waiting for connections from
611 clients (Telnet, GDB, Other).
612
613 If you are having problems, you can enable internal debug messages via
614 the ``-d'' option.
615
616 Also it is possible to interleave commands w/config scripts using the
617 @option{-c} command line switch.
618
619 To enable debug output (when reporting problems or working on OpenOCD
620 itself), use the @option{-d} command line switch. This sets the
621 @option{debug_level} to "3", outputting the most information,
622 including debug messages. The default setting is "2", outputting only
623 informational messages, warnings and errors. You can also change this
624 setting from within a telnet or gdb session using @option{debug_level
625 <n>} @xref{debug_level}.
626
627 You can redirect all output from the daemon to a file using the
628 @option{-l <logfile>} switch.
629
630 Search paths for config/script files can be added to OpenOCD by using
631 the @option{-s <search>} switch. The current directory and the OpenOCD
632 target library is in the search path by default.
633
634 For details on the @option{-p} option. @xref{Connecting to GDB}.
635
636 Note! OpenOCD will launch the GDB & telnet server even if it can not
637 establish a connection with the target. In general, it is possible for
638 the JTAG controller to be unresponsive until the target is set up
639 correctly via e.g. GDB monitor commands in a GDB init script.
640
641 @node Simple Configuration Files
642 @chapter Simple Configuration Files
643 @cindex configuration
644
645 @section Outline
646 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
647
648 @enumerate
649 @item A small openocd.cfg file which ``sources'' other configuration files
650 @item A monolithic openocd.cfg file
651 @item Many -f filename options on the command line
652 @item Your Mixed Solution
653 @end enumerate
654
655 @section Small configuration file method
656
657 This is the preferred method. It is simple and works well for many
658 people. The developers of OpenOCD would encourage you to use this
659 method. If you create a new configuration please email new
660 configurations to the development list.
661
662 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
663
664 @example
665 source [find interface/signalyzer.cfg]
666
667 # Change the default telnet port...
668 telnet_port 4444
669 # GDB connects here
670 gdb_port 3333
671 # GDB can also flash my flash!
672 gdb_memory_map enable
673 gdb_flash_program enable
674
675 source [find target/sam7x256.cfg]
676 @end example
677
678 There are many example configuration scripts you can work with. You
679 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
680 should find:
681
682 @enumerate
683 @item @b{board} - eval board level configurations
684 @item @b{interface} - specific dongle configurations
685 @item @b{target} - the target chips
686 @item @b{tcl} - helper scripts
687 @item @b{xscale} - things specific to the xscale.
688 @end enumerate
689
690 Look first in the ``boards'' area, then the ``targets'' area. Often a board
691 configuration is a good example to work from.
692
693 @section Many -f filename options
694 Some believe this is a wonderful solution, others find it painful.
695
696 You can use a series of ``-f filename'' options on the command line,
697 OpenOCD will read each filename in sequence, for example:
698
699 @example
700 openocd -f file1.cfg -f file2.cfg -f file2.cfg
701 @end example
702
703 You can also intermix various commands with the ``-c'' command line
704 option.
705
706 @section Monolithic file
707 The ``Monolithic File'' dispenses with all ``source'' statements and
708 puts everything in one self contained (monolithic) file. This is not
709 encouraged.
710
711 Please try to ``source'' various files or use the multiple -f
712 technique.
713
714 @section Advice for you
715 Often, one uses a ``mixed approach''. Where possible, please try to
716 ``source'' common things, and if needed cut/paste parts of the
717 standard distribution configuration files as needed.
718
719 @b{REMEMBER:} The ``important parts'' of your configuration file are:
720
721 @enumerate
722 @item @b{Interface} - Defines the dongle
723 @item @b{Taps} - Defines the JTAG Taps
724 @item @b{GDB Targets} - What GDB talks to
725 @item @b{Flash Programing} - Very Helpful
726 @end enumerate
727
728 Some key things you should look at and understand are:
729
730 @enumerate
731 @item The reset configuration of your debug environment as a whole
732 @item Is there a ``work area'' that OpenOCD can use?
733 @* For ARM - work areas mean up to 10x faster downloads.
734 @item For MMU/MPU based ARM chips (i.e.: ARM9 and later) will that work area still be available?
735 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
736 @end enumerate
737
738
739
740 @node Config File Guidelines
741 @chapter Config File Guidelines
742
743 This section/chapter is aimed at developers and integrators of
744 OpenOCD. These are guidelines for creating new boards and new target
745 configurations as of 28/Nov/2008.
746
747 However, you, the user of OpenOCD, should be somewhat familiar with
748 this section as it should help explain some of the internals of what
749 you might be looking at.
750
751 The user should find the following directories under @t{$(INSTALLDIR)/lib/openocd} :
752
753 @itemize @bullet
754 @item @b{interface}
755 @*Think JTAG Dongle. Files that configure the JTAG dongle go here.
756 @item @b{board}
757 @* Think Circuit Board, PWA, PCB, they go by many names. Board files
758 contain initialization items that are specific to a board - for
759 example: The SDRAM initialization sequence for the board, or the type
760 of external flash and what address it is found at. Any initialization
761 sequence to enable that external flash or SDRAM should be found in the
762 board file. Boards may also contain multiple targets, i.e.: Two CPUs, or
763 a CPU and an FPGA or CPLD.
764 @item @b{target}
765 @* Think chip. The ``target'' directory represents a JTAG tap (or
766 chip) OpenOCD should control, not a board. Two common types of targets
767 are ARM chips and FPGA or CPLD chips.
768 @end itemize
769
770 @b{If needed...} The user in their ``openocd.cfg'' file or the board
771 file might override a specific feature in any of the above files by
772 setting a variable or two before sourcing the target file. Or adding
773 various commands specific to their situation.
774
775 @section Interface Config Files
776
777 The user should be able to source one of these files via a command like this:
778
779 @example
780 source [find interface/FOOBAR.cfg]
781 Or:
782 openocd -f interface/FOOBAR.cfg
783 @end example
784
785 A preconfigured interface file should exist for every interface in use
786 today, that said, perhaps some interfaces have only been used by the
787 sole developer who created it.
788
789 @b{FIXME/NOTE:} We need to add support for a variable like Tcl variable
790 tcl_platform(platform), it should be called jim_platform (because it
791 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
792 ``cygwin'' or ``mingw''
793
794 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
795
796 @section Board Config Files
797
798 @b{Note: BOARD directory NEW as of 28/nov/2008}
799
800 The user should be able to source one of these files via a command like this:
801
802 @example
803 source [find board/FOOBAR.cfg]
804 Or:
805 openocd -f board/FOOBAR.cfg
806 @end example
807
808
809 The board file should contain one or more @t{source [find
810 target/FOO.cfg]} statements along with any board specific things.
811
812 In summary the board files should contain (if present)
813
814 @enumerate
815 @item External flash configuration (i.e.: the flash on CS0)
816 @item SDRAM configuration (size, speed, etc.
817 @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash)
818 @item Multiple TARGET source statements
819 @item All things that are not ``inside a chip''
820 @item Things inside a chip go in a 'target' file
821 @end enumerate
822
823 @section Target Config Files
824
825 The user should be able to source one of these files via a command like this:
826
827 @example
828 source [find target/FOOBAR.cfg]
829 Or:
830 openocd -f target/FOOBAR.cfg
831 @end example
832
833 In summary the target files should contain
834
835 @enumerate
836 @item Set defaults
837 @item Create taps
838 @item Reset configuration
839 @item Work areas
840 @item CPU/Chip/CPU-Core specific features
841 @item On-Chip flash
842 @end enumerate
843
844 @subsection Important variable names
845
846 By default, the end user should never need to set these
847 variables. However, if the user needs to override a setting they only
848 need to set the variable in a simple way.
849
850 @itemize @bullet
851 @item @b{CHIPNAME}
852 @* This gives a name to the overall chip, and is used as part of the
853 tap identifier dotted name.
854 @item @b{ENDIAN}
855 @* By default little - unless the chip or board is not normally used that way.
856 @item @b{CPUTAPID}
857 @* When OpenOCD examines the JTAG chain, it will attempt to identify
858 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
859 to verify the tap id number verses configuration file and may issue an
860 error or warning like this. The hope is that this will help to pinpoint
861 problems in OpenOCD configurations.
862
863 @example
864 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
865 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
866 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
867 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
868 @end example
869
870 @item @b{_TARGETNAME}
871 @* By convention, this variable is created by the target configuration
872 script. The board configuration file may make use of this variable to
873 configure things like a ``reset init'' script, or other things
874 specific to that board and that target.
875
876 If the chip has 2 targets, use the names @b{_TARGETNAME0},
877 @b{_TARGETNAME1}, ... etc.
878
879 @b{Remember:} The ``board file'' may include multiple targets.
880
881 At no time should the name ``target0'' (the default target name if
882 none was specified) be used. The name ``target0'' is a hard coded name
883 - the next target on the board will be some other number.
884 In the same way, avoid using target numbers even when they are
885 permitted; use the right target name(s) for your board.
886
887 The user (or board file) should reasonably be able to:
888
889 @example
890 source [find target/FOO.cfg]
891 $_TARGETNAME configure ... FOO specific parameters
892
893 source [find target/BAR.cfg]
894 $_TARGETNAME configure ... BAR specific parameters
895 @end example
896
897 @end itemize
898
899 @subsection Tcl Variables Guide Line
900 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
901
902 Thus the rule we follow in OpenOCD is this: Variables that begin with
903 a leading underscore are temporary in nature, and can be modified and
904 used at will within a ?TARGET? configuration file.
905
906 @b{EXAMPLE:} The user should be able to do this:
907
908 @example
909 # Board has 3 chips,
910 # PXA270 #1 network side, big endian
911 # PXA270 #2 video side, little endian
912 # Xilinx Glue logic
913 set CHIPNAME network
914 set ENDIAN big
915 source [find target/pxa270.cfg]
916 # variable: _TARGETNAME = network.cpu
917 # other commands can refer to the "network.cpu" tap.
918 $_TARGETNAME configure .... params for this CPU..
919
920 set ENDIAN little
921 set CHIPNAME video
922 source [find target/pxa270.cfg]
923 # variable: _TARGETNAME = video.cpu
924 # other commands can refer to the "video.cpu" tap.
925 $_TARGETNAME configure .... params for this CPU..
926
927 unset ENDIAN
928 set CHIPNAME xilinx
929 source [find target/spartan3.cfg]
930
931 # Since $_TARGETNAME is temporal..
932 # these names still work!
933 network.cpu configure ... params
934 video.cpu configure ... params
935
936 @end example
937
938 @subsection Default Value Boiler Plate Code
939
940 All target configuration files should start with this (or a modified form)
941
942 @example
943 # SIMPLE example
944 if @{ [info exists CHIPNAME] @} @{
945 set _CHIPNAME $CHIPNAME
946 @} else @{
947 set _CHIPNAME sam7x256
948 @}
949
950 if @{ [info exists ENDIAN] @} @{
951 set _ENDIAN $ENDIAN
952 @} else @{
953 set _ENDIAN little
954 @}
955
956 if @{ [info exists CPUTAPID ] @} @{
957 set _CPUTAPID $CPUTAPID
958 @} else @{
959 set _CPUTAPID 0x3f0f0f0f
960 @}
961
962 @end example
963
964 @subsection Creating Taps
965 After the ``defaults'' are choosen [see above] the taps are created.
966
967 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
968
969 @example
970 # for an ARM7TDMI.
971 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
972 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
973 @end example
974
975 @b{COMPLEX example:}
976
977 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
978
979 @enumerate
980 @item @b{Unform tap names} - See: Tap Naming Convention
981 @item @b{_TARGETNAME} is created at the end where used.
982 @end enumerate
983
984 @example
985 if @{ [info exists FLASHTAPID ] @} @{
986 set _FLASHTAPID $FLASHTAPID
987 @} else @{
988 set _FLASHTAPID 0x25966041
989 @}
990 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
991
992 if @{ [info exists CPUTAPID ] @} @{
993 set _CPUTAPID $CPUTAPID
994 @} else @{
995 set _CPUTAPID 0x25966041
996 @}
997 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
998
999
1000 if @{ [info exists BSTAPID ] @} @{
1001 set _BSTAPID $BSTAPID
1002 @} else @{
1003 set _BSTAPID 0x1457f041
1004 @}
1005 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
1006
1007 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
1008 @end example
1009
1010 @b{Tap Naming Convention}
1011
1012 See the command ``jtag newtap'' for detail, but in brief the names you should use are:
1013
1014 @itemize @bullet
1015 @item @b{tap}
1016 @item @b{cpu}
1017 @item @b{flash}
1018 @item @b{bs}
1019 @item @b{etb}
1020 @item @b{jrc}
1021 @item @b{unknownN} - it happens :-(
1022 @end itemize
1023
1024 @subsection Reset Configuration
1025
1026 Some chips have specific ways the TRST and SRST signals are
1027 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
1028 @b{BOARD SPECIFIC} they go in the board file.
1029
1030 @subsection Work Areas
1031
1032 Work areas are small RAM areas used by OpenOCD to speed up downloads,
1033 and to download small snippets of code to program flash chips.
1034
1035 If the chip includes a form of ``on-chip-ram'' - and many do - define
1036 a reasonable work area and use the ``backup'' option.
1037
1038 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
1039 inaccessible if/when the application code enables or disables the MMU.
1040
1041 @subsection ARM Core Specific Hacks
1042
1043 If the chip has a DCC, enable it. If the chip is an ARM9 with some
1044 special high speed download features - enable it.
1045
1046 If the chip has an ARM ``vector catch'' feature - by default enable
1047 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
1048 user is really writing a handler for those situations - they can
1049 easily disable it. Experiance has shown the ``vector catch'' is
1050 helpful - for common programing errors.
