52df9df8e1c64a2b042a0d851ac08fed6bb0ad89
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD
55 * Developers:: OpenOCD Developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * Tcl Scripting API:: Tcl Scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target Library:: Target Library
76 * FAQ:: Frequently Asked Questions
77 * Tcl Crash Course:: Tcl Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main Index
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) compliant taps on your target board.
96
97 @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
98 based, parallel port based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
102 ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3, and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}.
125
126 @section Coding Style
127 @cindex Coding Style
128
129 The following rules try to describe formatting and naming conventions that should be
130 followed to make the whole OpenOCD code look more consistent. The ultimate goal of
131 coding style should be readability, and these rules may be ignored for a particular
132 (small) piece of code if that makes it more readable.
133
134 @subsection Formatting rules:
135 @itemize @bullet
136 @item remove any trailing white space
137 @item use TAB characters for indentation, not spaces
138 @item displayed TAB width is 4 characters
139 @item make sure NOT to use DOS '\r\n' line feeds
140 @item do not add more than 2 empty lines to source files
141 @item do not add trailing empty lines to source files
142 @item do not use C++ style comments (//)
143 @item lines may be reasonably wide - there's no anachronistic 80 characters limit
144 @end itemize
145
146 @subsection Naming rules:
147 @itemize @bullet
148 @item identifiers use lower-case letters only
149 @item identifiers consisting of multiple words use underline characters between consecutive words
150 @item macros use upper-case letters only
151 @item structure names shall be appended with '_s'
152 @item typedefs shall be appended with '_t'
153 @end itemize
154
155 @subsection Function calls:
156 @itemize @bullet
157 @item function calls have no space between the functions name and the parameter
158 list: my_func(param1, param2, ...)
159 @end itemize
160
161 @node Building
162 @chapter Building
163 @cindex building OpenOCD
164
165 @section Pre-Built Tools
166 If you are interested in getting actual work done rather than building
167 OpenOCD, then check if your interface supplier provides binaries for
168 you. Chances are that that binary is from some SVN version that is more
169 stable than SVN trunk where bleeding edge development takes place.
170
171 @section Packagers Please Read!
172
173 You are a @b{PACKAGER} of OpenOCD if you
174
175 @enumerate
176 @item @b{Sell dongles} and include pre-built binaries
177 @item @b{Supply tools} i.e.: A complete development solution
178 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
179 @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro
180 @end enumerate
181
182 As a @b{PACKAGER} - you are at the top of the food chain. You solve
183 problems for downstream users. What you fix or solve - solves hundreds
184 if not thousands of user questions. If something does not work for you
185 please let us know. That said, would also like you to follow a few
186 suggestions:
187
188 @enumerate
189 @item @b{Always build with printer ports enabled.}
190 @item @b{Try to use LIBFTDI + LIBUSB where possible. You cover more bases.}
191 @end enumerate
192
193 @itemize @bullet
194 @item @b{Why YES to LIBFTDI + LIBUSB?}
195 @itemize @bullet
196 @item @b{LESS} work - libusb perhaps already there
197 @item @b{LESS} work - identical code, multiple platforms
198 @item @b{MORE} dongles are supported
199 @item @b{MORE} platforms are supported
200 @item @b{MORE} complete solution
201 @end itemize
202 @item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)?
203 @itemize @bullet
204 @item @b{LESS} speed - some say it is slower
205 @item @b{LESS} complex to distribute (external dependencies)
206 @end itemize
207 @end itemize
208
209 @section Building From Source
210
211 You can download the current SVN version with an SVN client of your choice from the
212 following repositories:
213
214 @uref{svn://svn.berlios.de/openocd/trunk}
215
216 or
217
218 @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk}
219
220 Using the SVN command line client, you can use the following command to fetch the
221 latest version (make sure there is no (non-svn) directory called "openocd" in the
222 current directory):
223
224 @example
225 svn checkout svn://svn.berlios.de/openocd/trunk openocd
226 @end example
227
228 Building OpenOCD requires a recent version of the GNU autotools (autoconf >= 2.59 and automake >= 1.9).
229 For building on Windows,
230 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
231 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
232 paths, resulting in obscure dependency errors (This is an observation I've gathered
233 from the logs of one user - correct me if I'm wrong).
234
235 You further need the appropriate driver files, if you want to build support for
236 a FTDI FT2232 based interface:
237
238 @itemize @bullet
239 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
240 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
241 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
242 homepage (@uref{http://www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
243 @end itemize
244
245 libftdi is supported under Windows. Do not use versions earlier than 0.14.
246
247 In general, the D2XX driver provides superior performance (several times as fast),
248 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
249 a kernel module, only a user space library.
250
251 To build OpenOCD (on both Linux and Cygwin), use the following commands:
252
253 @example
254 ./bootstrap
255 @end example
256
257 Bootstrap generates the configure script, and prepares building on your system.
258
259 @example
260 ./configure [options, see below]
261 @end example
262
263 Configure generates the Makefiles used to build OpenOCD.
264
265 @example
266 make
267 make install
268 @end example
269
270 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
271
272 The configure script takes several options, specifying which JTAG interfaces
273 should be included (among other things):
274
275 @itemize @bullet
276 @item
277 @option{--enable-parport} - Enable building the PC parallel port driver.
278 @item
279 @option{--enable-parport_ppdev} - Enable use of ppdev (/dev/parportN) for parport.
280 @item
281 @option{--enable-parport_giveio} - Enable use of giveio for parport instead of ioperm.
282 @item
283 @option{--enable-amtjtagaccel} - Enable building the Amontec JTAG-Accelerator driver.
284 @item
285 @option{--enable-ecosboard} - Enable building support for eCosBoard based JTAG debugger.
286 @item
287 @option{--enable-ioutil} - Enable ioutil functions - useful for standalone OpenOCD implementations.
288 @item
289 @option{--enable-httpd} - Enable builtin httpd server - useful for standalone OpenOCD implementations.
290 @item
291 @option{--enable-ep93xx} - Enable building support for EP93xx based SBCs.
292 @item
293 @option{--enable-at91rm9200} - Enable building support for AT91RM9200 based SBCs.
294 @item
295 @option{--enable-gw16012} - Enable building support for the Gateworks GW16012 JTAG programmer.
296 @item
297 @option{--enable-ft2232_ftd2xx} - Numerous USB type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
298 @item
299 @option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin).
300 @item
301 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
302 @item
303 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only. Equivalent of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
304 @item
305 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
306 @item
307 @option{--enable-presto_libftdi} - Enable building support for ASIX Presto programmer using the libftdi driver.
308 @item
309 @option{--enable-presto_ftd2xx} - Enable building support for ASIX Presto programmer using the FTD2XX driver.
310 @item
311 @option{--enable-usbprog} - Enable building support for the USBprog JTAG programmer.
312 @item
313 @option{--enable-oocd_trace} - Enable building support for the OpenOCD+trace ETM capture device.
314 @item
315 @option{--enable-jlink} - Enable building support for the Segger J-Link JTAG programmer.
316 @item
317 @option{--enable-vsllink} - Enable building support for the Versaloon-Link JTAG programmer.
318 @item
319 @option{--enable-rlink} - Enable building support for the Raisonance RLink JTAG programmer.
320 @item
321 @option{--enable-arm-jtag-ew} - Enable building support for the Olimex ARM-JTAG-EW programmer.
322 @item
323 @option{--enable-dummy} - Enable building the dummy port driver.
324 @end itemize
325
326 @section Parallel Port Dongles
327
328 If you want to access the parallel port using the PPDEV interface you have to specify
329 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
330 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
331 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
332
333 The same is true for the @option{--enable-parport_giveio} option, you have to
334 use both the @option{--enable-parport} AND the @option{--enable-parport_giveio} option if you want to use giveio instead of ioperm parallel port access method.
335
336 @section FT2232C Based USB Dongles
337
338 There are 2 methods of using the FTD2232, either (1) using the
339 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
340 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
341
342 The FTDICHIP drivers come as either a (win32) ZIP file, or a (Linux)
343 TAR.GZ file. You must unpack them ``some where'' convient. As of this
344 writing (12/26/2008) FTDICHIP does not supply means to install these
345 files ``in an appropriate place'' As a result, there are two
346 ``./configure'' options that help.
347
348 Below is an example build process:
349
350 1) Check out the latest version of ``openocd'' from SVN.
351
352 2) Download & unpack either the Windows or Linux FTD2xx drivers
353 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
354
355 @example
356 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
357 /home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents.
358 @end example
359
360 3) Configure with these options:
361
362 @example
363 Cygwin FTDICHIP solution:
364 ./configure --prefix=/home/duane/mytools \
365 --enable-ft2232_ftd2xx \
366 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
367
368 Linux FTDICHIP solution:
369 ./configure --prefix=/home/duane/mytools \
370 --enable-ft2232_ftd2xx \
371 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
372
373 Cygwin/Linux LIBFTDI solution:
374 Assumes:
375 1a) For Windows: The Windows port of LIBUSB is in place.
376 1b) For Linux: libusb has been built/installed and is in place.
377
378 2) And libftdi has been built and installed
379 Note: libftdi - relies upon libusb.
380
381 ./configure --prefix=/home/duane/mytools \
382 --enable-ft2232_libftdi
383
384 @end example
385
386 4) Then just type ``make'', and perhaps ``make install''.
387
388
389 @section Miscellaneous Configure Options
390
391 @itemize @bullet
392 @item
393 @option{--disable-option-checking} - Ignore unrecognized @option{--enable} and @option{--with} options.
394 @item
395 @option{--enable-gccwarnings} - Enable extra gcc warnings during build.
396 Default is enabled.
397 @item
398 @option{--enable-release} - Enable building of an OpenOCD release, generally
399 this is for developers. It simply omits the svn version string when the
400 openocd @option{-v} is executed.
401 @end itemize
402
403 @node JTAG Hardware Dongles
404 @chapter JTAG Hardware Dongles
405 @cindex dongles
406 @cindex FTDI
407 @cindex wiggler
408 @cindex zy1000
409 @cindex printer port
410 @cindex USB Adapter
411 @cindex rtck
412
413 Defined: @b{dongle}: A small device that plugins into a computer and serves as
414 an adapter .... [snip]
415
416 In the OpenOCD case, this generally refers to @b{a small adapater} one
417 attaches to your computer via USB or the Parallel Printer Port. The
418 execption being the Zylin ZY1000 which is a small box you attach via
419 an ethernet cable. The Zylin ZY1000 has the advantage that it does not
420 require any drivers to be installed on the developer PC. It also has
421 a built in web interface. It supports RTCK/RCLK or adaptive clocking
422 and has a built in relay to power cycle targets remotely.
423
424
425 @section Choosing a Dongle
426
427 There are three things you should keep in mind when choosing a dongle.
428
429 @enumerate
430 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
431 @item @b{Connection} Printer Ports - Does your computer have one?
432 @item @b{Connection} Is that long printer bit-bang cable practical?
433 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
434 @end enumerate
435
436 @section Stand alone Systems
437
438 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
439 dongle, but a standalone box. The ZY1000 has the advantage that it does
440 not require any drivers installed on the developer PC. It also has
441 a built in web interface. It supports RTCK/RCLK or adaptive clocking
442 and has a built in relay to power cycle targets remotely.
443
444 @section USB FT2232 Based
445
446 There are many USB JTAG dongles on the market, many of them are based
447 on a chip from ``Future Technology Devices International'' (FTDI)
448 known as the FTDI FT2232.
449
450 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
451
452 As of 28/Nov/2008, the following are supported:
453
454 @itemize @bullet
455 @item @b{usbjtag}
456 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
457 @item @b{jtagkey}
458 @* See: @url{http://www.amontec.com/jtagkey.shtml}
459 @item @b{oocdlink}
460 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
461 @item @b{signalyzer}
462 @* See: @url{http://www.signalyzer.com}
463 @item @b{evb_lm3s811}
464 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
465 @item @b{olimex-jtag}
466 @* See: @url{http://www.olimex.com}
467 @item @b{flyswatter}
468 @* See: @url{http://www.tincantools.com}
469 @item @b{turtelizer2}
470 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
471 @item @b{comstick}
472 @* Link: @url{http://www.hitex.com/index.php?id=383}
473 @item @b{stm32stick}
474 @* Link @url{http://www.hitex.com/stm32-stick}
475 @item @b{axm0432_jtag}
476 @* Axiom AXM-0432 Link @url{http://www.axman.com}
477 @end itemize
478
479 @section USB JLINK based
480 There are several OEM versions of the Segger @b{JLINK} adapter. It is
481 an example of a micro controller based JTAG adapter, it uses an
482 AT91SAM764 internally.
483
484 @itemize @bullet
485 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
486 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
487 @item @b{SEGGER JLINK}
488 @* Link: @url{http://www.segger.com/jlink.html}
489 @item @b{IAR J-Link}
490 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
491 @end itemize
492
493 @section USB RLINK based
494 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
495
496 @itemize @bullet
497 @item @b{Raisonance RLink}
498 @* Link: @url{http://www.raisonance.com/products/RLink.php}
499 @item @b{STM32 Primer}
500 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
501 @item @b{STM32 Primer2}
502 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
503 @end itemize
504
505 @section USB Other
506 @itemize @bullet
507 @item @b{USBprog}
508 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
509
510 @item @b{USB - Presto}
511 @* Link: @url{http://tools.asix.net/prg_presto.htm}
512
513 @item @b{Versaloon-Link}
514 @* Link: @url{http://www.simonqian.com/en/Versaloon}
515
516 @item @b{ARM-JTAG-EW}
517 @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
518 @end itemize
519
520 @section IBM PC Parallel Printer Port Based
521
522 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
523 and the MacGraigor Wiggler. There are many clones and variations of
524 these on the market.
525
526 @itemize @bullet
527
528 @item @b{Wiggler} - There are many clones of this.
529 @* Link: @url{http://www.macraigor.com/wiggler.htm}
530
531 @item @b{DLC5} - From XILINX - There are many clones of this
532 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
533 produced, PDF schematics are easily found and it is easy to make.
534
535 @item @b{Amontec - JTAG Accelerator}
536 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
537
538 @item @b{GW16402}
539 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
540
541 @item @b{Wiggler2}
542 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
543
544 @item @b{Wiggler_ntrst_inverted}
545 @* Yet another variation - See the source code, src/jtag/parport.c
546
547 @item @b{old_amt_wiggler}
548 @* Unknown - probably not on the market today
549
550 @item @b{arm-jtag}
551 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
552
553 @item @b{chameleon}
554 @* Link: @url{http://www.amontec.com/chameleon.shtml}
555
556 @item @b{Triton}
557 @* Unknown.
558
559 @item @b{Lattice}
560 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
561
562 @item @b{flashlink}
563 @* From ST Microsystems, link:
564 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
565 Title: FlashLINK JTAG programing cable for PSD and uPSD
566
567 @end itemize
568
569 @section Other...
570 @itemize @bullet
571
572 @item @b{ep93xx}
573 @* An EP93xx based Linux machine using the GPIO pins directly.
574
575 @item @b{at91rm9200}
576 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
577
578 @end itemize
579
580 @node Running
581 @chapter Running
582 @cindex running OpenOCD
583 @cindex --configfile
584 @cindex --debug_level
585 @cindex --logfile
586 @cindex --search
587
588 The @option{--help} option shows:
589 @verbatim
590 bash$ openocd --help
591
592 --help | -h display this help
593 --version | -v display OpenOCD version
594 --file | -f use configuration file <name>
595 --search | -s dir to search for config files and scripts
596 --debug | -d set debug level <0-3>
597 --log_output | -l redirect log output to file <name>
598 --command | -c run <command>
599 --pipe | -p use pipes when talking to gdb
600 @end verbatim
601
602 By default OpenOCD reads the file configuration file ``openocd.cfg''
603 in the current directory. To specify a different (or multiple)
604 configuration file, you can use the ``-f'' option. For example:
605
606 @example
607 openocd -f config1.cfg -f config2.cfg -f config3.cfg
608 @end example
609
610 Once started, OpenOCD runs as a daemon, waiting for connections from
611 clients (Telnet, GDB, Other).
612
613 If you are having problems, you can enable internal debug messages via
614 the ``-d'' option.
615
616 Also it is possible to interleave commands w/config scripts using the
617 @option{-c} command line switch.
618
619 To enable debug output (when reporting problems or working on OpenOCD
620 itself), use the @option{-d} command line switch. This sets the
621 @option{debug_level} to "3", outputting the most information,
622 including debug messages. The default setting is "2", outputting only
623 informational messages, warnings and errors. You can also change this
624 setting from within a telnet or gdb session using @option{debug_level
625 <n>} @xref{debug_level}.
626
627 You can redirect all output from the daemon to a file using the
628 @option{-l <logfile>} switch.
629
630 Search paths for config/script files can be added to OpenOCD by using
631 the @option{-s <search>} switch. The current directory and the OpenOCD
632 target library is in the search path by default.
633
634 For details on the @option{-p} option. @xref{Connecting to GDB}.
635
636 Note! OpenOCD will launch the GDB & telnet server even if it can not
637 establish a connection with the target. In general, it is possible for
638 the JTAG controller to be unresponsive until the target is set up
639 correctly via e.g. GDB monitor commands in a GDB init script.
640
641 @node Simple Configuration Files
642 @chapter Simple Configuration Files
643 @cindex configuration
644
645 @section Outline
646 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
647
648 @enumerate
649 @item A small openocd.cfg file which ``sources'' other configuration files
650 @item A monolithic openocd.cfg file
651 @item Many -f filename options on the command line
652 @item Your Mixed Solution
653 @end enumerate
654
655 @section Small configuration file method
656
657 This is the preferred method. It is simple and works well for many
658 people. The developers of OpenOCD would encourage you to use this
659 method. If you create a new configuration please email new
660 configurations to the development list.