1051
1052 If present, the MMU, the MPU and the CACHE should be disabled.
1053
1054 Some ARM cores are equipped with trace support, which permits
1055 examination of the instruction and data bus activity. Trace
1056 activity is controlled through an ``Embedded Trace Module'' (ETM)
1057 on one of the core's scan chains. The ETM emits voluminous data
1058 through a ``trace port''. The trace port is accessed in one
1059 of two ways. When its signals are pinned out from the chip,
1060 boards may provide a special high speed debugging connector;
1061 software support for this is not configured by default, use
1062 the ``--enable-oocd_trace'' option. Alternatively, trace data
1063 may be stored an on-chip SRAM which is packaged as an ``Embedded
1064 Trace Buffer'' (ETB). An ETB has its own TAP, usually right after
1065 its associated ARM core. OpenOCD supports the ETM, and your
1066 target configuration should set it up with the relevant trace
1067 port: ``etb'' for chips which use that, else the board-specific
1068 option will be either ``oocd_trace'' or ``dummy''.
1069
1070 @example
1071 etm config $_TARGETNAME 16 normal full etb
1072 etb config $_TARGETNAME $_CHIPNAME.etb
1073 @end example
1074
1075 @subsection Internal Flash Configuration
1076
1077 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
1078
1079 @b{Never ever} in the ``target configuration file'' define any type of
1080 flash that is external to the chip. (For example the BOOT flash on
1081 Chip Select 0). The BOOT flash information goes in a board file - not
1082 the TARGET (chip) file.
1083
1084 Examples:
1085 @itemize @bullet
1086 @item at91sam7x256 - has 256K flash YES enable it.
1087 @item str912 - has flash internal YES enable it.
1088 @item imx27 - uses boot flash on CS0 - it goes in the board file.
1089 @item pxa270 - again - CS0 flash - it goes in the board file.
1090 @end itemize
1091
1092 @node About JIM-Tcl
1093 @chapter About JIM-Tcl
1094 @cindex JIM Tcl
1095 @cindex tcl
1096
1097 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1098 learn more about JIM here: @url{http://jim.berlios.de}
1099
1100 @itemize @bullet
1101 @item @b{JIM vs. Tcl}
1102 @* JIM-TCL is a stripped down version of the well known Tcl language,
1103 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1104 fewer features. JIM-Tcl is a single .C file and a single .H file and
1105 impliments the basic Tcl command set along. In contrast: Tcl 8.6 is a
1106 4.2 MB .zip file containing 1540 files.
1107
1108 @item @b{Missing Features}
1109 @* Our practice has been: Add/clone the real Tcl feature if/when
1110 needed. We welcome JIM Tcl improvements, not bloat.
1111
1112 @item @b{Scripts}
1113 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1114 command interpreter today (28/nov/2008) is a mixture of (newer)
1115 JIM-Tcl commands, and (older) the orginal command interpreter.
1116
1117 @item @b{Commands}
1118 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1119 can type a Tcl for() loop, set variables, etc.
1120
1121 @item @b{Historical Note}
1122 @* JIM-Tcl was introduced to OpenOCD in spring 2008.
1123
1124 @item @b{Need a crash course in Tcl?}
1125 @* See: @xref{Tcl Crash Course}.
1126 @end itemize
1127
1128
1129 @node Daemon Configuration
1130 @chapter Daemon Configuration
1131 The commands here are commonly found in the openocd.cfg file and are
1132 used to specify what TCP/IP ports are used, and how GDB should be
1133 supported.
1134 @section init
1135 @cindex init
1136 This command terminates the configuration stage and
1137 enters the normal command mode. This can be useful to add commands to
1138 the startup scripts and commands such as resetting the target,
1139 programming flash, etc. To reset the CPU upon startup, add "init" and
1140 "reset" at the end of the config script or at the end of the OpenOCD
1141 command line using the @option{-c} command line switch.
1142
1143 If this command does not appear in any startup/configuration file
1144 OpenOCD executes the command for you after processing all
1145 configuration files and/or command line options.
1146
1147 @b{NOTE:} This command normally occurs at or near the end of your
1148 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1149 targets ready. For example: If your openocd.cfg file needs to
1150 read/write memory on your target - the init command must occur before
1151 the memory read/write commands.
1152
1153 @section TCP/IP Ports
1154 @itemize @bullet
1155 @item @b{telnet_port} <@var{number}>
1156 @cindex telnet_port
1157 @*Intended for a human. Port on which to listen for incoming telnet connections.
1158
1159 @item @b{tcl_port} <@var{number}>
1160 @cindex tcl_port
1161 @*Intended as a machine interface. Port on which to listen for
1162 incoming Tcl syntax. This port is intended as a simplified RPC
1163 connection that can be used by clients to issue commands and get the
1164 output from the Tcl engine.
1165
1166 @item @b{gdb_port} <@var{number}>
1167 @cindex gdb_port
1168 @*First port on which to listen for incoming GDB connections. The GDB port for the
1169 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1170 @end itemize
1171
1172 @section GDB Items
1173 @itemize @bullet
1174 @item @b{gdb_breakpoint_override} <@var{hard|soft|disable}>
1175 @cindex gdb_breakpoint_override
1176 @anchor{gdb_breakpoint_override}
1177 @*Force breakpoint type for gdb 'break' commands.
1178 The raison d'etre for this option is to support GDB GUI's without
1179 a hard/soft breakpoint concept where the default OpenOCD and
1180 GDB behaviour is not sufficient. Note that GDB will use hardware
1181 breakpoints if the memory map has been set up for flash regions.
1182
1183 This option replaces older arm7_9 target commands that addressed
1184 the same issue.
1185
1186 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1187 @cindex gdb_detach
1188 @*Configures what OpenOCD will do when GDB detaches from the daemon.
1189 Default behaviour is <@var{resume}>
1190
1191 @item @b{gdb_memory_map} <@var{enable|disable}>
1192 @cindex gdb_memory_map
1193 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to GDB when
1194 requested. GDB will then know when to set hardware breakpoints, and program flash
1195 using the GDB load command. @option{gdb_flash_program enable} must also be enabled
1196 for flash programming to work.
1197 Default behaviour is <@var{enable}>
1198 @xref{gdb_flash_program}.
1199
1200 @item @b{gdb_flash_program} <@var{enable|disable}>
1201 @cindex gdb_flash_program
1202 @anchor{gdb_flash_program}
1203 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1204 vFlash packet is received.
1205 Default behaviour is <@var{enable}>
1206 @comment END GDB Items
1207 @end itemize
1208
1209 @node Interface - Dongle Configuration
1210 @chapter Interface - Dongle Configuration
1211 Interface commands are normally found in an interface configuration
1212 file which is sourced by your openocd.cfg file. These commands tell
1213 OpenOCD what type of JTAG dongle you have and how to talk to it.
1214 @section Simple Complete Interface Examples
1215 @b{A Turtelizer FT2232 Based JTAG Dongle}
1216 @verbatim
1217 #interface
1218 interface ft2232
1219 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1220 ft2232_layout turtelizer2
1221 ft2232_vid_pid 0x0403 0xbdc8
1222 @end verbatim
1223 @b{A SEGGER Jlink}
1224 @verbatim
1225 # jlink interface
1226 interface jlink
1227 @end verbatim
1228 @b{A Raisonance RLink}
1229 @verbatim
1230 # rlink interface
1231 interface rlink
1232 @end verbatim
1233 @b{Parallel Port}
1234 @verbatim
1235 interface parport
1236 parport_port 0xc8b8
1237 parport_cable wiggler
1238 jtag_speed 0
1239 @end verbatim
1240 @b{ARM-JTAG-EW}
1241 @verbatim
1242 interface arm-jtag-ew
1243 @end verbatim
1244 @section Interface Command
1245
1246 The interface command tells OpenOCD what type of JTAG dongle you are
1247 using. Depending on the type of dongle, you may need to have one or
1248 more additional commands.
1249
1250 @itemize @bullet
1251
1252 @item @b{interface} <@var{name}>
1253 @cindex interface
1254 @*Use the interface driver <@var{name}> to connect to the
1255 target. Currently supported interfaces are
1256
1257 @itemize @minus
1258
1259 @item @b{parport}
1260 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1261
1262 @item @b{amt_jtagaccel}
1263 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1264 mode parallel port
1265
1266 @item @b{ft2232}
1267 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1268 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1269 platform. The libftdi uses libusb, and should be portable to all systems that provide
1270 libusb.
1271
1272 @item @b{ep93xx}
1273 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1274
1275 @item @b{presto}
1276 @* ASIX PRESTO USB JTAG programmer.
1277
1278 @item @b{usbprog}
1279 @* usbprog is a freely programmable USB adapter.
1280
1281 @item @b{gw16012}
1282 @* Gateworks GW16012 JTAG programmer.
1283
1284 @item @b{jlink}
1285 @* Segger jlink USB adapter
1286
1287 @item @b{rlink}
1288 @* Raisonance RLink USB adapter
1289
1290 @item @b{vsllink}
1291 @* vsllink is part of Versaloon which is a versatile USB programmer.
1292
1293 @item @b{arm-jtag-ew}
1294 @* Olimex ARM-JTAG-EW USB adapter
1295 @comment - End parameters
1296 @end itemize
1297 @comment - End Interface
1298 @end itemize
1299 @subsection parport options
1300
1301 @itemize @bullet
1302 @item @b{parport_port} <@var{number}>
1303 @cindex parport_port
1304 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1305 the @file{/dev/parport} device
1306
1307 When using PPDEV to access the parallel port, use the number of the parallel port:
1308 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1309 you may encounter a problem.
1310 @item @b{parport_cable} <@var{name}>
1311 @cindex parport_cable
1312 @*The layout of the parallel port cable used to connect to the target.
1313 Currently supported cables are
1314 @itemize @minus
1315 @item @b{wiggler}
1316 @cindex wiggler
1317 The original Wiggler layout, also supported by several clones, such
1318 as the Olimex ARM-JTAG
1319 @item @b{wiggler2}
1320 @cindex wiggler2
1321 Same as original wiggler except an led is fitted on D5.
1322 @item @b{wiggler_ntrst_inverted}
1323 @cindex wiggler_ntrst_inverted
1324 Same as original wiggler except TRST is inverted.
1325 @item @b{old_amt_wiggler}
1326 @cindex old_amt_wiggler
1327 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1328 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1329 @item @b{chameleon}
1330 @cindex chameleon
1331 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1332 program the Chameleon itself, not a connected target.
1333 @item @b{dlc5}
1334 @cindex dlc5
1335 The Xilinx Parallel cable III.
1336 @item @b{triton}
1337 @cindex triton
1338 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1339 This is also the layout used by the HollyGates design
1340 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1341 @item @b{flashlink}
1342 @cindex flashlink
1343 The ST Parallel cable.
1344 @item @b{arm-jtag}
1345 @cindex arm-jtag
1346 Same as original wiggler except SRST and TRST connections reversed and
1347 TRST is also inverted.
1348 @item @b{altium}
1349 @cindex altium
1350 Altium Universal JTAG cable.
1351 @end itemize
1352 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1353 @cindex parport_write_on_exit
1354 @*This will configure the parallel driver to write a known value to the parallel
1355 interface on exiting OpenOCD
1356 @end itemize
1357
1358 @subsection amt_jtagaccel options
1359 @itemize @bullet
1360 @item @b{parport_port} <@var{number}>
1361 @cindex parport_port
1362 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1363 @file{/dev/parport} device
1364 @end itemize
1365 @subsection ft2232 options
1366
1367 @itemize @bullet
1368 @item @b{ft2232_device_desc} <@var{description}>
1369 @cindex ft2232_device_desc
1370 @*The USB device description of the FTDI FT2232 device. If not
1371 specified, the FTDI default value is used. This setting is only valid
1372 if compiled with FTD2XX support.
1373
1374 @b{TODO:} Confirm the following: On Windows the name needs to end with
1375 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1376 this be added and when must it not be added? Why can't the code in the
1377 interface or in OpenOCD automatically add this if needed? -- Duane.
1378
1379 @item @b{ft2232_serial} <@var{serial-number}>
1380 @cindex ft2232_serial
1381 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1382 values are used.
1383 @item @b{ft2232_layout} <@var{name}>
1384 @cindex ft2232_layout
1385 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1386 signals. Valid layouts are
1387 @itemize @minus
1388 @item @b{usbjtag}
1389 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1390 @item @b{jtagkey}
1391 Amontec JTAGkey and JTAGkey-Tiny
1392 @item @b{signalyzer}
1393 Signalyzer
1394 @item @b{olimex-jtag}
1395 Olimex ARM-USB-OCD
1396 @item @b{m5960}
1397 American Microsystems M5960
1398 @item @b{evb_lm3s811}
1399 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1400 SRST signals on external connector
1401 @item @b{comstick}
1402 Hitex STR9 comstick
1403 @item @b{stm32stick}
1404 Hitex STM32 Performance Stick
1405 @item @b{flyswatter}
1406 Tin Can Tools Flyswatter
1407 @item @b{turtelizer2}
1408 egnite Software turtelizer2
1409 @item @b{oocdlink}
1410 OOCDLink
1411 @item @b{axm0432_jtag}
1412 Axiom AXM-0432
1413 @end itemize
1414
1415 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1416 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1417 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g.
1418 @example
1419 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1420 @end example
1421 @item @b{ft2232_latency} <@var{ms}>
1422 @*On some systems using FT2232 based JTAG interfaces the FT_Read function call in
1423 ft2232_read() fails to return the expected number of bytes. This can be caused by
1424 USB communication delays and has proved hard to reproduce and debug. Setting the
1425 FT2232 latency timer to a larger value increases delays for short USB packets but it
1426 also reduces the risk of timeouts before receiving the expected number of bytes.
1427 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1428 @end itemize
1429
1430 @subsection ep93xx options
1431 @cindex ep93xx options
1432 Currently, there are no options available for the ep93xx interface.
1433
1434 @section JTAG Speed
1435 @itemize @bullet
1436 @item @b{jtag_khz} <@var{reset speed kHz}>
1437 @cindex jtag_khz
1438
1439 It is debatable if this command belongs here - or in a board
1440 configuration file. In fact, in some situations the JTAG speed is
1441 changed during the target initialisation process (i.e.: (1) slow at
1442 reset, (2) program the CPU clocks, (3) run fast)
1443
1444 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1445
1446 Not all interfaces support ``rtck''. If the interface device can not
1447 support the rate asked for, or can not translate from kHz to
1448 jtag_speed, then an error is returned.