661
662 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
663
664 @example
665 source [find interface/signalyzer.cfg]
666
667 # Change the default telnet port...
668 telnet_port 4444
669 # GDB connects here
670 gdb_port 3333
671 # GDB can also flash my flash!
672 gdb_memory_map enable
673 gdb_flash_program enable
674
675 source [find target/sam7x256.cfg]
676 @end example
677
678 There are many example configuration scripts you can work with. You
679 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
680 should find:
681
682 @enumerate
683 @item @b{board} - eval board level configurations
684 @item @b{interface} - specific dongle configurations
685 @item @b{target} - the target chips
686 @item @b{tcl} - helper scripts
687 @item @b{xscale} - things specific to the xscale.
688 @end enumerate
689
690 Look first in the ``boards'' area, then the ``targets'' area. Often a board
691 configuration is a good example to work from.
692
693 @section Many -f filename options
694 Some believe this is a wonderful solution, others find it painful.
695
696 You can use a series of ``-f filename'' options on the command line,
697 OpenOCD will read each filename in sequence, for example:
698
699 @example
700 openocd -f file1.cfg -f file2.cfg -f file2.cfg
701 @end example
702
703 You can also intermix various commands with the ``-c'' command line
704 option.
705
706 @section Monolithic file
707 The ``Monolithic File'' dispenses with all ``source'' statements and
708 puts everything in one self contained (monolithic) file. This is not
709 encouraged.
710
711 Please try to ``source'' various files or use the multiple -f
712 technique.
713
714 @section Advice for you
715 Often, one uses a ``mixed approach''. Where possible, please try to
716 ``source'' common things, and if needed cut/paste parts of the
717 standard distribution configuration files as needed.
718
719 @b{REMEMBER:} The ``important parts'' of your configuration file are:
720
721 @enumerate
722 @item @b{Interface} - Defines the dongle
723 @item @b{Taps} - Defines the JTAG Taps
724 @item @b{GDB Targets} - What GDB talks to
725 @item @b{Flash Programing} - Very Helpful
726 @end enumerate
727
728 Some key things you should look at and understand are:
729
730 @enumerate
731 @item The reset configuration of your debug environment as a whole
732 @item Is there a ``work area'' that OpenOCD can use?
733 @* For ARM - work areas mean up to 10x faster downloads.
734 @item For MMU/MPU based ARM chips (i.e.: ARM9 and later) will that work area still be available?
735 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
736 @end enumerate
737
738
739
740 @node Config File Guidelines
741 @chapter Config File Guidelines
742
743 This section/chapter is aimed at developers and integrators of
744 OpenOCD. These are guidelines for creating new boards and new target
745 configurations as of 28/Nov/2008.
746
747 However, you, the user of OpenOCD, should be somewhat familiar with
748 this section as it should help explain some of the internals of what
749 you might be looking at.
750
751 The user should find the following directories under @t{$(INSTALLDIR)/lib/openocd} :
752
753 @itemize @bullet
754 @item @b{interface}
755 @*Think JTAG Dongle. Files that configure the JTAG dongle go here.
756 @item @b{board}
757 @* Think Circuit Board, PWA, PCB, they go by many names. Board files
758 contain initialization items that are specific to a board - for
759 example: The SDRAM initialization sequence for the board, or the type
760 of external flash and what address it is found at. Any initialization
761 sequence to enable that external flash or SDRAM should be found in the
762 board file. Boards may also contain multiple targets, i.e.: Two CPUs, or
763 a CPU and an FPGA or CPLD.
764 @item @b{target}
765 @* Think chip. The ``target'' directory represents a JTAG tap (or
766 chip) OpenOCD should control, not a board. Two common types of targets
767 are ARM chips and FPGA or CPLD chips.
768 @end itemize
769
770 @b{If needed...} The user in their ``openocd.cfg'' file or the board
771 file might override a specific feature in any of the above files by
772 setting a variable or two before sourcing the target file. Or adding
773 various commands specific to their situation.
774
775 @section Interface Config Files
776
777 The user should be able to source one of these files via a command like this:
778
779 @example
780 source [find interface/FOOBAR.cfg]
781 Or:
782 openocd -f interface/FOOBAR.cfg
783 @end example
784
785 A preconfigured interface file should exist for every interface in use
786 today, that said, perhaps some interfaces have only been used by the
787 sole developer who created it.
788
789 @b{FIXME/NOTE:} We need to add support for a variable like Tcl variable
790 tcl_platform(platform), it should be called jim_platform (because it
791 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
792 ``cygwin'' or ``mingw''
793
794 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
795
796 @section Board Config Files
797
798 @b{Note: BOARD directory NEW as of 28/nov/2008}
799
800 The user should be able to source one of these files via a command like this:
801
802 @example
803 source [find board/FOOBAR.cfg]
804 Or:
805 openocd -f board/FOOBAR.cfg
806 @end example
807
808
809 The board file should contain one or more @t{source [find
810 target/FOO.cfg]} statements along with any board specific things.
811
812 In summary the board files should contain (if present)
813
814 @enumerate
815 @item External flash configuration (i.e.: the flash on CS0)
816 @item SDRAM configuration (size, speed, etc.
817 @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash)
818 @item Multiple TARGET source statements
819 @item All things that are not ``inside a chip''
820 @item Things inside a chip go in a 'target' file
821 @end enumerate
822
823 @section Target Config Files
824
825 The user should be able to source one of these files via a command like this:
826
827 @example
828 source [find target/FOOBAR.cfg]
829 Or:
830 openocd -f target/FOOBAR.cfg
831 @end example
832
833 In summary the target files should contain
834
835 @enumerate
836 @item Set defaults
837 @item Create taps
838 @item Reset configuration
839 @item Work areas
840 @item CPU/Chip/CPU-Core specific features
841 @item On-Chip flash
842 @end enumerate
843
844 @subsection Important variable names
845
846 By default, the end user should never need to set these
847 variables. However, if the user needs to override a setting they only
848 need to set the variable in a simple way.
849
850 @itemize @bullet
851 @item @b{CHIPNAME}
852 @* This gives a name to the overall chip, and is used as part of the
853 tap identifier dotted name.
854 @item @b{ENDIAN}
855 @* By default little - unless the chip or board is not normally used that way.
856 @item @b{CPUTAPID}
857 @* When OpenOCD examines the JTAG chain, it will attempt to identify
858 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
859 to verify the tap id number verses configuration file and may issue an
860 error or warning like this. The hope is that this will help to pinpoint
861 problems in OpenOCD configurations.
862
863 @example
864 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
865 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
866 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
867 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
868 @end example
869
870 @item @b{_TARGETNAME}
871 @* By convention, this variable is created by the target configuration
872 script. The board configuration file may make use of this variable to
873 configure things like a ``reset init'' script, or other things
874 specific to that board and that target.
875
876 If the chip has 2 targets, use the names @b{_TARGETNAME0},
877 @b{_TARGETNAME1}, ... etc.
878
879 @b{Remember:} The ``board file'' may include multiple targets.
880
881 At no time should the name ``target0'' (the default target name if
882 none was specified) be used. The name ``target0'' is a hard coded name
883 - the next target on the board will be some other number.
884
885 The user (or board file) should reasonably be able to:
886
887 @example
888 source [find target/FOO.cfg]
889 $_TARGETNAME configure ... FOO specific parameters
890
891 source [find target/BAR.cfg]
892 $_TARGETNAME configure ... BAR specific parameters
893 @end example
894
895 @end itemize
896
897 @subsection Tcl Variables Guide Line
898 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
899
900 Thus the rule we follow in OpenOCD is this: Variables that begin with
901 a leading underscore are temporary in nature, and can be modified and
902 used at will within a ?TARGET? configuration file.
903
904 @b{EXAMPLE:} The user should be able to do this:
905
906 @example
907 # Board has 3 chips,
908 # PXA270 #1 network side, big endian
909 # PXA270 #2 video side, little endian
910 # Xilinx Glue logic
911 set CHIPNAME network
912 set ENDIAN big
913 source [find target/pxa270.cfg]
914 # variable: _TARGETNAME = network.cpu
915 # other commands can refer to the "network.cpu" tap.
916 $_TARGETNAME configure .... params for this CPU..
917
918 set ENDIAN little
919 set CHIPNAME video
920 source [find target/pxa270.cfg]
921 # variable: _TARGETNAME = video.cpu
922 # other commands can refer to the "video.cpu" tap.
923 $_TARGETNAME configure .... params for this CPU..
924
925 unset ENDIAN
926 set CHIPNAME xilinx
927 source [find target/spartan3.cfg]
928
929 # Since $_TARGETNAME is temporal..
930 # these names still work!
931 network.cpu configure ... params
932 video.cpu configure ... params
933
934 @end example
935
936 @subsection Default Value Boiler Plate Code
937
938 All target configuration files should start with this (or a modified form)
939
940 @example
941 # SIMPLE example
942 if @{ [info exists CHIPNAME] @} @{
943 set _CHIPNAME $CHIPNAME
944 @} else @{
945 set _CHIPNAME sam7x256
946 @}
947
948 if @{ [info exists ENDIAN] @} @{
949 set _ENDIAN $ENDIAN
950 @} else @{
951 set _ENDIAN little
952 @}
953
954 if @{ [info exists CPUTAPID ] @} @{
955 set _CPUTAPID $CPUTAPID
956 @} else @{
957 set _CPUTAPID 0x3f0f0f0f
958 @}
959
960 @end example
961
962 @subsection Creating Taps
963 After the ``defaults'' are choosen [see above] the taps are created.
964
965 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
966
967 @example
968 # for an ARM7TDMI.
969 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
970 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
971 @end example
972
973 @b{COMPLEX example:}
974
975 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
976
977 @enumerate
978 @item @b{Unform tap names} - See: Tap Naming Convention
979 @item @b{_TARGETNAME} is created at the end where used.
980 @end enumerate
981
982 @example
983 if @{ [info exists FLASHTAPID ] @} @{
984 set _FLASHTAPID $FLASHTAPID
985 @} else @{
986 set _FLASHTAPID 0x25966041
987 @}
988 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
989
990 if @{ [info exists CPUTAPID ] @} @{
991 set _CPUTAPID $CPUTAPID
992 @} else @{
993 set _CPUTAPID 0x25966041
994 @}
995 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
996
997
998 if @{ [info exists BSTAPID ] @} @{
999 set _BSTAPID $BSTAPID
1000 @} else @{
1001 set _BSTAPID 0x1457f041
1002 @}
1003 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
1004
1005 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
1006 @end example
1007
1008 @b{Tap Naming Convention}
1009
1010 See the command ``jtag newtap'' for detail, but in brief the names you should use are:
1011
1012 @itemize @bullet
1013 @item @b{tap}
1014 @item @b{cpu}
1015 @item @b{flash}
1016 @item @b{bs}
1017 @item @b{etb}
1018 @item @b{jrc}
1019 @item @b{unknownN} - it happens :-(
1020 @end itemize
1021
1022 @subsection Reset Configuration
1023
1024 Some chips have specific ways the TRST and SRST signals are
1025 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
1026 @b{BOARD SPECIFIC} they go in the board file.
1027
1028 @subsection Work Areas
1029
1030 Work areas are small RAM areas used by OpenOCD to speed up downloads,
1031 and to download small snippets of code to program flash chips.
1032
1033 If the chip includes a form of ``on-chip-ram'' - and many do - define
1034 a reasonable work area and use the ``backup'' option.
1035
1036 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
1037 inaccessible if/when the application code enables or disables the MMU.
1038
1039 @subsection ARM Core Specific Hacks
1040
1041 If the chip has a DCC, enable it. If the chip is an ARM9 with some
1042 special high speed download features - enable it.
1043
1044 If the chip has an ARM ``vector catch'' feature - by default enable
1045 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
1046 user is really writing a handler for those situations - they can
1047 easily disable it. Experiance has shown the ``vector catch'' is
1048 helpful - for common programing errors.
1049
1050 If present, the MMU, the MPU and the CACHE should be disabled.
1051
1052 Some ARM cores are equipped with trace support, which permits
1053 examination of the instruction and data bus activity. Trace
1054 activity is controlled through an ``Embedded Trace Module'' (ETM)
1055 on one of the core's scan chains. The ETM emits voluminous data
1056 through a ``trace port''. The trace port is accessed in one
1057 of two ways. When its signals are pinned out from the chip,
1058 boards may provide a special high speed debugging connector;
1059 software support for this is not configured by default, use
1060 the ``--enable-oocd_trace'' option. Alternatively, trace data
1061 may be stored an on-chip SRAM which is packaged as an ``Embedded
1062 Trace Buffer'' (ETB). An ETB has its own TAP, usually right after
1063 its associated ARM core. OpenOCD supports the ETM, and your
1064 target configuration should set it up with the relevant trace
1065 port: ``etb'' for chips which use that, else the board-specific
1066 option will be either ``oocd_trace'' or ``dummy''.
1067
1068 @example
1069 etm config $_TARGETNAME 16 normal full etb
1070 etb config $_TARGETNAME $_CHIPNAME.etb
1071 @end example
1072
1073 @subsection Internal Flash Configuration
1074
1075 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
1076
1077 @b{Never ever} in the ``target configuration file'' define any type of
1078 flash that is external to the chip. (For example the BOOT flash on
1079 Chip Select 0). The BOOT flash information goes in a board file - not
1080 the TARGET (chip) file.
1081
1082 Examples:
1083 @itemize @bullet
1084 @item at91sam7x256 - has 256K flash YES enable it.
1085 @item str912 - has flash internal YES enable it.
1086 @item imx27 - uses boot flash on CS0 - it goes in the board file.
1087 @item pxa270 - again - CS0 flash - it goes in the board file.
1088 @end itemize
1089
1090 @node About JIM-Tcl
1091 @chapter About JIM-Tcl
1092 @cindex JIM Tcl
1093 @cindex tcl
1094
1095 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1096 learn more about JIM here: @url{http://jim.berlios.de}
1097
1098 @itemize @bullet
1099 @item @b{JIM vs. Tcl}
1100 @* JIM-TCL is a stripped down version of the well known Tcl language,
1101 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1102 fewer features. JIM-Tcl is a single .C file and a single .H file and
1103 impliments the basic Tcl command set along. In contrast: Tcl 8.6 is a
1104 4.2 MB .zip file containing 1540 files.
1105
1106 @item @b{Missing Features}
1107 @* Our practice has been: Add/clone the real Tcl feature if/when
1108 needed. We welcome JIM Tcl improvements, not bloat.
1109
1110 @item @b{Scripts}
1111 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1112 command interpreter today (28/nov/2008) is a mixture of (newer)
1113 JIM-Tcl commands, and (older) the orginal command interpreter.
1114
1115 @item @b{Commands}
1116 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1117 can type a Tcl for() loop, set variables, etc.
1118
1119 @item @b{Historical Note}
1120 @* JIM-Tcl was introduced to OpenOCD in spring 2008.
1121
1122 @item @b{Need a crash course in Tcl?}
1123 @* See: @xref{Tcl Crash Course}.
1124 @end itemize
1125
1126
1127 @node Daemon Configuration
1128 @chapter Daemon Configuration
1129 The commands here are commonly found in the openocd.cfg file and are
1130 used to specify what TCP/IP ports are used, and how GDB should be
1131 supported.
1132 @section init
1133 @cindex init
1134 This command terminates the configuration stage and
1135 enters the normal command mode. This can be useful to add commands to
1136 the startup scripts and commands such as resetting the target,
1137 programming flash, etc. To reset the CPU upon startup, add "init" and
1138 "reset" at the end of the config script or at the end of the OpenOCD
1139 command line using the @option{-c} command line switch.
1140
1141 If this command does not appear in any startup/configuration file
1142 OpenOCD executes the command for you after processing all
1143 configuration files and/or command line options.
1144
1145 @b{NOTE:} This command normally occurs at or near the end of your
1146 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1147 targets ready. For example: If your openocd.cfg file needs to
1148 read/write memory on your target - the init command must occur before
1149 the memory read/write commands.
1150
1151 @section TCP/IP Ports
1152 @itemize @bullet
1153 @item @b{telnet_port} <@var{number}>
1154 @cindex telnet_port
1155 @*Intended for a human. Port on which to listen for incoming telnet connections.
1156
1157 @item @b{tcl_port} <@var{number}>
1158 @cindex tcl_port
1159 @*Intended as a machine interface. Port on which to listen for
1160 incoming Tcl syntax. This port is intended as a simplified RPC
1161 connection that can be used by clients to issue commands and get the
1162 output from the Tcl engine.
1163
1164 @item @b{gdb_port} <@var{number}>
1165 @cindex gdb_port
1166 @*First port on which to listen for incoming GDB connections. The GDB port for the
1167 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1168 @end itemize
1169
1170 @section GDB Items
1171 @itemize @bullet
1172 @item @b{gdb_breakpoint_override} <@var{hard|soft|disable}>
1173 @cindex gdb_breakpoint_override
1174 @anchor{gdb_breakpoint_override}
1175 @*Force breakpoint type for gdb 'break' commands.
1176 The raison d'etre for this option is to support GDB GUI's without
1177 a hard/soft breakpoint concept where the default OpenOCD and
1178 GDB behaviour is not sufficient. Note that GDB will use hardware
1179 breakpoints if the memory map has been set up for flash regions.
1180
1181 This option replaces older arm7_9 target commands that addressed
1182 the same issue.