1449
1450 Make sure the JTAG clock is no more than @math{1/6th CPU-Clock}. This is
1451 especially true for synthesized cores (-S). Also see RTCK.
1452
1453 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1454 please use the command: 'jtag_rclk FREQ'. This Tcl proc (in
1455 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1456 the specified frequency.
1457
1458 @example
1459 # Fall back to 3mhz if RCLK is not supported
1460 jtag_rclk 3000
1461 @end example
1462
1463 @item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above.
1464 @cindex jtag_speed
1465 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1466 speed. The actual effect of this option depends on the JTAG interface used.
1467
1468 The speed used during reset can be adjusted using setting jtag_speed during
1469 pre_reset and post_reset events.
1470 @itemize @minus
1471
1472 @item wiggler: maximum speed / @var{number}
1473 @item ft2232: 6MHz / (@var{number}+1)
1474 @item amt jtagaccel: 8 / 2**@var{number}
1475 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1476 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1477 @comment end speed list.
1478 @end itemize
1479
1480 @comment END command list
1481 @end itemize
1482
1483 @node Reset Configuration
1484 @chapter Reset Configuration
1485 @cindex Reset Configuration
1486
1487 Every system configuration may require a different reset
1488 configuration. This can also be quite confusing. Please see the
1489 various board files for example.
1490
1491 @section jtag_nsrst_delay <@var{ms}>
1492 @cindex jtag_nsrst_delay
1493 @*How long (in milliseconds) OpenOCD should wait after deasserting
1494 nSRST before starting new JTAG operations.
1495
1496 @section jtag_ntrst_delay <@var{ms}>
1497 @cindex jtag_ntrst_delay
1498 @*Same @b{jtag_nsrst_delay}, but for nTRST
1499
1500 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1501 big resistor/capacitor, reset supervisor, or on-chip features). This
1502 keeps the signal asserted for some time after the external reset got
1503 deasserted.
1504
1505 @section reset_config
1506
1507 @b{Note:} To maintainers and integrators: Where exactly the
1508 ``reset configuration'' goes is a good question. It touches several
1509 things at once. In the end, if you have a board file - the board file
1510 should define it and assume 100% that the DONGLE supports
1511 anything. However, that does not mean the target should not also make
1512 not of something the silicon vendor has done inside the
1513 chip. @i{Grr.... nothing is every pretty.}
1514
1515 @* @b{Problems:}
1516 @enumerate
1517 @item Every JTAG Dongle is slightly different, some dongles implement reset differently.
1518 @item Every board is also slightly different; some boards tie TRST and SRST together.
1519 @item Every chip is slightly different; some chips internally tie the two signals together.
1520 @item Some may not implement all of the signals the same way.
1521 @item Some signals might be push-pull, others open-drain/collector.
1522 @end enumerate
1523 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1524 reset the TAP via TRST and send commands through the JTAG tap to halt
1525 the CPU at the reset vector before the 1st instruction is executed,
1526 and finally release the SRST signal.
1527 @*Depending on your board vendor, chip vendor, etc., these
1528 signals may have slightly different names.
1529
1530 OpenOCD defines these signals in these terms:
1531 @itemize @bullet
1532 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1533 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1534 @end itemize
1535
1536 The Command:
1537
1538 @itemize @bullet
1539 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1540 @cindex reset_config
1541 @* The @t{reset_config} command tells OpenOCD the reset configuration
1542 of your combination of Dongle, Board, and Chips.
1543 If the JTAG interface provides SRST, but the target doesn't connect
1544 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1545 be @option{none}, @option{trst_only}, @option{srst_only} or
1546 @option{trst_and_srst}.
1547
1548 [@var{combination}] is an optional value specifying broken reset
1549 signal implementations. @option{srst_pulls_trst} states that the
1550 test logic is reset together with the reset of the system (e.g. Philips
1551 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1552 the system is reset together with the test logic (only hypothetical, I
1553 haven't seen hardware with such a bug, and can be worked around).
1554 @option{combined} implies both @option{srst_pulls_trst} and
1555 @option{trst_pulls_srst}. The default behaviour if no option given is
1556 @option{separate}.
1557
1558 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1559 driver type of the reset lines to be specified. Possible values are
1560 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1561 test reset signal, and @option{srst_open_drain} (default) and
1562 @option{srst_push_pull} for the system reset. These values only affect
1563 JTAG interfaces with support for different drivers, like the Amontec
1564 JTAGkey and JTAGAccelerator.
1565
1566 @comment - end command
1567 @end itemize
1568
1569
1570
1571 @node Tap Creation
1572 @chapter Tap Creation
1573 @cindex tap creation
1574 @cindex tap configuration
1575
1576 In order for OpenOCD to control a target, a JTAG tap must be
1577 defined/created.
1578
1579 Commands to create taps are normally found in a configuration file and
1580 are not normally typed by a human.
1581
1582 When a tap is created a @b{dotted.name} is created for the tap. Other
1583 commands use that dotted.name to manipulate or refer to the tap.
1584
1585 Tap Uses:
1586 @itemize @bullet
1587 @item @b{Debug Target} A tap can be used by a GDB debug target
1588 @item @b{Flash Programing} Some chips program the flash via JTAG
1589 @item @b{Boundry Scan} Some chips support boundary scan.
1590 @end itemize
1591
1592
1593 @section jtag newtap
1594 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1595 @cindex jtag_device
1596 @cindex jtag newtap
1597 @cindex tap
1598 @cindex tap order
1599 @cindex tap geometry
1600
1601 @comment START options
1602 @itemize @bullet
1603 @item @b{CHIPNAME}
1604 @* is a symbolic name of the chip.
1605 @item @b{TAPNAME}
1606 @* is a symbol name of a tap present on the chip.
1607 @item @b{Required configparams}
1608 @* Every tap has 3 required configparams, and several ``optional
1609 parameters'', the required parameters are:
1610 @comment START REQUIRED
1611 @itemize @bullet
1612 @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
1613 @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
1614 @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
1615 some devices, there are bits in the IR that aren't used. This lets you mask
1616 them off when doing comparisons. In general, this should just be all ones for
1617 the size of the IR.
1618 @comment END REQUIRED
1619 @end itemize
1620 An example of a FOOBAR Tap
1621 @example
1622 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1623 @end example
1624 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1625 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1626 [6,4,2,0] are checked.
1627
1628 @item @b{Optional configparams}
1629 @comment START Optional
1630 @itemize @bullet
1631 @item @b{-expected-id NUMBER}
1632 @* By default it is zero. If non-zero represents the
1633 expected tap ID used when the JTAG chain is examined. Repeat
1634 the option as many times as required if multiple id's can be
1635 expected. See below.
1636 @item @b{-disable}
1637 @item @b{-enable}
1638 @* By default not specified the tap is enabled. Some chips have a
1639 JTAG route controller (JRC) that is used to enable and/or disable
1640 specific JTAG taps. You can later enable or disable any JTAG tap via
1641 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1642 DOTTED.NAME}
1643 @comment END Optional
1644 @end itemize
1645
1646 @comment END OPTIONS
1647 @end itemize
1648 @b{Notes:}
1649 @comment START NOTES
1650 @itemize @bullet
1651 @item @b{Technically}
1652 @* newtap is a sub command of the ``jtag'' command
1653 @item @b{Big Picture Background}
1654 @*GDB Talks to OpenOCD using the GDB protocol via
1655 TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to
1656 control the JTAG chain on your board. Your board has one or more chips
1657 in a @i{daisy chain configuration}. Each chip may have one or more
1658 JTAG taps. GDB ends up talking via OpenOCD to one of the taps.
1659 @item @b{NAME Rules}
1660 @*Names follow ``C'' symbol name rules (start with alpha ...)
1661 @item @b{TAPNAME - Conventions}
1662 @itemize @bullet
1663 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1664 @item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1665 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1666 @item @b{bs} - for boundary scan if this is a seperate tap.
1667 @item @b{etb} - for an embedded trace buffer (example: an ARM ETB11)
1668 @item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards)
1669 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1670 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1671 @item @b{When in doubt} - use the chip maker's name in their data sheet.
1672 @end itemize
1673 @item @b{DOTTED.NAME}
1674 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1675 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1676 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1677 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1678 numerous other places to refer to various taps.
1679 @item @b{ORDER}
1680 @* The order this command appears via the config files is
1681 important.
1682 @item @b{Multi Tap Example}
1683 @* This example is based on the ST Microsystems STR912. See the ST
1684 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1685 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
1686
1687 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1688 @*@b{checked: 28/nov/2008}
1689
1690 The diagram shows that the TDO pin connects to the flash tap, flash TDI
1691 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1692 tap which then connects to the TDI pin.
1693
1694 @example
1695 # The order is...
1696 # create tap: 'str912.flash'
1697 jtag newtap str912 flash ... params ...
1698 # create tap: 'str912.cpu'
1699 jtag newtap str912 cpu ... params ...
1700 # create tap: 'str912.bs'
1701 jtag newtap str912 bs ... params ...
1702 @end example
1703
1704 @item @b{Note: Deprecated} - Index Numbers
1705 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1706 feature is still present, however its use is highly discouraged and
1707 should not be counted upon. Update all of your scripts to use
1708 TAP names rather than numbers.
1709 @item @b{Multiple chips}
1710 @* If your board has multiple chips, you should be
1711 able to @b{source} two configuration files, in the proper order, and
1712 have the taps created in the proper order.
1713 @comment END NOTES
1714 @end itemize
1715 @comment at command level
1716 @comment DOCUMENT old command
1717 @section jtag_device - REMOVED
1718 @example
1719 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1720 @end example
1721 @cindex jtag_device
1722
1723 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1724 by the ``jtag newtap'' command. The documentation remains here so that
1725 one can easily convert the old syntax to the new syntax. About the old
1726 syntax: The old syntax is positional, i.e.: The 3rd parameter is the
1727 ``irmask''. The new syntax requires named prefixes, and supports
1728 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1729 @b{jtag newtap} command for details.
1730 @example
1731 OLD: jtag_device 8 0x01 0xe3 0xfe
1732 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1733 @end example
1734
1735 @section Enable/Disable Taps
1736 @b{Note:} These commands are intended to be used as a machine/script
1737 interface. Humans might find the ``scan_chain'' command more helpful
1738 when querying the state of the JTAG taps.
1739
1740 @b{By default, all taps are enabled}
1741
1742 @itemize @bullet
1743 @item @b{jtag tapenable} @var{DOTTED.NAME}
1744 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1745 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1746 @end itemize
1747 @cindex tap enable
1748 @cindex tap disable
1749 @cindex JRC
1750 @cindex route controller
1751
1752 These commands are used when your target has a JTAG route controller
1753 that effectively adds or removes a tap from the JTAG chain in a
1754 non-standard way.
1755
1756 The ``standard way'' to remove a tap would be to place the tap in
1757 bypass mode. But with the advent of modern chips, this is not always a
1758 good solution. Some taps operate slowly, others operate fast, and
1759 there are other JTAG clock synchronisation problems one must face. To
1760 solve that problem, the JTAG route controller was introduced. Rather
1761 than ``bypass'' the tap, the tap is completely removed from the
1762 circuit and skipped.
1763
1764
1765 From OpenOCD's point of view, a JTAG tap is in one of 3 states:
1766
1767 @itemize @bullet
1768 @item @b{Enabled - Not In ByPass} and has a variable bit length
1769 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1770 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1771 @end itemize
1772
1773 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1774 @b{Historical note:} this feature was added 28/nov/2008
1775
1776 @b{jtag tapisenabled DOTTED.NAME}
1777
1778 This command returns 1 if the named tap is currently enabled, 0 if not.
1779 This command exists so that scripts that manipulate a JRC (like the
1780 OMAP3530 has) can determine if OpenOCD thinks a tap is presently
1781 enabled or disabled.
1782
1783 @page
1784 @node Target Configuration
1785 @chapter Target Configuration
1786
1787 This chapter discusses how to create a GDB debug target. Before
1788 creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
1789
1790 @section targets [NAME]
1791 @b{Note:} This command name is PLURAL - not singular.
1792
1793 With NO parameter, this plural @b{targets} command lists all known
1794 targets in a human friendly form.
1795
1796 With a parameter, this plural @b{targets} command sets the current
1797 target to the given name. (i.e.: If there are multiple debug targets)
1798
1799 Example:
1800 @verbatim
1801 (gdb) mon targets
1802 CmdName Type Endian ChainPos State
1803 -- ---------- ---------- ---------- -------- ----------
1804 0: target0 arm7tdmi little 0 halted
1805 @end verbatim
1806
1807 @section target COMMANDS
1808 @b{Note:} This command name is SINGULAR - not plural. It is used to
1809 manipulate specific targets, to create targets and other things.
1810
1811 Once a target is created, a TARGETNAME (object) command is created;
1812 see below for details.
1813
1814 The TARGET command accepts these sub-commands:
1815 @itemize @bullet
1816 @item @b{create} .. parameters ..
1817 @* creates a new target, see below for details.
1818 @item @b{types}
1819 @* Lists all supported target types (perhaps some are not yet in this document).
1820 @item @b{names}
1821 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1822 @verbatim
1823 foreach t [target names] {
1824 puts [format "Target: %s\n" $t]
1825 }
1826 @end verbatim
1827 @item @b{current}
1828 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1829 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1830 @item @b{number} @b{NUMBER}
1831 @* Internally OpenOCD maintains a list of targets - in numerical index
1832 (0..N-1) this command returns the name of the target at index N.
1833 Example usage:
1834 @verbatim
1835 set thename [target number $x]
1836 puts [format "Target %d is: %s\n" $x $thename]
1837 @end verbatim
1838 @item @b{count}
1839 @* Returns the number of targets known to OpenOCD (see number above)
1840 Example:
1841 @verbatim
1842 set c [target count]
1843 for { set x 0 } { $x < $c } { incr x } {
1844 # Assuming you have created this function
1845 print_target_details $x
1846 }
1847 @end verbatim
1848
1849 @end itemize
1850
1851 @section TARGETNAME (object) commands
1852 @b{Use:} Once a target is created, an ``object name'' that represents the
1853 target is created. By convention, the target name is identical to the
1854 tap name. In a multiple target system, one can preceed many common
1855 commands with a specific target name and effect only that target.