1183
1184 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1185 @cindex gdb_detach
1186 @*Configures what OpenOCD will do when GDB detaches from the daemon.
1187 Default behaviour is <@var{resume}>
1188
1189 @item @b{gdb_memory_map} <@var{enable|disable}>
1190 @cindex gdb_memory_map
1191 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to GDB when
1192 requested. GDB will then know when to set hardware breakpoints, and program flash
1193 using the GDB load command. @option{gdb_flash_program enable} must also be enabled
1194 for flash programming to work.
1195 Default behaviour is <@var{enable}>
1196 @xref{gdb_flash_program}.
1197
1198 @item @b{gdb_flash_program} <@var{enable|disable}>
1199 @cindex gdb_flash_program
1200 @anchor{gdb_flash_program}
1201 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1202 vFlash packet is received.
1203 Default behaviour is <@var{enable}>
1204 @comment END GDB Items
1205 @end itemize
1206
1207 @node Interface - Dongle Configuration
1208 @chapter Interface - Dongle Configuration
1209 Interface commands are normally found in an interface configuration
1210 file which is sourced by your openocd.cfg file. These commands tell
1211 OpenOCD what type of JTAG dongle you have and how to talk to it.
1212 @section Simple Complete Interface Examples
1213 @b{A Turtelizer FT2232 Based JTAG Dongle}
1214 @verbatim
1215 #interface
1216 interface ft2232
1217 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1218 ft2232_layout turtelizer2
1219 ft2232_vid_pid 0x0403 0xbdc8
1220 @end verbatim
1221 @b{A SEGGER Jlink}
1222 @verbatim
1223 # jlink interface
1224 interface jlink
1225 @end verbatim
1226 @b{A Raisonance RLink}
1227 @verbatim
1228 # rlink interface
1229 interface rlink
1230 @end verbatim
1231 @b{Parallel Port}
1232 @verbatim
1233 interface parport
1234 parport_port 0xc8b8
1235 parport_cable wiggler
1236 jtag_speed 0
1237 @end verbatim
1238 @b{ARM-JTAG-EW}
1239 @verbatim
1240 interface arm-jtag-ew
1241 @end verbatim
1242 @section Interface Command
1243
1244 The interface command tells OpenOCD what type of JTAG dongle you are
1245 using. Depending on the type of dongle, you may need to have one or
1246 more additional commands.
1247
1248 @itemize @bullet
1249
1250 @item @b{interface} <@var{name}>
1251 @cindex interface
1252 @*Use the interface driver <@var{name}> to connect to the
1253 target. Currently supported interfaces are
1254
1255 @itemize @minus
1256
1257 @item @b{parport}
1258 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1259
1260 @item @b{amt_jtagaccel}
1261 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1262 mode parallel port
1263
1264 @item @b{ft2232}
1265 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1266 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1267 platform. The libftdi uses libusb, and should be portable to all systems that provide
1268 libusb.
1269
1270 @item @b{ep93xx}
1271 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1272
1273 @item @b{presto}
1274 @* ASIX PRESTO USB JTAG programmer.
1275
1276 @item @b{usbprog}
1277 @* usbprog is a freely programmable USB adapter.
1278
1279 @item @b{gw16012}
1280 @* Gateworks GW16012 JTAG programmer.
1281
1282 @item @b{jlink}
1283 @* Segger jlink USB adapter
1284
1285 @item @b{rlink}
1286 @* Raisonance RLink USB adapter
1287
1288 @item @b{vsllink}
1289 @* vsllink is part of Versaloon which is a versatile USB programmer.
1290
1291 @item @b{arm-jtag-ew}
1292 @* Olimex ARM-JTAG-EW USB adapter
1293 @comment - End parameters
1294 @end itemize
1295 @comment - End Interface
1296 @end itemize
1297 @subsection parport options
1298
1299 @itemize @bullet
1300 @item @b{parport_port} <@var{number}>
1301 @cindex parport_port
1302 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1303 the @file{/dev/parport} device
1304
1305 When using PPDEV to access the parallel port, use the number of the parallel port:
1306 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1307 you may encounter a problem.
1308 @item @b{parport_cable} <@var{name}>
1309 @cindex parport_cable
1310 @*The layout of the parallel port cable used to connect to the target.
1311 Currently supported cables are
1312 @itemize @minus
1313 @item @b{wiggler}
1314 @cindex wiggler
1315 The original Wiggler layout, also supported by several clones, such
1316 as the Olimex ARM-JTAG
1317 @item @b{wiggler2}
1318 @cindex wiggler2
1319 Same as original wiggler except an led is fitted on D5.
1320 @item @b{wiggler_ntrst_inverted}
1321 @cindex wiggler_ntrst_inverted
1322 Same as original wiggler except TRST is inverted.
1323 @item @b{old_amt_wiggler}
1324 @cindex old_amt_wiggler
1325 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1326 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1327 @item @b{chameleon}
1328 @cindex chameleon
1329 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1330 program the Chameleon itself, not a connected target.
1331 @item @b{dlc5}
1332 @cindex dlc5
1333 The Xilinx Parallel cable III.
1334 @item @b{triton}
1335 @cindex triton
1336 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1337 This is also the layout used by the HollyGates design
1338 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1339 @item @b{flashlink}
1340 @cindex flashlink
1341 The ST Parallel cable.
1342 @item @b{arm-jtag}
1343 @cindex arm-jtag
1344 Same as original wiggler except SRST and TRST connections reversed and
1345 TRST is also inverted.
1346 @item @b{altium}
1347 @cindex altium
1348 Altium Universal JTAG cable.
1349 @end itemize
1350 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1351 @cindex parport_write_on_exit
1352 @*This will configure the parallel driver to write a known value to the parallel
1353 interface on exiting OpenOCD
1354 @end itemize
1355
1356 @subsection amt_jtagaccel options
1357 @itemize @bullet
1358 @item @b{parport_port} <@var{number}>
1359 @cindex parport_port
1360 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1361 @file{/dev/parport} device
1362 @end itemize
1363 @subsection ft2232 options
1364
1365 @itemize @bullet
1366 @item @b{ft2232_device_desc} <@var{description}>
1367 @cindex ft2232_device_desc
1368 @*The USB device description of the FTDI FT2232 device. If not
1369 specified, the FTDI default value is used. This setting is only valid
1370 if compiled with FTD2XX support.
1371
1372 @b{TODO:} Confirm the following: On Windows the name needs to end with
1373 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1374 this be added and when must it not be added? Why can't the code in the
1375 interface or in OpenOCD automatically add this if needed? -- Duane.
1376
1377 @item @b{ft2232_serial} <@var{serial-number}>
1378 @cindex ft2232_serial
1379 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1380 values are used.
1381 @item @b{ft2232_layout} <@var{name}>
1382 @cindex ft2232_layout
1383 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1384 signals. Valid layouts are
1385 @itemize @minus
1386 @item @b{usbjtag}
1387 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1388 @item @b{jtagkey}
1389 Amontec JTAGkey and JTAGkey-Tiny
1390 @item @b{signalyzer}
1391 Signalyzer
1392 @item @b{olimex-jtag}
1393 Olimex ARM-USB-OCD
1394 @item @b{m5960}
1395 American Microsystems M5960
1396 @item @b{evb_lm3s811}
1397 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1398 SRST signals on external connector
1399 @item @b{comstick}
1400 Hitex STR9 comstick
1401 @item @b{stm32stick}
1402 Hitex STM32 Performance Stick
1403 @item @b{flyswatter}
1404 Tin Can Tools Flyswatter
1405 @item @b{turtelizer2}
1406 egnite Software turtelizer2
1407 @item @b{oocdlink}
1408 OOCDLink
1409 @item @b{axm0432_jtag}
1410 Axiom AXM-0432
1411 @end itemize
1412
1413 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1414 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1415 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g.
1416 @example
1417 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1418 @end example
1419 @item @b{ft2232_latency} <@var{ms}>
1420 @*On some systems using FT2232 based JTAG interfaces the FT_Read function call in
1421 ft2232_read() fails to return the expected number of bytes. This can be caused by
1422 USB communication delays and has proved hard to reproduce and debug. Setting the
1423 FT2232 latency timer to a larger value increases delays for short USB packets but it
1424 also reduces the risk of timeouts before receiving the expected number of bytes.
1425 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1426 @end itemize
1427
1428 @subsection ep93xx options
1429 @cindex ep93xx options
1430 Currently, there are no options available for the ep93xx interface.
1431
1432 @section JTAG Speed
1433 @itemize @bullet
1434 @item @b{jtag_khz} <@var{reset speed kHz}>
1435 @cindex jtag_khz
1436
1437 It is debatable if this command belongs here - or in a board
1438 configuration file. In fact, in some situations the JTAG speed is
1439 changed during the target initialisation process (i.e.: (1) slow at
1440 reset, (2) program the CPU clocks, (3) run fast)
1441
1442 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1443
1444 Not all interfaces support ``rtck''. If the interface device can not
1445 support the rate asked for, or can not translate from kHz to
1446 jtag_speed, then an error is returned.