1856 @example
1857 str912.cpu mww 0x1234 0x42
1858 omap3530.cpu mww 0x5555 123
1859 @end example
1860
1861 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1862 good example is a on screen button, once a button is created a button
1863 has a name (a path in Tk terms) and that name is useable as a 1st
1864 class command. For example in Tk, one can create a button and later
1865 configure it like this:
1866
1867 @example
1868 # Create
1869 button .foobar -background red -command @{ foo @}
1870 # Modify
1871 .foobar configure -foreground blue
1872 # Query
1873 set x [.foobar cget -background]
1874 # Report
1875 puts [format "The button is %s" $x]
1876 @end example
1877
1878 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1879 button. Commands available as a ``target object'' are:
1880
1881 @comment START targetobj commands.
1882 @itemize @bullet
1883 @item @b{configure} - configure the target; see Target Config/Cget Options below
1884 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1885 @item @b{curstate} - current target state (running, halt, etc.
1886 @item @b{eventlist}
1887 @* Intended for a human to see/read the currently configure target events.
1888 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1889 @comment start memory
1890 @itemize @bullet
1891 @item @b{mww} ...
1892 @item @b{mwh} ...
1893 @item @b{mwb} ...
1894 @item @b{mdw} ...
1895 @item @b{mdh} ...
1896 @item @b{mdb} ...
1897 @comment end memory
1898 @end itemize
1899 @item @b{Memory To Array, Array To Memory}
1900 @* These are aimed at a machine interface to memory
1901 @itemize @bullet
1902 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1903 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1904 @* Where:
1905 @* @b{ARRAYNAME} is the name of an array variable
1906 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1907 @* @b{ADDRESS} is the target memory address
1908 @* @b{COUNT} is the number of elements to process
1909 @end itemize
1910 @item @b{Used during ``reset''}
1911 @* These commands are used internally by the OpenOCD scripts to deal
1912 with odd reset situations and are not documented here.
1913 @itemize @bullet
1914 @item @b{arp_examine}
1915 @item @b{arp_poll}
1916 @item @b{arp_reset}
1917 @item @b{arp_halt}
1918 @item @b{arp_waitstate}
1919 @end itemize
1920 @item @b{invoke-event} @b{EVENT-NAME}
1921 @* Invokes the specific event manually for the target
1922 @end itemize
1923
1924 @section Target Events
1925 At various times, certain things can happen, or you want them to happen.
1926
1927 Examples:
1928 @itemize @bullet
1929 @item What should happen when GDB connects? Should your target reset?
1930 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1931 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1932 @end itemize
1933
1934 All of the above items are handled by target events.
1935
1936 To specify an event action, either during target creation, or later
1937 via ``$_TARGETNAME configure'' see this example.
1938
1939 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1940 target event name, and BODY is a Tcl procedure or string of commands
1941 to execute.
1942
1943 The programmers model is the ``-command'' option used in Tcl/Tk
1944 buttons and events. Below are two identical examples, the first
1945 creates and invokes small procedure. The second inlines the procedure.
1946
1947 @example
1948 proc my_attach_proc @{ @} @{
1949 puts "RESET...."
1950 reset halt
1951 @}
1952 mychip.cpu configure -event gdb-attach my_attach_proc
1953 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1954 @end example
1955
1956 @section Current Events
1957 The following events are available:
1958 @itemize @bullet
1959 @item @b{debug-halted}
1960 @* The target has halted for debug reasons (i.e.: breakpoint)
1961 @item @b{debug-resumed}
1962 @* The target has resumed (i.e.: gdb said run)
1963 @item @b{early-halted}
1964 @* Occurs early in the halt process
1965 @item @b{examine-end}
1966 @* Currently not used (goal: when JTAG examine completes)
1967 @item @b{examine-start}
1968 @* Currently not used (goal: when JTAG examine starts)
1969 @item @b{gdb-attach}
1970 @* When GDB connects
1971 @item @b{gdb-detach}
1972 @* When GDB disconnects
1973 @item @b{gdb-end}
1974 @* When the taret has halted and GDB is not doing anything (see early halt)
1975 @item @b{gdb-flash-erase-start}
1976 @* Before the GDB flash process tries to erase the flash
1977 @item @b{gdb-flash-erase-end}
1978 @* After the GDB flash process has finished erasing the flash
1979 @item @b{gdb-flash-write-start}
1980 @* Before GDB writes to the flash
1981 @item @b{gdb-flash-write-end}
1982 @* After GDB writes to the flash
1983 @item @b{gdb-start}
1984 @* Before the taret steps, gdb is trying to start/resume the target
1985 @item @b{halted}
1986 @* The target has halted
1987 @item @b{old-gdb_program_config}
1988 @* DO NOT USE THIS: Used internally
1989 @item @b{old-pre_resume}
1990 @* DO NOT USE THIS: Used internally
1991 @item @b{reset-assert-pre}
1992 @* Before reset is asserted on the tap.
1993 @item @b{reset-assert-post}
1994 @* Reset is now asserted on the tap.
1995 @item @b{reset-deassert-pre}
1996 @* Reset is about to be released on the tap
1997 @item @b{reset-deassert-post}
1998 @* Reset has been released on the tap
1999 @item @b{reset-end}
2000 @* Currently not used.
2001 @item @b{reset-halt-post}
2002 @* Currently not usd
2003 @item @b{reset-halt-pre}
2004 @* Currently not used
2005 @item @b{reset-init}
2006 @* Currently not used
2007 @item @b{reset-start}
2008 @* Currently not used
2009 @item @b{reset-wait-pos}
2010 @* Currently not used
2011 @item @b{reset-wait-pre}
2012 @* Currently not used
2013 @item @b{resume-start}
2014 @* Before any target is resumed
2015 @item @b{resume-end}
2016 @* After all targets have resumed
2017 @item @b{resume-ok}
2018 @* Success
2019 @item @b{resumed}
2020 @* Target has resumed
2021 @item @b{tap-enable}
2022 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
2023 @example
2024 jtag configure DOTTED.NAME -event tap-enable @{
2025 puts "Enabling CPU"
2026 ...
2027 @}
2028 @end example
2029 @item @b{tap-disable}
2030 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
2031 @example
2032 jtag configure DOTTED.NAME -event tap-disable @{
2033 puts "Disabling CPU"
2034 ...
2035 @}
2036 @end example
2037 @end itemize
2038
2039 @section target create
2040 @cindex target
2041 @cindex target creation
2042
2043 @example
2044 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
2045 @end example
2046 @*This command creates a GDB debug target that refers to a specific JTAG tap.
2047 @comment START params
2048 @itemize @bullet
2049 @item @b{NAME}
2050 @* Is the name of the debug target. By convention it should be the tap
2051 DOTTED.NAME. This name is also used to create the target object
2052 command, and in other places the target needs to be identified.
2053 @item @b{TYPE}
2054 @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are:
2055 @comment START types
2056 @itemize @minus
2057 @item @b{arm7tdmi}
2058 @item @b{arm720t}
2059 @item @b{arm9tdmi}
2060 @item @b{arm920t}
2061 @item @b{arm922t}
2062 @item @b{arm926ejs}
2063 @item @b{arm966e}
2064 @item @b{cortex_m3}
2065 @item @b{feroceon}
2066 @item @b{xscale}
2067 @item @b{arm11}
2068 @item @b{mips_m4k}
2069 @comment end TYPES
2070 @end itemize
2071 @item @b{PARAMS}
2072 @*PARAMs are various target configuration parameters. The following ones are mandatory:
2073 @comment START mandatory
2074 @itemize @bullet
2075 @item @b{-endian big|little}
2076 @item @b{-chain-position DOTTED.NAME}
2077 @comment end MANDATORY
2078 @end itemize
2079 @comment END params
2080 @end itemize
2081
2082 @section Target Config/Cget Options
2083 These options can be specified when the target is created, or later
2084 via the configure option or to query the target via cget.
2085
2086 You should specify a working area if you can; typically it uses some
2087 on-chip SRAM. Such a working area can speed up many things, including bulk
2088 writes to target memory; flash operations like checking to see if memory needs
2089 to be erased; GDB memory checksumming; and may help perform otherwise
2090 unavailable operations (like some coprocessor operations on ARM7/9 systems).
2091 @itemize @bullet
2092 @item @b{-type} - returns the target type
2093 @item @b{-event NAME BODY} see Target events
2094 @item @b{-work-area-virt [ADDRESS]} specify/set the work area base address
2095 which will be used when an MMU is active.
2096 @item @b{-work-area-phys [ADDRESS]} specify/set the work area base address
2097 which will be used when an MMU is inactive.
2098 @item @b{-work-area-size [ADDRESS]} specify/set the work area
2099 @item @b{-work-area-backup [0|1]} does the work area get backed up;
2100 by default, it doesn't. When possible, use a working_area that doesn't
2101 need to be backed up, since performing a backup slows down operations.
2102 @item @b{-endian [big|little]}
2103 @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about
2104 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
2105 @end itemize
2106 Example:
2107 @example
2108 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
2109 set name [target number $x]
2110 set y [$name cget -endian]
2111 set z [$name cget -type]
2112 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
2113 @}
2114 @end example
2115
2116 @section Target Variants
2117 @itemize @bullet
2118 @item @b{arm7tdmi}
2119 @* Unknown (please write me)
2120 @item @b{arm720t}
2121 @* Unknown (please write me) (similar to arm7tdmi)
2122 @item @b{arm9tdmi}
2123 @* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t}
2124 This enables the hardware single-stepping support found on these
2125 cores.
2126 @item @b{arm920t}
2127 @* None.
2128 @item @b{arm966e}
2129 @* None (this is also used as the ARM946)
2130 @item @b{cortex_m3}
2131 @* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause
2132 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2133 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2134 be detected and the normal reset behaviour used.
2135 @item @b{xscale}
2136 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2137 @item @b{arm11}
2138 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2139 @item @b{mips_m4k}
2140 @* Use variant @option{ejtag_srst} when debugging targets that do not
2141 provide a functional SRST line on the EJTAG connector. This causes
2142 OpenOCD to instead use an EJTAG software reset command to reset the
2143 processor. You still need to enable @option{srst} on the reset
2144 configuration command to enable OpenOCD hardware reset functionality.
2145 @comment END variants
2146 @end itemize
2147 @section working_area - Command Removed
2148 @cindex working_area
2149 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2150 @* This documentation remains because there are existing scripts that
2151 still use this that need to be converted.
2152 @example
2153 working_area target# address size backup| [virtualaddress]
2154 @end example
2155 @* The target# is a the 0 based target numerical index.
2156
2157 @node Flash Configuration
2158 @chapter Flash programming
2159 @cindex Flash Configuration
2160
2161 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2162 flash that a micro may boot from. Perhaps you, the reader, would like to
2163 contribute support for this.
2164
2165 Flash Steps:
2166 @enumerate
2167 @item Configure via the command @b{flash bank}
2168 @* Normally this is done in a configuration file.
2169 @item Operate on the flash via @b{flash SOMECOMMAND}
2170 @* Often commands to manipulate the flash are typed by a human, or run
2171 via a script in some automated way. For example: To program the boot
2172 flash on your board.
2173 @item GDB Flashing
2174 @* Flashing via GDB requires the flash be configured via ``flash
2175 bank'', and the GDB flash features be enabled. See the daemon
2176 configuration section for more details.
2177 @end enumerate
2178
2179 @section Flash commands
2180 @cindex Flash commands
2181 @subsection flash banks
2182 @b{flash banks}
2183 @cindex flash banks
2184 @*List configured flash banks
2185 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2186 @subsection flash info
2187 @b{flash info} <@var{num}>
2188 @cindex flash info
2189 @*Print info about flash bank <@option{num}>
2190 @subsection flash probe
2191 @b{flash probe} <@var{num}>
2192 @cindex flash probe
2193 @*Identify the flash, or validate the parameters of the configured flash. Operation
2194 depends on the flash type.
2195 @subsection flash erase_check
2196 @b{flash erase_check} <@var{num}>
2197 @cindex flash erase_check
2198 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2199 updates the erase state information displayed by @option{flash info}. That means you have
2200 to issue an @option{erase_check} command after erasing or programming the device to get
2201 updated information.
2202 @subsection flash protect_check
2203 @b{flash protect_check} <@var{num}>
2204 @cindex flash protect_check
2205 @*Check protection state of sectors in flash bank <num>.
2206 @option{flash erase_sector} using the same syntax.
2207 @subsection flash erase_sector
2208 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2209 @cindex flash erase_sector
2210 @anchor{flash erase_sector}
2211 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2212 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2213 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2214 the CFI driver).
2215 @subsection flash erase_address
2216 @b{flash erase_address} <@var{address}> <@var{length}>
2217 @cindex flash erase_address
2218 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2219 @subsection flash write_bank
2220 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2221 @cindex flash write_bank
2222 @anchor{flash write_bank}
2223 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2224 <@option{offset}> bytes from the beginning of the bank.
2225 @subsection flash write_image
2226 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2227 @cindex flash write_image
2228 @anchor{flash write_image}
2229 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2230 [@var{offset}] can be specified and the file [@var{type}] can be specified
2231 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2232 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2233 if the @option{erase} parameter is given.
2234 @subsection flash protect
2235 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2236 @cindex flash protect
2237 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2238 <@var{last}> of @option{flash bank} <@var{num}>.
2239
2240 @subsection mFlash commands
2241 @cindex mFlash commands
2242 @itemize @bullet
2243 @item @b{mflash probe}
2244 @cindex mflash probe
2245 Probe mflash.
2246 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2247 @cindex mflash write
2248 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2249 <@var{offset}> bytes from the beginning of the bank.
2250 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2251 @cindex mflash dump
2252 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2253 to a <@var{file}>.
2254 @end itemize
2255
2256 @section flash bank command
2257 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2258
2259 @example
2260 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2261 <@var{bus_width}> <@var{target}> [@var{driver_options ...}]
2262 @end example
2263 @cindex flash bank
2264 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2265 and <@var{bus_width}> bytes using the selected flash <driver>.