1447
1448 Make sure the JTAG clock is no more than @math{1/6th CPU-Clock}. This is
1449 especially true for synthesized cores (-S). Also see RTCK.
1450
1451 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1452 please use the command: 'jtag_rclk FREQ'. This Tcl proc (in
1453 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1454 the specified frequency.
1455
1456 @example
1457 # Fall back to 3mhz if RCLK is not supported
1458 jtag_rclk 3000
1459 @end example
1460
1461 @item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above.
1462 @cindex jtag_speed
1463 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1464 speed. The actual effect of this option depends on the JTAG interface used.
1465
1466 The speed used during reset can be adjusted using setting jtag_speed during
1467 pre_reset and post_reset events.
1468 @itemize @minus
1469
1470 @item wiggler: maximum speed / @var{number}
1471 @item ft2232: 6MHz / (@var{number}+1)
1472 @item amt jtagaccel: 8 / 2**@var{number}
1473 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1474 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1475 @comment end speed list.
1476 @end itemize
1477
1478 @comment END command list
1479 @end itemize
1480
1481 @node Reset Configuration
1482 @chapter Reset Configuration
1483 @cindex Reset Configuration
1484
1485 Every system configuration may require a different reset
1486 configuration. This can also be quite confusing. Please see the
1487 various board files for example.
1488
1489 @section jtag_nsrst_delay <@var{ms}>
1490 @cindex jtag_nsrst_delay
1491 @*How long (in milliseconds) OpenOCD should wait after deasserting
1492 nSRST before starting new JTAG operations.
1493
1494 @section jtag_ntrst_delay <@var{ms}>
1495 @cindex jtag_ntrst_delay
1496 @*Same @b{jtag_nsrst_delay}, but for nTRST
1497
1498 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1499 big resistor/capacitor, reset supervisor, or on-chip features). This
1500 keeps the signal asserted for some time after the external reset got
1501 deasserted.
1502
1503 @section reset_config
1504
1505 @b{Note:} To maintainers and integrators: Where exactly the
1506 ``reset configuration'' goes is a good question. It touches several
1507 things at once. In the end, if you have a board file - the board file
1508 should define it and assume 100% that the DONGLE supports
1509 anything. However, that does not mean the target should not also make
1510 not of something the silicon vendor has done inside the
1511 chip. @i{Grr.... nothing is every pretty.}
1512
1513 @* @b{Problems:}
1514 @enumerate
1515 @item Every JTAG Dongle is slightly different, some dongles implement reset differently.
1516 @item Every board is also slightly different; some boards tie TRST and SRST together.
1517 @item Every chip is slightly different; some chips internally tie the two signals together.
1518 @item Some may not implement all of the signals the same way.
1519 @item Some signals might be push-pull, others open-drain/collector.
1520 @end enumerate
1521 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1522 reset the TAP via TRST and send commands through the JTAG tap to halt
1523 the CPU at the reset vector before the 1st instruction is executed,
1524 and finally release the SRST signal.
1525 @*Depending on your board vendor, chip vendor, etc., these
1526 signals may have slightly different names.
1527
1528 OpenOCD defines these signals in these terms:
1529 @itemize @bullet
1530 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1531 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1532 @end itemize
1533
1534 The Command:
1535
1536 @itemize @bullet
1537 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1538 @cindex reset_config
1539 @* The @t{reset_config} command tells OpenOCD the reset configuration
1540 of your combination of Dongle, Board, and Chips.
1541 If the JTAG interface provides SRST, but the target doesn't connect
1542 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1543 be @option{none}, @option{trst_only}, @option{srst_only} or
1544 @option{trst_and_srst}.
1545
1546 [@var{combination}] is an optional value specifying broken reset
1547 signal implementations. @option{srst_pulls_trst} states that the
1548 test logic is reset together with the reset of the system (e.g. Philips
1549 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1550 the system is reset together with the test logic (only hypothetical, I
1551 haven't seen hardware with such a bug, and can be worked around).
1552 @option{combined} implies both @option{srst_pulls_trst} and
1553 @option{trst_pulls_srst}. The default behaviour if no option given is
1554 @option{separate}.
1555
1556 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1557 driver type of the reset lines to be specified. Possible values are
1558 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1559 test reset signal, and @option{srst_open_drain} (default) and
1560 @option{srst_push_pull} for the system reset. These values only affect
1561 JTAG interfaces with support for different drivers, like the Amontec
1562 JTAGkey and JTAGAccelerator.
1563
1564 @comment - end command
1565 @end itemize
1566
1567
1568
1569 @node Tap Creation
1570 @chapter Tap Creation
1571 @cindex tap creation
1572 @cindex tap configuration
1573
1574 In order for OpenOCD to control a target, a JTAG tap must be
1575 defined/created.
1576
1577 Commands to create taps are normally found in a configuration file and
1578 are not normally typed by a human.
1579
1580 When a tap is created a @b{dotted.name} is created for the tap. Other
1581 commands use that dotted.name to manipulate or refer to the tap.
1582
1583 Tap Uses:
1584 @itemize @bullet
1585 @item @b{Debug Target} A tap can be used by a GDB debug target
1586 @item @b{Flash Programing} Some chips program the flash via JTAG
1587 @item @b{Boundry Scan} Some chips support boundary scan.
1588 @end itemize
1589
1590
1591 @section jtag newtap
1592 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1593 @cindex jtag_device
1594 @cindex jtag newtap
1595 @cindex tap
1596 @cindex tap order
1597 @cindex tap geometry
1598
1599 @comment START options
1600 @itemize @bullet
1601 @item @b{CHIPNAME}
1602 @* is a symbolic name of the chip.
1603 @item @b{TAPNAME}
1604 @* is a symbol name of a tap present on the chip.
1605 @item @b{Required configparams}
1606 @* Every tap has 3 required configparams, and several ``optional
1607 parameters'', the required parameters are:
1608 @comment START REQUIRED
1609 @itemize @bullet
1610 @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
1611 @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
1612 @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
1613 some devices, there are bits in the IR that aren't used. This lets you mask
1614 them off when doing comparisons. In general, this should just be all ones for
1615 the size of the IR.
1616 @comment END REQUIRED
1617 @end itemize
1618 An example of a FOOBAR Tap
1619 @example
1620 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1621 @end example
1622 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1623 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1624 [6,4,2,0] are checked.
1625
1626 @item @b{Optional configparams}
1627 @comment START Optional
1628 @itemize @bullet
1629 @item @b{-expected-id NUMBER}
1630 @* By default it is zero. If non-zero represents the
1631 expected tap ID used when the JTAG chain is examined. Repeat
1632 the option as many times as required if multiple id's can be
1633 expected. See below.
1634 @item @b{-disable}
1635 @item @b{-enable}
1636 @* By default not specified the tap is enabled. Some chips have a
1637 JTAG route controller (JRC) that is used to enable and/or disable
1638 specific JTAG taps. You can later enable or disable any JTAG tap via
1639 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1640 DOTTED.NAME}
1641 @comment END Optional
1642 @end itemize
1643
1644 @comment END OPTIONS
1645 @end itemize
1646 @b{Notes:}
1647 @comment START NOTES
1648 @itemize @bullet
1649 @item @b{Technically}
1650 @* newtap is a sub command of the ``jtag'' command
1651 @item @b{Big Picture Background}
1652 @*GDB Talks to OpenOCD using the GDB protocol via
1653 TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to
1654 control the JTAG chain on your board. Your board has one or more chips
1655 in a @i{daisy chain configuration}. Each chip may have one or more
1656 JTAG taps. GDB ends up talking via OpenOCD to one of the taps.
1657 @item @b{NAME Rules}
1658 @*Names follow ``C'' symbol name rules (start with alpha ...)
1659 @item @b{TAPNAME - Conventions}
1660 @itemize @bullet
1661 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1662 @item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1663 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1664 @item @b{bs} - for boundary scan if this is a seperate tap.
1665 @item @b{etb} - for an embedded trace buffer (example: an ARM ETB11)
1666 @item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards)
1667 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1668 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1669 @item @b{When in doubt} - use the chip maker's name in their data sheet.
1670 @end itemize
1671 @item @b{DOTTED.NAME}
1672 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1673 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1674 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1675 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1676 numerous other places to refer to various taps.
1677 @item @b{ORDER}
1678 @* The order this command appears via the config files is
1679 important.
1680 @item @b{Multi Tap Example}
1681 @* This example is based on the ST Microsystems STR912. See the ST
1682 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1683 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
1684
1685 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1686 @*@b{checked: 28/nov/2008}
1687
1688 The diagram shows that the TDO pin connects to the flash tap, flash TDI
1689 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1690 tap which then connects to the TDI pin.
1691
1692 @example
1693 # The order is...
1694 # create tap: 'str912.flash'
1695 jtag newtap str912 flash ... params ...
1696 # create tap: 'str912.cpu'
1697 jtag newtap str912 cpu ... params ...
1698 # create tap: 'str912.bs'
1699 jtag newtap str912 bs ... params ...
1700 @end example
1701
1702 @item @b{Note: Deprecated} - Index Numbers
1703 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1704 feature is still present, however its use is highly discouraged and
1705 should not be counted upon.
1706 @item @b{Multiple chips}
1707 @* If your board has multiple chips, you should be
1708 able to @b{source} two configuration files, in the proper order, and
1709 have the taps created in the proper order.
1710 @comment END NOTES
1711 @end itemize
1712 @comment at command level
1713 @comment DOCUMENT old command
1714 @section jtag_device - REMOVED
1715 @example
1716 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1717 @end example
1718 @cindex jtag_device
1719
1720 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1721 by the ``jtag newtap'' command. The documentation remains here so that
1722 one can easily convert the old syntax to the new syntax. About the old
1723 syntax: The old syntax is positional, i.e.: The 3rd parameter is the
1724 ``irmask''. The new syntax requires named prefixes, and supports
1725 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1726 @b{jtag newtap} command for details.
1727 @example
1728 OLD: jtag_device 8 0x01 0xe3 0xfe
1729 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1730 @end example
1731
1732 @section Enable/Disable Taps
1733 @b{Note:} These commands are intended to be used as a machine/script
1734 interface. Humans might find the ``scan_chain'' command more helpful
1735 when querying the state of the JTAG taps.
1736
1737 @b{By default, all taps are enabled}
1738
1739 @itemize @bullet
1740 @item @b{jtag tapenable} @var{DOTTED.NAME}
1741 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1742 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1743 @end itemize
1744 @cindex tap enable
1745 @cindex tap disable
1746 @cindex JRC
1747 @cindex route controller
1748
1749 These commands are used when your target has a JTAG route controller
1750 that effectively adds or removes a tap from the JTAG chain in a
1751 non-standard way.
1752
1753 The ``standard way'' to remove a tap would be to place the tap in
1754 bypass mode. But with the advent of modern chips, this is not always a
1755 good solution. Some taps operate slowly, others operate fast, and
1756 there are other JTAG clock synchronisation problems one must face. To
1757 solve that problem, the JTAG route controller was introduced. Rather
1758 than ``bypass'' the tap, the tap is completely removed from the
1759 circuit and skipped.
1760
1761
1762 From OpenOCD's point of view, a JTAG tap is in one of 3 states:
1763
1764 @itemize @bullet
1765 @item @b{Enabled - Not In ByPass} and has a variable bit length
1766 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1767 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1768 @end itemize
1769
1770 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1771 @b{Historical note:} this feature was added 28/nov/2008
1772
1773 @b{jtag tapisenabled DOTTED.NAME}
1774
1775 This command returns 1 if the named tap is currently enabled, 0 if not.
1776 This command exists so that scripts that manipulate a JRC (like the
1777 OMAP3530 has) can determine if OpenOCD thinks a tap is presently
1778 enabled or disabled.
1779
1780 @page
1781 @node Target Configuration
1782 @chapter Target Configuration
1783
1784 This chapter discusses how to create a GDB debug target. Before
1785 creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
1786
1787 @section targets [NAME]
1788 @b{Note:} This command name is PLURAL - not singular.
1789
1790 With NO parameter, this plural @b{targets} command lists all known
1791 targets in a human friendly form.
1792
1793 With a parameter, this plural @b{targets} command sets the current
1794 target to the given name. (i.e.: If there are multiple debug targets)
1795
1796 Example:
1797 @verbatim
1798 (gdb) mon targets
1799 CmdName Type Endian ChainPos State
1800 -- ---------- ---------- ---------- -------- ----------
1801 0: target0 arm7tdmi little 0 halted
1802 @end verbatim
1803
1804 @section target COMMANDS
1805 @b{Note:} This command name is SINGULAR - not plural. It is used to
1806 manipulate specific targets, to create targets and other things.
1807
1808 Once a target is created, a TARGETNAME (object) command is created;
1809 see below for details.
1810
1811 The TARGET command accepts these sub-commands:
1812 @itemize @bullet
1813 @item @b{create} .. parameters ..
1814 @* creates a new target, see below for details.
1815 @item @b{types}
1816 @* Lists all supported target types (perhaps some are not yet in this document).
1817 @item @b{names}
1818 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1819 @verbatim
1820 foreach t [target names] {
1821 puts [format "Target: %s\n" $t]
1822 }
1823 @end verbatim
1824 @item @b{current}
1825 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1826 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1827 @item @b{number} @b{NUMBER}
1828 @* Internally OpenOCD maintains a list of targets - in numerical index
1829 (0..N-1) this command returns the name of the target at index N.
1830 Example usage:
1831 @verbatim
1832 set thename [target number $x]
1833 puts [format "Target %d is: %s\n" $x $thename]
1834 @end verbatim
1835 @item @b{count}
1836 @* Returns the number of targets known to OpenOCD (see number above)
1837 Example:
1838 @verbatim
1839 set c [target count]
1840 for { set x 0 } { $x < $c } { incr x } {
1841 # Assuming you have created this function
1842 print_target_details $x
1843 }
1844 @end verbatim
1845
1846 @end itemize
1847
1848 @section TARGETNAME (object) commands
1849 @b{Use:} Once a target is created, an ``object name'' that represents the
1850 target is created. By convention, the target name is identical to the
1851 tap name. In a multiple target system, one can preceed many common
1852 commands with a specific target name and effect only that target.
1853 @example
1854 str912.cpu mww 0x1234 0x42
1855 omap3530.cpu mww 0x5555 123
1856 @end example
1857
1858 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1859 good example is a on screen button, once a button is created a button
1860 has a name (a path in Tk terms) and that name is useable as a 1st
1861 class command. For example in Tk, one can create a button and later
1862 configure it like this:
1863
1864 @example
1865 # Create
1866 button .foobar -background red -command @{ foo @}
1867 # Modify
1868 .foobar configure -foreground blue
1869 # Query
1870 set x [.foobar cget -background]
1871 # Report
1872 puts [format "The button is %s" $x]
1873 @end example
1874
1875 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1876 button. Commands available as a ``target object'' are:
1877
1878 @comment START targetobj commands.
1879 @itemize @bullet
1880 @item @b{configure} - configure the target; see Target Config/Cget Options below
1881 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1882 @item @b{curstate} - current target state (running, halt, etc.
1883 @item @b{eventlist}
1884 @* Intended for a human to see/read the currently configure target events.
1885 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1886 @comment start memory
1887 @itemize @bullet
1888 @item @b{mww} ...
1889 @item @b{mwh} ...
1890 @item @b{mwb} ...
1891 @item @b{mdw} ...
1892 @item @b{mdh} ...
1893 @item @b{mdb} ...
1894 @comment end memory
1895 @end itemize
1896 @item @b{Memory To Array, Array To Memory}
1897 @* These are aimed at a machine interface to memory
1898 @itemize @bullet
1899 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1900 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1901 @* Where:
1902 @* @b{ARRAYNAME} is the name of an array variable
1903 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1904 @* @b{ADDRESS} is the target memory address
1905 @* @b{COUNT} is the number of elements to process
1906 @end itemize
1907 @item @b{Used during ``reset''}
1908 @* These commands are used internally by the OpenOCD scripts to deal
1909 with odd reset situations and are not documented here.
1910 @itemize @bullet
1911 @item @b{arp_examine}
1912 @item @b{arp_poll}
1913 @item @b{arp_reset}
1914 @item @b{arp_halt}
1915 @item @b{arp_waitstate}
1916 @end itemize
1917 @item @b{invoke-event} @b{EVENT-NAME}
1918 @* Invokes the specific event manually for the target
1919 @end itemize
1920
1921 @section Target Events
1922 At various times, certain things can happen, or you want them to happen.
1923
1924 Examples:
1925 @itemize @bullet
1926 @item What should happen when GDB connects? Should your target reset?
1927 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1928 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1929 @end itemize
1930
1931 All of the above items are handled by target events.
1932
1933 To specify an event action, either during target creation, or later
1934 via ``$_TARGETNAME configure'' see this example.
1935
1936 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1937 target event name, and BODY is a Tcl procedure or string of commands
1938 to execute.
1939
1940 The programmers model is the ``-command'' option used in Tcl/Tk
1941 buttons and events. Below are two identical examples, the first
1942 creates and invokes small procedure. The second inlines the procedure.
1943
1944 @example
1945 proc my_attach_proc @{ @} @{
1946 puts "RESET...."