2266
2267 @subsection External Flash - cfi options
2268 @cindex cfi options
2269 CFI flashes are external flash chips - often they are connected to a
2270 specific chip select on the CPU. By default, at hard reset, most
2271 CPUs have the ablity to ``boot'' from some flash chip - typically
2272 attached to the CPU's CS0 pin.
2273
2274 For other chip selects: OpenOCD does not know how to configure, or
2275 access a specific chip select. Instead you, the human, might need to
2276 configure additional chip selects via other commands (like: mww) , or
2277 perhaps configure a GPIO pin that controls the ``write protect'' pin
2278 on the flash chip.
2279
2280 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2281 <@var{target}> [@var{jedec_probe}|@var{x16_as_x8}]
2282 @*CFI flashes require the name or number of the target they're connected to
2283 as an additional
2284 argument. The CFI driver makes use of a working area (specified for the target)
2285 to significantly speed up operation.
2286
2287 @var{chip_width} and @var{bus_width} are specified in bytes.
2288
2289 The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types.
2290
2291 @var{x16_as_x8} ???
2292
2293 @subsection Internal Flash (Microcontrollers)
2294 @subsubsection lpc2000 options
2295 @cindex lpc2000 options
2296
2297 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target}> <@var{variant}>
2298 <@var{clock}> [@var{calc_checksum}]
2299 @*LPC flashes don't require the chip and bus width to be specified. Additional
2300 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2301 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx),
2302 the name or number of the target this flash belongs to (first is 0),
2303 the frequency at which the core
2304 is currently running (in kHz - must be an integral number), and the optional keyword
2305 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2306 vector table.
2307
2308
2309 @subsubsection at91sam7 options
2310 @cindex at91sam7 options
2311
2312 @b{flash bank at91sam7} 0 0 0 0 <@var{target}>
2313 @*AT91SAM7 flashes only require the @var{target}, all other values are looked up after
2314 reading the chip-id and type.
2315
2316 @subsubsection str7 options
2317 @cindex str7 options
2318
2319 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target}> <@var{variant}>
2320 @*variant can be either STR71x, STR73x or STR75x.
2321
2322 @subsubsection str9 options
2323 @cindex str9 options
2324
2325 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target}>
2326 @*The str9 needs the flash controller to be configured prior to Flash programming, e.g.
2327 @example
2328 str9x flash_config 0 4 2 0 0x80000
2329 @end example
2330 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2331
2332 @subsubsection str9 options (str9xpec driver)
2333
2334 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target}>
2335 @*Before using the flash commands the turbo mode must be enabled using str9xpec
2336 @option{enable_turbo} <@var{num>.}
2337
2338 Only use this driver for locking/unlocking the device or configuring the option bytes.
2339 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2340
2341 @subsubsection Stellaris (LM3Sxxx) options
2342 @cindex Stellaris (LM3Sxxx) options
2343
2344 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target}>
2345 @*Stellaris flash plugin only require the @var{target}.
2346
2347 @subsubsection stm32x options
2348 @cindex stm32x options
2349
2350 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target}>
2351 @*stm32x flash plugin only require the @var{target}.
2352
2353 @subsubsection aduc702x options
2354 @cindex aduc702x options
2355
2356 @b{flash bank aduc702x} 0 0 0 0 <@var{target}>
2357 @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target} argument (all devices in this family have the same memory layout).
2358
2359 @subsection mFlash Configuration
2360 @cindex mFlash Configuration
2361 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2362 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target}>
2363 @cindex mflash bank
2364 @*Configures a mflash for <@var{soc}> host bank at
2365 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2366 order. Pin number format is dependent on host GPIO calling convention.
2367 If WP or DPD pin was not used, write -1. Currently, mflash bank
2368 support s3c2440 and pxa270.
2369
2370 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2371 @example
2372 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2373 @end example
2374 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2375 @example
2376 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2377 @end example
2378
2379 @section Microcontroller specific Flash Commands
2380
2381 @subsection AT91SAM7 specific commands
2382 @cindex AT91SAM7 specific commands
2383 The flash configuration is deduced from the chip identification register. The flash
2384 controller handles erases automatically on a page (128/265 byte) basis, so erase is
2385 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2386 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2387 that can be erased separatly. Only an EraseAll command is supported by the controller
2388 for each flash plane and this is called with
2389 @itemize @bullet
2390 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2391 @*bulk erase flash planes first_plane to last_plane.
2392 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2393 @cindex at91sam7 gpnvm
2394 @*set or clear a gpnvm bit for the processor
2395 @end itemize
2396
2397 @subsection STR9 specific commands
2398 @cindex STR9 specific commands
2399 @anchor{STR9 specific commands}
2400 These are flash specific commands when using the str9xpec driver.
2401 @itemize @bullet
2402 @item @b{str9xpec enable_turbo} <@var{num}>
2403 @cindex str9xpec enable_turbo
2404 @*enable turbo mode, will simply remove the str9 from the chain and talk
2405 directly to the embedded flash controller.
2406 @item @b{str9xpec disable_turbo} <@var{num}>
2407 @cindex str9xpec disable_turbo
2408 @*restore the str9 into JTAG chain.
2409 @item @b{str9xpec lock} <@var{num}>
2410 @cindex str9xpec lock
2411 @*lock str9 device. The str9 will only respond to an unlock command that will
2412 erase the device.
2413 @item @b{str9xpec unlock} <@var{num}>
2414 @cindex str9xpec unlock
2415 @*unlock str9 device.
2416 @item @b{str9xpec options_read} <@var{num}>
2417 @cindex str9xpec options_read
2418 @*read str9 option bytes.
2419 @item @b{str9xpec options_write} <@var{num}>
2420 @cindex str9xpec options_write
2421 @*write str9 option bytes.
2422 @end itemize
2423
2424 Note: Before using the str9xpec driver here is some background info to help
2425 you better understand how the drivers works. OpenOCD has two flash drivers for
2426 the str9.
2427 @enumerate
2428 @item
2429 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2430 flash programming as it is faster than the @option{str9xpec} driver.
2431 @item
2432 Direct programming @option{str9xpec} using the flash controller. This is an
2433 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2434 core does not need to be running to program using this flash driver. Typical use
2435 for this driver is locking/unlocking the target and programming the option bytes.
2436 @end enumerate
2437
2438 Before we run any commands using the @option{str9xpec} driver we must first disable
2439 the str9 core. This example assumes the @option{str9xpec} driver has been
2440 configured for flash bank 0.
2441 @example
2442 # assert srst, we do not want core running
2443 # while accessing str9xpec flash driver
2444 jtag_reset 0 1
2445 # turn off target polling
2446 poll off
2447 # disable str9 core
2448 str9xpec enable_turbo 0
2449 # read option bytes
2450 str9xpec options_read 0
2451 # re-enable str9 core
2452 str9xpec disable_turbo 0
2453 poll on
2454 reset halt
2455 @end example
2456 The above example will read the str9 option bytes.
2457 When performing a unlock remember that you will not be able to halt the str9 - it
2458 has been locked. Halting the core is not required for the @option{str9xpec} driver
2459 as mentioned above, just issue the commands above manually or from a telnet prompt.
2460
2461 @subsection STR9 configuration
2462 @cindex STR9 configuration
2463 @itemize @bullet
2464 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2465 <@var{BBADR}> <@var{NBBADR}>
2466 @cindex str9x flash_config
2467 @*Configure str9 flash controller.
2468 @example
2469 e.g. str9x flash_config 0 4 2 0 0x80000
2470 This will setup
2471 BBSR - Boot Bank Size register
2472 NBBSR - Non Boot Bank Size register
2473 BBADR - Boot Bank Start Address register
2474 NBBADR - Boot Bank Start Address register
2475 @end example
2476 @end itemize
2477
2478 @subsection STR9 option byte configuration
2479 @cindex STR9 option byte configuration
2480 @itemize @bullet
2481 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2482 @cindex str9xpec options_cmap
2483 @*configure str9 boot bank.
2484 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2485 @cindex str9xpec options_lvdthd
2486 @*configure str9 lvd threshold.
2487 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2488 @cindex str9xpec options_lvdsel
2489 @*configure str9 lvd source.
2490 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2491 @cindex str9xpec options_lvdwarn
2492 @*configure str9 lvd reset warning source.
2493 @end itemize
2494
2495 @subsection STM32x specific commands
2496 @cindex STM32x specific commands
2497
2498 These are flash specific commands when using the stm32x driver.
2499 @itemize @bullet
2500 @item @b{stm32x lock} <@var{num}>
2501 @cindex stm32x lock
2502 @*lock stm32 device.
2503 @item @b{stm32x unlock} <@var{num}>
2504 @cindex stm32x unlock
2505 @*unlock stm32 device.
2506 @item @b{stm32x options_read} <@var{num}>
2507 @cindex stm32x options_read
2508 @*read stm32 option bytes.
2509 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2510 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2511 @cindex stm32x options_write
2512 @*write stm32 option bytes.
2513 @item @b{stm32x mass_erase} <@var{num}>
2514 @cindex stm32x mass_erase
2515 @*mass erase flash memory.
2516 @end itemize
2517
2518 @subsection Stellaris specific commands
2519 @cindex Stellaris specific commands
2520
2521 These are flash specific commands when using the Stellaris driver.
2522 @itemize @bullet
2523 @item @b{stellaris mass_erase} <@var{num}>
2524 @cindex stellaris mass_erase
2525 @*mass erase flash memory.
2526 @end itemize
2527
2528 @node General Commands
2529 @chapter General Commands
2530 @cindex commands
2531
2532 The commands documented in this chapter here are common commands that
2533 you, as a human, may want to type and see the output of. Configuration type
2534 commands are documented elsewhere.
2535
2536 Intent:
2537 @itemize @bullet
2538 @item @b{Source Of Commands}
2539 @* OpenOCD commands can occur in a configuration script (discussed
2540 elsewhere) or typed manually by a human or supplied programatically,
2541 or via one of several TCP/IP Ports.
2542
2543 @item @b{From the human}
2544 @* A human should interact with the telnet interface (default port: 4444,
2545 or via GDB, default port 3333)
2546
2547 To issue commands from within a GDB session, use the @option{monitor}
2548 command, e.g. use @option{monitor poll} to issue the @option{poll}
2549 command. All output is relayed through the GDB session.
2550
2551 @item @b{Machine Interface}
2552 The Tcl interface's intent is to be a machine interface. The default Tcl
2553 port is 5555.
2554 @end itemize
2555
2556
2557 @section Daemon Commands
2558
2559 @subsection sleep [@var{msec}]
2560 @cindex sleep
2561 @*Wait for n milliseconds before resuming. Useful in connection with script files
2562 (@var{script} command and @var{target_script} configuration).
2563
2564 @subsection shutdown
2565 @cindex shutdown
2566 @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
2567
2568 @subsection debug_level [@var{n}]
2569 @cindex debug_level
2570 @anchor{debug_level}
2571 @*Display or adjust debug level to n<0-3>
2572
2573 @subsection fast [@var{enable|disable}]
2574 @cindex fast
2575 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2576 downloads and fast memory access will work if the JTAG interface isn't too fast and
2577 the core doesn't run at a too low frequency. Note that this option only changes the default
2578 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2579 individually.
2580
2581 The target specific "dangerous" optimisation tweaking options may come and go
2582 as more robust and user friendly ways are found to ensure maximum throughput
2583 and robustness with a minimum of configuration.
2584
2585 Typically the "fast enable" is specified first on the command line:
2586
2587 @example
2588 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2589 @end example
2590
2591 @subsection echo <@var{message}>
2592 @cindex echo
2593 @*Output message to stdio. e.g. echo "Programming - please wait"
2594
2595 @subsection log_output <@var{file}>
2596 @cindex log_output
2597 @*Redirect logging to <file> (default: stderr)
2598
2599 @subsection script <@var{file}>
2600 @cindex script
2601 @*Execute commands from <file>
2602 See also: ``source [find FILENAME]''
2603
2604 @section Target state handling
2605 @subsection power <@var{on}|@var{off}>
2606 @cindex reg
2607 @*Turn power switch to target on/off.
2608 No arguments: print status.
2609 Not all interfaces support this.
2610
2611 @subsection reg [@option{#}|@option{name}] [value]
2612 @cindex reg
2613 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2614 No arguments: list all available registers for the current target.
2615 Number or name argument: display a register.
2616 Number or name and value arguments: set register value.
2617
2618 @subsection poll [@option{on}|@option{off}]
2619 @cindex poll
2620 @*Poll the target for its current state. If the target is in debug mode, architecture
2621 specific information about the current state is printed. An optional parameter
2622 allows continuous polling to be enabled and disabled.
2623
2624 @subsection halt [@option{ms}]
2625 @cindex halt
2626 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2627 Default [@option{ms}] is 5 seconds if no arg given.
2628 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2629 will stop OpenOCD from waiting.
2630
2631 @subsection wait_halt [@option{ms}]
2632 @cindex wait_halt
2633 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2634 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2635 arg is given.
2636
2637 @subsection resume [@var{address}]
2638 @cindex resume
2639 @*Resume the target at its current code position, or at an optional address.
2640 OpenOCD will wait 5 seconds for the target to resume.
2641
2642 @subsection step [@var{address}]
2643 @cindex step
2644 @*Single-step the target at its current code position, or at an optional address.
2645
2646 @subsection reset [@option{run}|@option{halt}|@option{init}]
2647 @cindex reset
2648 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2649
2650 With no arguments a "reset run" is executed
2651 @itemize @minus
2652 @item @b{run}
2653 @cindex reset run
2654 @*Let the target run.
2655 @item @b{halt}
2656 @cindex reset halt
2657 @*Immediately halt the target (works only with certain configurations).
2658 @item @b{init}
2659 @cindex reset init
2660 @*Immediately halt the target, and execute the reset script (works only with certain
2661 configurations)
2662 @end itemize
2663
2664 @subsection soft_reset_halt
2665 @cindex reset
2666 @*Requesting target halt and executing a soft reset. This is often used
2667 when a target cannot be reset and halted. The target, after reset is
2668 released begins to execute code. OpenOCD attempts to stop the CPU and
2669 then sets the program counter back to the reset vector. Unfortunately
2670 the code that was executed may have left the hardware in an unknown
2671 state.
2672
2673
2674 @section Memory access commands
2675 @subsection meminfo
2676 display available RAM memory.
2677 @subsection Memory peek/poke type commands
2678 These commands allow accesses of a specific size to the memory
2679 system. Often these are used to configure the current target in some
2680 special way. For example - one may need to write certian values to the
2681 SDRAM controller to enable SDRAM.
2682
2683 @enumerate
2684 @item To change the current target see the ``targets'' (plural) command
2685 @item In system level scripts these commands are deprecated, please use the TARGET object versions.
2686 @end enumerate
2687
2688 @itemize @bullet
2689 @item @b{mdw} <@var{addr}> [@var{count}]
2690 @cindex mdw
2691 @*display memory words (32bit)
2692 @item @b{mdh} <@var{addr}> [@var{count}]
2693 @cindex mdh
2694 @*display memory half-words (16bit)
2695 @item @b{mdb} <@var{addr}> [@var{count}]
2696 @cindex mdb
2697 @*display memory bytes (8bit)
2698 @item @b{mww} <@var{addr}> <@var{value}>
2699 @cindex mww
2700 @*write memory word (32bit)
2701 @item @b{mwh} <@var{addr}> <@var{value}>
2702 @cindex mwh
2703 @*write memory half-word (16bit)
2704 @item @b{mwb} <@var{addr}> <@var{value}>
2705 @cindex mwb
2706 @*write memory byte (8bit)
2707 @end itemize
2708
2709 @section Image loading commands
2710 @subsection load_image
2711 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2712 @cindex load_image
2713 @anchor{load_image}
2714 @*Load image <@var{file}> to target memory at <@var{address}>
2715 @subsection fast_load_image
2716 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2717 @cindex fast_load_image
2718 @anchor{fast_load_image}
2719 @*Normally you should be using @b{load_image} or GDB load. However, for
2720 testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
2721 host), storing the image in memory and uploading the image to the target
2722 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2723 Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host
2724 memory, i.e. does not affect target. This approach is also useful when profiling
2725 target programming performance as I/O and target programming can easily be profiled
2726 separately.
2727 @subsection fast_load
2728 @b{fast_load}
2729 @cindex fast_image
2730 @anchor{fast_image}
2731 @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
2732 @subsection dump_image
2733 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2734 @cindex dump_image
2735 @anchor{dump_image}
2736 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2737 (binary) <@var{file}>.
2738 @subsection verify_image
2739 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2740 @cindex verify_image
2741 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2742 This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
2743
2744
2745 @section Breakpoint commands
2746 @cindex Breakpoint commands
2747 @itemize @bullet
2748 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2749 @cindex bp
2750 @*set breakpoint <address> <length> [hw]
2751 @item @b{rbp} <@var{addr}>
2752 @cindex rbp
2753 @*remove breakpoint <adress>
2754 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2755 @cindex wp
2756 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2757 @item @b{rwp} <@var{addr}>
2758 @cindex rwp
2759 @*remove watchpoint <adress>
2760 @end itemize
2761
2762 @section Misc Commands
2763 @cindex Other Target Commands
2764 @itemize
2765 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2766
2767 Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling.
2768
2769 @end itemize
2770
2771 @section Target Specific Commands
2772 @cindex Target Specific Commands
2773
2774
2775 @page
2776 @section Architecture Specific Commands
2777 @cindex Architecture Specific Commands
2778
2779 @subsection ARMV4/5 specific commands
2780 @cindex ARMV4/5 specific commands
2781
2782 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2783 or Intel XScale (XScale isn't supported yet).
2784 @itemize @bullet
2785 @item @b{armv4_5 reg}
2786 @cindex armv4_5 reg
2787 @*Display a list of all banked core registers, fetching the current value from every
2788 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2789 register value.
2790 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2791 @cindex armv4_5 core_mode
2792 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2793 The target is resumed in the currently set @option{core_mode}.
2794 @end itemize
2795
2796 @subsection ARM7/9 specific commands
2797 @cindex ARM7/9 specific commands
2798
2799 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2800 ARM920T or ARM926EJ-S.
2801 @itemize @bullet
2802 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2803 @cindex arm7_9 dbgrq
2804 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2805 safe for all but ARM7TDMI--S cores (like Philips LPC).
2806 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2807 @cindex arm7_9 fast_memory_access
2808 @anchor{arm7_9 fast_memory_access}
2809 @*Allow OpenOCD to read and write memory without checking completion of
2810 the operation. This provides a huge speed increase, especially with USB JTAG
2811 cables (FT2232), but might be unsafe if used with targets running at very low
2812 speeds, like the 32kHz startup clock of an AT91RM9200.
2813 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2814 @cindex arm7_9 dcc_downloads
2815 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2816 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2817 unsafe, especially with targets running at very low speeds. This command was introduced
2818 with OpenOCD rev. 60, and requires a few bytes of working area.
2819 @end itemize
2820
2821 @subsection ARM720T specific commands
2822 @cindex ARM720T specific commands
2823
2824 @itemize @bullet
2825 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2826 @cindex arm720t cp15
2827 @*display/modify cp15 register <@option{num}> [@option{value}].
2828 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2829 @cindex arm720t md<bhw>_phys
2830 @*Display memory at physical address addr.
2831 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2832 @cindex arm720t mw<bhw>_phys
2833 @*Write memory at physical address addr.
2834 @item @b{arm720t virt2phys} <@var{va}>
2835 @cindex arm720t virt2phys
2836 @*Translate a virtual address to a physical address.
2837 @end itemize
2838
2839 @subsection ARM9TDMI specific commands
2840 @cindex ARM9TDMI specific commands
2841
2842 @itemize @bullet
2843 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2844 @cindex arm9tdmi vector_catch
2845 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2846 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2847 @option{irq} @option{fiq}.
2848
2849 Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S.
2850 @end itemize
2851
2852 @subsection ARM966E specific commands
2853 @cindex ARM966E specific commands
2854
2855 @itemize @bullet
2856 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2857 @cindex arm966e cp15
2858 @*display/modify cp15 register <@option{num}> [@option{value}].
2859 @end itemize
2860
2861 @subsection ARM920T specific commands
2862 @cindex ARM920T specific commands
2863
2864 @itemize @bullet
2865 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2866 @cindex arm920t cp15
2867 @*display/modify cp15 register <@option{num}> [@option{value}].
2868 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2869 @cindex arm920t cp15i
2870 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2871 @item @b{arm920t cache_info}
2872 @cindex arm920t cache_info
2873 @*Print information about the caches found. This allows to see whether your target
2874 is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2875 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2876 @cindex arm920t md<bhw>_phys
2877 @*Display memory at physical address addr.
2878 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2879 @cindex arm920t mw<bhw>_phys
2880 @*Write memory at physical address addr.
2881 @item @b{arm920t read_cache} <@var{filename}>
2882 @cindex arm920t read_cache
2883 @*Dump the content of ICache and DCache to a file.
2884 @item @b{arm920t read_mmu} <@var{filename}>
2885 @cindex arm920t read_mmu
2886 @*Dump the content of the ITLB and DTLB to a file.
2887 @item @b{arm920t virt2phys} <@var{va}>
2888 @cindex arm920t virt2phys
2889 @*Translate a virtual address to a physical address.
2890 @end itemize
2891
2892 @subsection ARM926EJ-S specific commands
2893 @cindex ARM926EJ-S specific commands
2894
2895 @itemize @bullet
2896 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2897 @cindex arm926ejs cp15
2898 @*display/modify cp15 register <@option{num}> [@option{value}].
2899 @item @b{arm926ejs cache_info}
2900 @cindex arm926ejs cache_info
2901 @*Print information about the caches found.
2902 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2903 @cindex arm926ejs md<bhw>_phys
2904 @*Display memory at physical address addr.
2905 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2906 @cindex arm926ejs mw<bhw>_phys
2907 @*Write memory at physical address addr.
2908 @item @b{arm926ejs virt2phys} <@var{va}>
2909 @cindex arm926ejs virt2phys
2910 @*Translate a virtual address to a physical address.
2911 @end itemize
2912
2913 @subsection CORTEX_M3 specific commands
2914 @cindex CORTEX_M3 specific commands
2915
2916 @itemize @bullet
2917 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2918 @cindex cortex_m3 maskisr
2919 @*Enable masking (disabling) interrupts during target step/resume.
2920 @end itemize
2921
2922 @page
2923 @section Debug commands
2924 @cindex Debug commands
2925 The following commands give direct access to the core, and are most likely
2926 only useful while debugging OpenOCD.
2927 @itemize @bullet
2928 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2929 @cindex arm7_9 write_xpsr
2930 @*Immediately write either the current program status register (CPSR) or the saved
2931 program status register (SPSR), without changing the register cache (as displayed
2932 by the @option{reg} and @option{armv4_5 reg} commands).
2933 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2934 <@var{0=cpsr},@var{1=spsr}>
2935 @cindex arm7_9 write_xpsr_im8
2936 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2937 operation (similar to @option{write_xpsr}).
2938 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2939 @cindex arm7_9 write_core_reg
2940 @*Write a core register, without changing the register cache (as displayed by the
2941 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2942 encoding of the [M4:M0] bits of the PSR.
2943 @end itemize
2944
2945 @section Target Requests
2946 @cindex Target Requests
2947 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2948 See libdcc in the contrib dir for more details.
2949 @itemize @bullet
2950 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}|@var{charmsg}>
2951 @cindex target_request debugmsgs
2952 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running. @var{charmsg} receives messages if Linux kernel ``Kernel low-level debugging via EmbeddedICE DCC channel'' option is enabled.
2953 @end itemize
2954
2955 @node JTAG Commands
2956 @chapter JTAG Commands
2957 @cindex JTAG Commands
2958 Generally most people will not use the bulk of these commands. They
2959 are mostly used by the OpenOCD developers or those who need to
2960 directly manipulate the JTAG taps.
2961
2962 In general these commands control JTAG taps at a very low level. For
2963 example if you need to control a JTAG Route Controller (i.e.: the
2964 OMAP3530 on the Beagle Board has one) you might use these commands in
2965 a script or an event procedure.
2966 @section Commands
2967 @cindex Commands
2968 @itemize @bullet
2969 @item @b{scan_chain}
2970 @cindex scan_chain
2971 @*Print current scan chain configuration.
2972 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2973 @cindex jtag_reset
2974 @*Toggle reset lines.
2975 @item @b{endstate} <@var{tap_state}>
2976 @cindex endstate
2977 @*Finish JTAG operations in <@var{tap_state}>.
2978 @item @b{runtest} <@var{num_cycles}>
2979 @cindex runtest
2980 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2981 @item @b{statemove} [@var{tap_state}]
2982 @cindex statemove
2983 @*Move to current endstate or [@var{tap_state}]
2984 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2985 @cindex irscan
2986 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2987 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2988 @cindex drscan
2989 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2990 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2991 @cindex verify_ircapture
2992 @*Verify value captured during Capture-IR. Default is enabled.
2993 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2994 @cindex var
2995 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2996 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2997 @cindex field
2998 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2999 @end itemize
3000
3001 @section Tap states
3002 @cindex Tap states
3003 Available tap_states are:
3004 @itemize @bullet
3005 @item @b{RESET}
3006 @cindex RESET
3007 @item @b{IDLE}
3008 @cindex IDLE
3009 @item @b{DRSELECT}
3010 @cindex DRSELECT
3011 @item @b{DRCAPTURE}
3012 @cindex DRCAPTURE
3013 @item @b{DRSHIFT}
3014 @cindex DRSHIFT
3015 @item @b{DREXIT1}
3016 @cindex DREXIT1
3017 @item @b{DRPAUSE}
3018 @cindex DRPAUSE
3019 @item @b{DREXIT2}
3020 @cindex DREXIT2
3021 @item @b{DRUPDATE}
3022 @cindex DRUPDATE
3023 @item @b{IRSELECT}
3024 @cindex IRSELECT
3025 @item @b{IRCAPTURE}
3026 @cindex IRCAPTURE
3027 @item @b{IRSHIFT}
3028 @cindex IRSHIFT
3029 @item @b{IREXIT1}
3030 @cindex IREXIT1
3031 @item @b{IRPAUSE}
3032 @cindex IRPAUSE
3033 @item @b{IREXIT2}
3034 @cindex IREXIT2
3035 @item @b{IRUPDATE}
3036 @cindex IRUPDATE
3037 @end itemize
3038
3039
3040 @node TFTP
3041 @chapter TFTP
3042 @cindex TFTP
3043 If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can
3044 be used to access files on PCs (either the developer's PC or some other PC).
3045
3046 The way this works on the ZY1000 is to prefix a filename by
3047 "/tftp/ip/" and append the TFTP path on the TFTP
3048 server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
3049 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
3050 if the file was hosted on the embedded host.
3051
3052 In order to achieve decent performance, you must choose a TFTP server
3053 that supports a packet size bigger than the default packet size (512 bytes). There
3054 are numerous TFTP servers out there (free and commercial) and you will have to do
3055 a bit of googling to find something that fits your requirements.
3056
3057 @node Sample Scripts
3058 @chapter Sample Scripts
3059 @cindex scripts
3060
3061 This page shows how to use the Target Library.
3062
3063 The configuration script can be divided into the following sections:
3064 @itemize @bullet
3065 @item Daemon configuration
3066 @item Interface
3067 @item JTAG scan chain
3068 @item Target configuration
3069 @item Flash configuration
3070 @end itemize
3071
3072 Detailed information about each section can be found at OpenOCD configuration.
3073
3074 @section AT91R40008 example
3075 @cindex AT91R40008 example
3076 To start OpenOCD with a target script for the AT91R40008 CPU and reset
3077 the CPU upon startup of the OpenOCD daemon.
3078 @example
3079 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
3080 @end example
3081
3082
3083 @node GDB and OpenOCD
3084 @chapter GDB and OpenOCD
3085 @cindex GDB and OpenOCD
3086 OpenOCD complies with the remote gdbserver protocol, and as such can be used
3087 to debug remote targets.
3088
3089 @section Connecting to GDB
3090 @cindex Connecting to GDB
3091 @anchor{Connecting to GDB}
3092 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
3093 instance GDB 6.3 has a known bug that produces bogus memory access
3094 errors, which has since been fixed: look up 1836 in
3095 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
3096
3097 @*OpenOCD can communicate with GDB in two ways:
3098 @enumerate
3099 @item
3100 A socket (TCP/IP) connection is typically started as follows:
3101 @example
3102 target remote localhost:3333
3103 @end example
3104 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
3105 @item
3106 A pipe connection is typically started as follows:
3107 @example
3108 target remote | openocd --pipe
3109 @end example
3110 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
3111 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
3112 session.
3113 @end enumerate
3114
3115 @*To see a list of available OpenOCD commands type @option{monitor help} on the
3116 GDB command line.
3117
3118 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3119 to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes
3120 packet size and the device's memory map.
3121
3122 Previous versions of OpenOCD required the following GDB options to increase
3123 the packet size and speed up GDB communication:
3124 @example
3125 set remote memory-write-packet-size 1024
3126 set remote memory-write-packet-size fixed
3127 set remote memory-read-packet-size 1024
3128 set remote memory-read-packet-size fixed
3129 @end example
3130 This is now handled in the @option{qSupported} PacketSize and should not be required.
3131
3132 @section Programming using GDB
3133 @cindex Programming using GDB
3134
3135 By default the target memory map is sent to GDB. This can be disabled by
3136 the following OpenOCD configuration option:
3137 @example
3138 gdb_memory_map disable
3139 @end example
3140 For this to function correctly a valid flash configuration must also be set
3141 in OpenOCD. For faster performance you should also configure a valid
3142 working area.
3143
3144 Informing GDB of the memory map of the target will enable GDB to protect any
3145 flash areas of the target and use hardware breakpoints by default. This means
3146 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3147 using a memory map. @xref{gdb_breakpoint_override}.
3148
3149 To view the configured memory map in GDB, use the GDB command @option{info mem}
3150 All other unassigned addresses within GDB are treated as RAM.
3151
3152 GDB 6.8 and higher set any memory area not in the memory map as inaccessible.
3153 This can be changed to the old behaviour by using the following GDB command
3154 @example
3155 set mem inaccessible-by-default off
3156 @end example
3157
3158 If @option{gdb_flash_program enable} is also used, GDB will be able to
3159 program any flash memory using the vFlash interface.
3160
3161 GDB will look at the target memory map when a load command is given, if any
3162 areas to be programmed lie within the target flash area the vFlash packets
3163 will be used.
3164
3165 If the target needs configuring before GDB programming, an event
3166 script can be executed:
3167 @example
3168 $_TARGETNAME configure -event EVENTNAME BODY
3169 @end example
3170
3171 To verify any flash programming the GDB command @option{compare-sections}
3172 can be used.
3173
3174 @node Tcl Scripting API
3175 @chapter Tcl Scripting API
3176 @cindex Tcl Scripting API
3177 @cindex Tcl scripts
3178 @section API rules
3179
3180 The commands are stateless. E.g. the telnet command line has a concept
3181 of currently active target, the Tcl API proc's take this sort of state
3182 information as an argument to each proc.
3183
3184 There are three main types of return values: single value, name value
3185 pair list and lists.
3186
3187 Name value pair. The proc 'foo' below returns a name/value pair
3188 list.
3189
3190 @verbatim
3191
3192 > set foo(me) Duane
3193 > set foo(you) Oyvind
3194 > set foo(mouse) Micky
3195 > set foo(duck) Donald
3196
3197 If one does this:
3198
3199 > set foo
3200
3201 The result is:
3202
3203 me Duane you Oyvind mouse Micky duck Donald
3204
3205 Thus, to get the names of the associative array is easy:
3206
3207 foreach { name value } [set foo] {
3208 puts "Name: $name, Value: $value"
3209 }
3210 @end verbatim
3211
3212 Lists returned must be relatively small. Otherwise a range
3213 should be passed in to the proc in question.
3214
3215 @section Internal low-level Commands
3216
3217 By low-level, the intent is a human would not directly use these commands.
3218
3219 Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
3220 is the low level API upon which "flash banks" is implemented.
3221
3222 @itemize @bullet
3223 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3224
3225 Read memory and return as a Tcl array for script processing
3226 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3227
3228 Convert a Tcl array to memory locations and write the values
3229 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3230
3231 Return information about the flash banks
3232 @end itemize
3233
3234 OpenOCD commands can consist of two words, e.g. "flash banks". The
3235 startup.tcl "unknown" proc will translate this into a Tcl proc
3236 called "flash_banks".
3237
3238 @section OpenOCD specific Global Variables
3239
3240 @subsection HostOS
3241
3242 Real Tcl has ::tcl_platform(), and platform::identify, and many other
3243 variables. JimTCL, as implemented in OpenOCD creates $HostOS which
3244 holds one of the following values:
3245
3246 @itemize @bullet
3247 @item @b{winxx} Built using Microsoft Visual Studio
3248 @item @b{linux} Linux is the underlying operating sytem
3249 @item @b{darwin} Darwin (mac-os) is the underlying operating sytem.
3250 @item @b{cygwin} Running under Cygwin
3251 @item @b{mingw32} Running under MingW32
3252 @item @b{other} Unknown, none of the above.
3253 @end itemize
3254
3255 Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
3256
3257 @node Upgrading
3258 @chapter Deprecated/Removed Commands
3259 @cindex Deprecated/Removed Commands
3260 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3261
3262 @itemize @bullet
3263 @item @b{arm7_9 fast_writes}
3264 @cindex arm7_9 fast_writes
3265 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3266 @item @b{arm7_9 force_hw_bkpts}
3267 @cindex arm7_9 force_hw_bkpts
3268 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3269 for flash if the GDB memory map has been set up(default when flash is declared in
3270 target configuration). @xref{gdb_breakpoint_override}.
3271 @item @b{arm7_9 sw_bkpts}
3272 @cindex arm7_9 sw_bkpts
3273 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3274 @item @b{daemon_startup}
3275 @cindex daemon_startup
3276 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3277 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3278 and @option{target cortex_m3 little reset_halt 0}.
3279 @item @b{dump_binary}
3280 @cindex dump_binary
3281 @*use @option{dump_image} command with same args. @xref{dump_image}.
3282 @item @b{flash erase}
3283 @cindex flash erase
3284 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3285 @item @b{flash write}
3286 @cindex flash write
3287 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3288 @item @b{flash write_binary}
3289 @cindex flash write_binary
3290 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3291 @item @b{flash auto_erase}
3292 @cindex flash auto_erase
3293 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3294 @item @b{load_binary}
3295 @cindex load_binary
3296 @*use @option{load_image} command with same args. @xref{load_image}.
3297 @item @b{run_and_halt_time}
3298 @cindex run_and_halt_time
3299 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3300 following commands:
3301 @smallexample
3302 reset run
3303 sleep 100
3304 halt
3305 @end smallexample
3306 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3307 @cindex target
3308 @*use the create subcommand of @option{target}.
3309 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3310 @cindex target_script
3311 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3312 @item @b{working_area}
3313 @cindex working_area
3314 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3315 @end itemize
3316
3317 @node FAQ
3318 @chapter FAQ
3319 @cindex faq
3320 @enumerate
3321 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3322 @cindex RTCK
3323 @cindex adaptive clocking
3324 @*
3325
3326 In digital circuit design it is often refered to as ``clock
3327 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
3328 operating at some speed, your target is operating at another. The two
3329 clocks are not synchronised, they are ``asynchronous''
3330
3331 In order for the two to work together they must be synchronised. Otherwise
3332 the two systems will get out of sync with each other and nothing will
3333 work. There are 2 basic options:
3334 @enumerate
3335 @item
3336 Use a special circuit.
3337 @item
3338 One clock must be some multiple slower than the other.
3339 @end enumerate
3340
3341 @b{Does this really matter?} For some chips and some situations, this
3342 is a non-issue (i.e.: A 500MHz ARM926) but for others - for example some
3343 Atmel SAM7 and SAM9 chips start operation from reset at 32kHz -
3344 program/enable the oscillators and eventually the main clock. It is in
3345 those critical times you must slow the JTAG clock to sometimes 1 to
3346 4kHz.
3347
3348 Imagine debugging a 500MHz ARM926 hand held battery powered device
3349 that ``deep sleeps'' at 32kHz between every keystroke. It can be
3350 painful.
3351
3352 @b{Solution #1 - A special circuit}
3353
3354 In order to make use of this, your JTAG dongle must support the RTCK
3355 feature. Not all dongles support this - keep reading!
3356
3357 The RTCK signal often found in some ARM chips is used to help with
3358 this problem. ARM has a good description of the problem described at
3359 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3360 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic
3361 work? / how does adaptive clocking work?''.
3362
3363 The nice thing about adaptive clocking is that ``battery powered hand
3364 held device example'' - the adaptiveness works perfectly all the
3365 time. One can set a break point or halt the system in the deep power
3366 down code, slow step out until the system speeds up.
3367
3368 @b{Solution #2 - Always works - but may be slower}
3369
3370 Often this is a perfectly acceptable solution.
3371
3372 In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3373 the target clock speed. But what that ``magic division'' is varies
3374 depending on the chips on your board. @b{ARM rule of thumb} Most ARM
3375 based systems require an 8:1 division. @b{Xilinx rule of thumb} is
3376 1/12 the clock speed.
3377
3378 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
3379
3380 You can still debug the 'low power' situations - you just need to
3381 manually adjust the clock speed at every step. While painful and
3382 tedious, it is not always practical.
3383
3384 It is however easy to ``code your way around it'' - i.e.: Cheat a little,
3385 have a special debug mode in your application that does a ``high power
3386 sleep''. If you are careful - 98% of your problems can be debugged
3387 this way.
3388
3389 To set the JTAG frequency use the command:
3390
3391 @example
3392 # Example: 1.234MHz
3393 jtag_khz 1234
3394 @end example
3395
3396
3397 @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths?
3398
3399 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3400 around Windows filenames.
3401
3402 @example
3403 > echo \a
3404
3405 > echo @{\a@}
3406 \a
3407 > echo "\a"
3408
3409 >
3410 @end example
3411
3412
3413 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3414
3415 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3416 claims to come with all the necessary DLLs. When using Cygwin, try launching
3417 OpenOCD from the Cygwin shell.
3418
3419 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3420 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3421 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3422
3423 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3424 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
3425 software breakpoints consume one of the two available hardware breakpoints.
3426
3427 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
3428
3429 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3430 clock at the time you're programming the flash. If you've specified the crystal's
3431 frequency, make sure the PLL is disabled. If you've specified the full core speed
3432 (e.g. 60MHz), make sure the PLL is enabled.
3433
3434 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3435 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3436 out while waiting for end of scan, rtck was disabled".
3437
3438 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3439 settings in your PC BIOS (ECP, EPP, and different versions of those).
3440
3441 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3442 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3443 memory read caused data abort".
3444
3445 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3446 beyond the last valid frame. It might be possible to prevent this by setting up
3447 a proper "initial" stack frame, if you happen to know what exactly has to
3448 be done, feel free to add this here.
3449
3450 @b{Simple:} In your startup code - push 8 registers of zeros onto the
3451 stack before calling main(). What GDB is doing is ``climbing'' the run
3452 time stack by reading various values on the stack using the standard
3453 call frame for the target. GDB keeps going - until one of 2 things
3454 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3455 stackframes have been processed. By pushing zeros on the stack, GDB
3456 gracefully stops.
3457
3458 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3459 your C code, do the same - artifically push some zeros onto the stack,
3460 remember to pop them off when the ISR is done.
3461
3462 @b{Also note:} If you have a multi-threaded operating system, they
3463 often do not @b{in the intrest of saving memory} waste these few
3464 bytes. Painful...
3465
3466
3467 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3468 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3469
3470 This warning doesn't indicate any serious problem, as long as you don't want to
3471 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3472 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3473 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3474 independently. With this setup, it's not possible to halt the core right out of
3475 reset, everything else should work fine.
3476
3477 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3478 toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3479 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3480 quit with an error message. Is there a stability issue with OpenOCD?
3481
3482 No, this is not a stability issue concerning OpenOCD. Most users have solved
3483 this issue by simply using a self-powered USB hub, which they connect their
3484 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3485 supply stable enough for the Amontec JTAGkey to be operated.
3486
3487 @b{Laptops running on battery have this problem too...}
3488
3489 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3490 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3491 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3492 What does that mean and what might be the reason for this?
3493
3494 First of all, the reason might be the USB power supply. Try using a self-powered
3495 hub instead of a direct connection to your computer. Secondly, the error code 4
3496 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3497 chip ran into some sort of error - this points us to a USB problem.
3498
3499 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3500 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3501 What does that mean and what might be the reason for this?
3502
3503 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3504 has closed the connection to OpenOCD. This might be a GDB issue.
3505
3506 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3507 are described, there is a parameter for specifying the clock frequency
3508 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3509 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3510 specified in kilohertz. However, I do have a quartz crystal of a
3511 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3512 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3513 clock frequency?
3514
3515 No. The clock frequency specified here must be given as an integral number.
3516 However, this clock frequency is used by the In-Application-Programming (IAP)
3517 routines of the LPC2000 family only, which seems to be very tolerant concerning
3518 the given clock frequency, so a slight difference between the specified clock
3519 frequency and the actual clock frequency will not cause any trouble.
3520
3521 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3522
3523 Well, yes and no. Commands can be given in arbitrary order, yet the
3524 devices listed for the JTAG scan chain must be given in the right
3525 order (jtag newdevice), with the device closest to the TDO-Pin being
3526 listed first. In general, whenever objects of the same type exist
3527 which require an index number, then these objects must be given in the
3528 right order (jtag newtap, targets and flash banks - a target
3529 references a jtag newtap and a flash bank references a target).
3530
3531 You can use the ``scan_chain'' command to verify and display the tap order.
3532
3533 @item @b{JTAG Tap Order} JTAG tap order - command order
3534
3535 Many newer devices have multiple JTAG taps. For example: ST
3536 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3537 ``Cortex-M3'' tap. Example: The STM32 reference manual, Document ID:
3538 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3539 connected to the boundary scan tap, which then connects to the
3540 Cortex-M3 tap, which then connects to the TDO pin.
3541
3542 Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then
3543 (2) The boundary scan tap. If your board includes an additional JTAG
3544 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3545 place it before or after the STM32 chip in the chain. For example:
3546
3547 @itemize @bullet
3548 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3549 @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input)
3550 @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin
3551 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3552 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3553 @end itemize
3554
3555 The ``jtag device'' commands would thus be in the order shown below. Note:
3556
3557 @itemize @bullet
3558 @item jtag newtap Xilinx tap -irlen ...
3559 @item jtag newtap stm32 cpu -irlen ...
3560 @item jtag newtap stm32 bs -irlen ...
3561 @item # Create the debug target and say where it is
3562 @item target create stm32.cpu -chain-position stm32.cpu ...
3563 @end itemize
3564
3565
3566 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3567 log file, I can see these error messages: Error: arm7_9_common.c:561
3568 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3569
3570 TODO.
3571
3572 @end enumerate
3573
3574 @node Tcl Crash Course
3575 @chapter Tcl Crash Course
3576 @cindex Tcl
3577
3578 Not everyone knows Tcl - this is not intended to be a replacement for
3579 learning Tcl, the intent of this chapter is to give you some idea of
3580 how the Tcl scripts work.
3581
3582 This chapter is written with two audiences in mind. (1) OpenOCD users
3583 who need to understand a bit more of how JIM-Tcl works so they can do
3584 something useful, and (2) those that want to add a new command to
3585 OpenOCD.
3586
3587 @section Tcl Rule #1
3588 There is a famous joke, it goes like this:
3589 @enumerate
3590 @item Rule #1: The wife is always correct
3591 @item Rule #2: If you think otherwise, See Rule #1
3592 @end enumerate
3593
3594 The Tcl equal is this:
3595
3596 @enumerate
3597 @item Rule #1: Everything is a string
3598 @item Rule #2: If you think otherwise, See Rule #1
3599 @end enumerate
3600
3601 As in the famous joke, the consequences of Rule #1 are profound. Once
3602 you understand Rule #1, you will understand Tcl.
3603
3604 @section Tcl Rule #1b
3605 There is a second pair of rules.
3606 @enumerate
3607 @item Rule #1: Control flow does not exist. Only commands
3608 @* For example: the classic FOR loop or IF statement is not a control
3609 flow item, they are commands, there is no such thing as control flow
3610 in Tcl.
3611 @item Rule #2: If you think otherwise, See Rule #1
3612 @* Actually what happens is this: There are commands that by
3613 convention, act like control flow key words in other languages. One of
3614 those commands is the word ``for'', another command is ``if''.
3615 @end enumerate
3616
3617 @section Per Rule #1 - All Results are strings
3618 Every Tcl command results in a string. The word ``result'' is used
3619 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3620 Everything is a string}
3621
3622 @section Tcl Quoting Operators
3623 In life of a Tcl script, there are two important periods of time, the
3624 difference is subtle.
3625 @enumerate
3626 @item Parse Time
3627 @item Evaluation Time
3628 @end enumerate
3629
3630 The two key items here are how ``quoted things'' work in Tcl. Tcl has
3631 three primary quoting constructs, the [square-brackets] the
3632 @{curly-braces@} and ``double-quotes''
3633
3634 By now you should know $VARIABLES always start with a $DOLLAR
3635 sign. BTW: To set a variable, you actually use the command ``set'', as
3636 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3637 = 1'' statement, but without the equal sign.
3638
3639 @itemize @bullet
3640 @item @b{[square-brackets]}
3641 @* @b{[square-brackets]} are command substitutions. It operates much
3642 like Unix Shell `back-ticks`. The result of a [square-bracket]
3643 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3644 string}. These two statements are roughly identical:
3645 @example
3646 # bash example
3647 X=`date`
3648 echo "The Date is: $X"
3649 # Tcl example
3650 set X [date]
3651 puts "The Date is: $X"
3652 @end example
3653 @item @b{``double-quoted-things''}
3654 @* @b{``double-quoted-things''} are just simply quoted
3655 text. $VARIABLES and [square-brackets] are expanded in place - the
3656 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3657 is a string}
3658 @example
3659 set x "Dinner"
3660 puts "It is now \"[date]\", $x is in 1 hour"
3661 @end example
3662 @item @b{@{Curly-Braces@}}
3663 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3664 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3665 'single-quote' operators in BASH shell scripts, with the added
3666 feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is
3667 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3668 28/nov/2008, Jim/OpenOCD does not have a date command.
3669 @end itemize
3670
3671 @section Consequences of Rule 1/2/3/4
3672
3673 The consequences of Rule 1 are profound.
3674
3675 @subsection Tokenisation & Execution.
3676
3677 Of course, whitespace, blank lines and #comment lines are handled in
3678 the normal way.
3679
3680 As a script is parsed, each (multi) line in the script file is
3681 tokenised and according to the quoting rules. After tokenisation, that
3682 line is immedatly executed.
3683
3684 Multi line statements end with one or more ``still-open''
3685 @{curly-braces@} which - eventually - closes a few lines later.
3686
3687 @subsection Command Execution
3688
3689 Remember earlier: There are no ``control flow''
3690 statements in Tcl. Instead there are COMMANDS that simply act like
3691 control flow operators.
3692
3693 Commands are executed like this:
3694
3695 @enumerate
3696 @item Parse the next line into (argc) and (argv[]).
3697 @item Look up (argv[0]) in a table and call its function.
3698 @item Repeat until End Of File.
3699 @end enumerate
3700
3701 It sort of works like this:
3702 @example
3703 for(;;)@{
3704 ReadAndParse( &argc, &argv );
3705
3706 cmdPtr = LookupCommand( argv[0] );
3707
3708 (*cmdPtr->Execute)( argc, argv );
3709 @}
3710 @end example
3711
3712 When the command ``proc'' is parsed (which creates a procedure
3713 function) it gets 3 parameters on the command line. @b{1} the name of
3714 the proc (function), @b{2} the list of parameters, and @b{3} the body
3715 of the function. Not the choice of words: LIST and BODY. The PROC
3716 command stores these items in a table somewhere so it can be found by
3717 ``LookupCommand()''
3718
3719 @subsection The FOR command
3720
3721 The most interesting command to look at is the FOR command. In Tcl,
3722 the FOR command is normally implemented in C. Remember, FOR is a
3723 command just like any other command.
3724
3725 When the ascii text containing the FOR command is parsed, the parser
3726 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3727 are:
3728
3729 @enumerate 0
3730 @item The ascii text 'for'
3731 @item The start text
3732 @item The test expression
3733 @item The next text
3734 @item The body text
3735 @end enumerate
3736
3737 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3738 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3739 Often many of those parameters are in @{curly-braces@} - thus the
3740 variables inside are not expanded or replaced until later.
3741
3742 Remember that every Tcl command looks like the classic ``main( argc,
3743 argv )'' function in C. In JimTCL - they actually look like this:
3744
3745 @example
3746 int
3747 MyCommand( Jim_Interp *interp,
3748 int *argc,
3749 Jim_Obj * const *argvs );
3750 @end example
3751
3752 Real Tcl is nearly identical. Although the newer versions have
3753 introduced a byte-code parser and intepreter, but at the core, it
3754 still operates in the same basic way.
3755
3756 @subsection FOR command implementation
3757
3758 To understand Tcl it is perhaps most helpful to see the FOR
3759 command. Remember, it is a COMMAND not a control flow structure.
3760
3761 In Tcl there are two underlying C helper functions.
3762
3763 Remember Rule #1 - You are a string.
3764
3765 The @b{first} helper parses and executes commands found in an ascii
3766 string. Commands can be seperated by semicolons, or newlines. While
3767 parsing, variables are expanded via the quoting rules.
3768
3769 The @b{second} helper evaluates an ascii string as a numerical
3770 expression and returns a value.
3771
3772 Here is an example of how the @b{FOR} command could be
3773 implemented. The pseudo code below does not show error handling.
3774 @example
3775 void Execute_AsciiString( void *interp, const char *string );
3776
3777 int Evaluate_AsciiExpression( void *interp, const char *string );
3778
3779 int
3780 MyForCommand( void *interp,
3781 int argc,
3782 char **argv )
3783 @{
3784 if( argc != 5 )@{
3785 SetResult( interp, "WRONG number of parameters");
3786 return ERROR;
3787 @}
3788
3789 // argv[0] = the ascii string just like C
3790
3791 // Execute the start statement.
3792 Execute_AsciiString( interp, argv[1] );
3793
3794 // Top of loop test
3795 for(;;)@{
3796 i = Evaluate_AsciiExpression(interp, argv[2]);
3797 if( i == 0 )
3798 break;
3799
3800 // Execute the body
3801 Execute_AsciiString( interp, argv[3] );
3802
3803 // Execute the LOOP part
3804 Execute_AsciiString( interp, argv[4] );
3805 @}
3806
3807 // Return no error
3808 SetResult( interp, "" );
3809 return SUCCESS;
3810 @}
3811 @end example
3812
3813 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3814 in the same basic way.
3815
3816 @section OpenOCD Tcl Usage
3817
3818 @subsection source and find commands
3819 @b{Where:} In many configuration files
3820 @* Example: @b{ source [find FILENAME] }
3821 @*Remember the parsing rules
3822 @enumerate
3823 @item The FIND command is in square brackets.
3824 @* The FIND command is executed with the parameter FILENAME. It should
3825 find the full path to the named file. The RESULT is a string, which is
3826 substituted on the orginal command line.
3827 @item The command source is executed with the resulting filename.
3828 @* SOURCE reads a file and executes as a script.
3829 @end enumerate
3830 @subsection format command
3831 @b{Where:} Generally occurs in numerous places.
3832 @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
3833 @b{sprintf()}.
3834 @b{Example}
3835 @example
3836 set x 6
3837 set y 7
3838 puts [format "The answer: %d" [expr $x * $y]]
3839 @end example
3840 @enumerate
3841 @item The SET command creates 2 variables, X and Y.
3842 @item The double [nested] EXPR command performs math
3843 @* The EXPR command produces numerical result as a string.
3844 @* Refer to Rule #1
3845 @item The format command is executed, producing a single string
3846 @* Refer to Rule #1.
3847 @item The PUTS command outputs the text.
3848 @end enumerate
3849 @subsection Body or Inlined Text
3850 @b{Where:} Various TARGET scripts.
3851 @example
3852 #1 Good
3853 proc someproc @{@} @{
3854 ... multiple lines of stuff ...
3855 @}
3856 $_TARGETNAME configure -event FOO someproc
3857 #2 Good - no variables
3858 $_TARGETNAME confgure -event foo "this ; that;"
3859 #3 Good Curly Braces
3860 $_TARGETNAME configure -event FOO @{
3861 puts "Time: [date]"
3862 @}
3863 #4 DANGER DANGER DANGER
3864 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3865 @end example
3866 @enumerate
3867 @item The $_TARGETNAME is an OpenOCD variable convention.
3868 @*@b{$_TARGETNAME} represents the last target created, the value changes
3869 each time a new target is created. Remember the parsing rules. When
3870 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3871 the name of the target which happens to be a TARGET (object)
3872 command.
3873 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3874 @*There are 4 examples:
3875 @enumerate
3876 @item The TCLBODY is a simple string that happens to be a proc name
3877 @item The TCLBODY is several simple commands seperated by semicolons
3878 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3879 @item The TCLBODY is a string with variables that get expanded.
3880 @end enumerate
3881
3882 In the end, when the target event FOO occurs the TCLBODY is
3883 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3884 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3885
3886 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3887 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3888 and the text is evaluated. In case #4, they are replaced before the
3889 ``Target Object Command'' is executed. This occurs at the same time
3890 $_TARGETNAME is replaced. In case #4 the date will never
3891 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3892 Jim/OpenOCD does not have a date command@}
3893 @end enumerate
3894 @subsection Global Variables
3895 @b{Where:} You might discover this when writing your own procs @* In
3896 simple terms: Inside a PROC, if you need to access a global variable
3897 you must say so. See also ``upvar''. Example:
3898 @example
3899 proc myproc @{ @} @{
3900 set y 0 #Local variable Y
3901 global x #Global variable X
3902 puts [format "X=%d, Y=%d" $x $y]
3903 @}
3904 @end example
3905 @section Other Tcl Hacks
3906 @b{Dynamic variable creation}
3907 @example
3908 # Dynamically create a bunch of variables.
3909 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3910 # Create var name
3911 set vn [format "BIT%d" $x]
3912 # Make it a global
3913 global $vn
3914 # Set it.
3915 set $vn [expr (1 << $x)]
3916 @}
3917 @end example
3918 @b{Dynamic proc/command creation}
3919 @example
3920 # One "X" function - 5 uart functions.
3921 foreach who @{A B C D E@}
3922 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3923 @}
3924 @end example
3925
3926 @node Target Library
3927 @chapter Target Library
3928 @cindex Target Library
3929
3930 OpenOCD comes with a target configuration script library. These scripts can be
3931 used as-is or serve as a starting point.
3932
3933 The target library is published together with the OpenOCD executable and
3934 the path to the target library is in the OpenOCD script search path.
3935 Similarly there are example scripts for configuring the JTAG interface.
3936
3937 The command line below uses the example parport configuration script
3938 that ship with OpenOCD, then configures the str710.cfg target and
3939 finally issues the init and reset commands. The communication speed
3940 is set to 10kHz for reset and 8MHz for post reset.
3941
3942 @example
3943 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3944 @end example
3945
3946 To list the target scripts available:
3947
3948 @example
3949 $ ls /usr/local/lib/openocd/target
3950
3951 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3952 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3953 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3954 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3955 @end example
3956
3957 @include fdl.texi
3958
3959 @node OpenOCD Index
3960 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3961 @comment case issue with ``Index.html'' and ``index.html''
3962 @comment Occurs when creating ``--html --no-split'' output
3963 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3964 @unnumbered OpenOCD Index
3965
3966 @printindex cp
3967
3968 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)