1947 reset halt
1948 @}
1949 mychip.cpu configure -event gdb-attach my_attach_proc
1950 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1951 @end example
1952
1953 @section Current Events
1954 The following events are available:
1955 @itemize @bullet
1956 @item @b{debug-halted}
1957 @* The target has halted for debug reasons (i.e.: breakpoint)
1958 @item @b{debug-resumed}
1959 @* The target has resumed (i.e.: gdb said run)
1960 @item @b{early-halted}
1961 @* Occurs early in the halt process
1962 @item @b{examine-end}
1963 @* Currently not used (goal: when JTAG examine completes)
1964 @item @b{examine-start}
1965 @* Currently not used (goal: when JTAG examine starts)
1966 @item @b{gdb-attach}
1967 @* When GDB connects
1968 @item @b{gdb-detach}
1969 @* When GDB disconnects
1970 @item @b{gdb-end}
1971 @* When the taret has halted and GDB is not doing anything (see early halt)
1972 @item @b{gdb-flash-erase-start}
1973 @* Before the GDB flash process tries to erase the flash
1974 @item @b{gdb-flash-erase-end}
1975 @* After the GDB flash process has finished erasing the flash
1976 @item @b{gdb-flash-write-start}
1977 @* Before GDB writes to the flash
1978 @item @b{gdb-flash-write-end}
1979 @* After GDB writes to the flash
1980 @item @b{gdb-start}
1981 @* Before the taret steps, gdb is trying to start/resume the target
1982 @item @b{halted}
1983 @* The target has halted
1984 @item @b{old-gdb_program_config}
1985 @* DO NOT USE THIS: Used internally
1986 @item @b{old-pre_resume}
1987 @* DO NOT USE THIS: Used internally
1988 @item @b{reset-assert-pre}
1989 @* Before reset is asserted on the tap.
1990 @item @b{reset-assert-post}
1991 @* Reset is now asserted on the tap.
1992 @item @b{reset-deassert-pre}
1993 @* Reset is about to be released on the tap
1994 @item @b{reset-deassert-post}
1995 @* Reset has been released on the tap
1996 @item @b{reset-end}
1997 @* Currently not used.
1998 @item @b{reset-halt-post}
1999 @* Currently not usd
2000 @item @b{reset-halt-pre}
2001 @* Currently not used
2002 @item @b{reset-init}
2003 @* Currently not used
2004 @item @b{reset-start}
2005 @* Currently not used
2006 @item @b{reset-wait-pos}
2007 @* Currently not used
2008 @item @b{reset-wait-pre}
2009 @* Currently not used
2010 @item @b{resume-start}
2011 @* Before any target is resumed
2012 @item @b{resume-end}
2013 @* After all targets have resumed
2014 @item @b{resume-ok}
2015 @* Success
2016 @item @b{resumed}
2017 @* Target has resumed
2018 @item @b{tap-enable}
2019 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
2020 @example
2021 jtag configure DOTTED.NAME -event tap-enable @{
2022 puts "Enabling CPU"
2023 ...
2024 @}
2025 @end example
2026 @item @b{tap-disable}
2027 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
2028 @example
2029 jtag configure DOTTED.NAME -event tap-disable @{
2030 puts "Disabling CPU"
2031 ...
2032 @}
2033 @end example
2034 @end itemize
2035
2036 @section target create
2037 @cindex target
2038 @cindex target creation
2039
2040 @example
2041 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
2042 @end example
2043 @*This command creates a GDB debug target that refers to a specific JTAG tap.
2044 @comment START params
2045 @itemize @bullet
2046 @item @b{NAME}
2047 @* Is the name of the debug target. By convention it should be the tap
2048 DOTTED.NAME, this name is also used to create the target object
2049 command.
2050 @item @b{TYPE}
2051 @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are:
2052 @comment START types
2053 @itemize @minus
2054 @item @b{arm7tdmi}
2055 @item @b{arm720t}
2056 @item @b{arm9tdmi}
2057 @item @b{arm920t}
2058 @item @b{arm922t}
2059 @item @b{arm926ejs}
2060 @item @b{arm966e}
2061 @item @b{cortex_m3}
2062 @item @b{feroceon}
2063 @item @b{xscale}
2064 @item @b{arm11}
2065 @item @b{mips_m4k}
2066 @comment end TYPES
2067 @end itemize
2068 @item @b{PARAMS}
2069 @*PARAMs are various target configuration parameters. The following ones are mandatory:
2070 @comment START mandatory
2071 @itemize @bullet
2072 @item @b{-endian big|little}
2073 @item @b{-chain-position DOTTED.NAME}
2074 @comment end MANDATORY
2075 @end itemize
2076 @comment END params
2077 @end itemize
2078
2079 @section Target Config/Cget Options
2080 These options can be specified when the target is created, or later
2081 via the configure option or to query the target via cget.
2082 @itemize @bullet
2083 @item @b{-type} - returns the target type
2084 @item @b{-event NAME BODY} see Target events
2085 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
2086 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
2087 @item @b{-work-area-size [ADDRESS]} specify/set the work area
2088 @item @b{-work-area-backup [0|1]} does the work area get backed up
2089 @item @b{-endian [big|little]}
2090 @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about
2091 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
2092 @end itemize
2093 Example:
2094 @example
2095 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
2096 set name [target number $x]
2097 set y [$name cget -endian]
2098 set z [$name cget -type]
2099 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
2100 @}
2101 @end example
2102
2103 @section Target Variants
2104 @itemize @bullet
2105 @item @b{arm7tdmi}
2106 @* Unknown (please write me)
2107 @item @b{arm720t}
2108 @* Unknown (please write me) (similar to arm7tdmi)
2109 @item @b{arm9tdmi}
2110 @* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t}
2111 This enables the hardware single-stepping support found on these
2112 cores.
2113 @item @b{arm920t}
2114 @* None.
2115 @item @b{arm966e}
2116 @* None (this is also used as the ARM946)
2117 @item @b{cortex_m3}
2118 @* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause
2119 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2120 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2121 be detected and the normal reset behaviour used.
2122 @item @b{xscale}
2123 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2124 @item @b{arm11}
2125 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2126 @item @b{mips_m4k}
2127 @* Use variant @option{ejtag_srst} when debugging targets that do not
2128 provide a functional SRST line on the EJTAG connector. This causes
2129 OpenOCD to instead use an EJTAG software reset command to reset the
2130 processor. You still need to enable @option{srst} on the reset
2131 configuration command to enable OpenOCD hardware reset functionality.
2132 @comment END variants
2133 @end itemize
2134 @section working_area - Command Removed
2135 @cindex working_area
2136 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2137 @* This documentation remains because there are existing scripts that
2138 still use this that need to be converted.
2139 @example
2140 working_area target# address size backup| [virtualaddress]
2141 @end example
2142 @* The target# is a the 0 based target numerical index.
2143
2144 This command specifies a working area for the debugger to use. This
2145 may be used to speed-up downloads to target memory and flash
2146 operations, or to perform otherwise unavailable operations (some
2147 coprocessor operations on ARM7/9 systems, for example). The last
2148 parameter decides whether the memory should be preserved
2149 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
2150 possible, use a working_area that doesn't need to be backed up, as
2151 performing a backup slows down operation.
2152
2153 @node Flash Configuration
2154 @chapter Flash programming
2155 @cindex Flash Configuration
2156
2157 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2158 flash that a micro may boot from. Perhaps you, the reader, would like to
2159 contribute support for this.
2160
2161 Flash Steps:
2162 @enumerate
2163 @item Configure via the command @b{flash bank}
2164 @* Normally this is done in a configuration file.
2165 @item Operate on the flash via @b{flash SOMECOMMAND}
2166 @* Often commands to manipulate the flash are typed by a human, or run
2167 via a script in some automated way. For example: To program the boot
2168 flash on your board.
2169 @item GDB Flashing
2170 @* Flashing via GDB requires the flash be configured via ``flash
2171 bank'', and the GDB flash features be enabled. See the daemon
2172 configuration section for more details.
2173 @end enumerate
2174
2175 @section Flash commands
2176 @cindex Flash commands
2177 @subsection flash banks
2178 @b{flash banks}
2179 @cindex flash banks
2180 @*List configured flash banks
2181 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2182 @subsection flash info
2183 @b{flash info} <@var{num}>
2184 @cindex flash info
2185 @*Print info about flash bank <@option{num}>
2186 @subsection flash probe
2187 @b{flash probe} <@var{num}>
2188 @cindex flash probe
2189 @*Identify the flash, or validate the parameters of the configured flash. Operation
2190 depends on the flash type.
2191 @subsection flash erase_check
2192 @b{flash erase_check} <@var{num}>
2193 @cindex flash erase_check
2194 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2195 updates the erase state information displayed by @option{flash info}. That means you have
2196 to issue an @option{erase_check} command after erasing or programming the device to get
2197 updated information.
2198 @subsection flash protect_check
2199 @b{flash protect_check} <@var{num}>
2200 @cindex flash protect_check
2201 @*Check protection state of sectors in flash bank <num>.
2202 @option{flash erase_sector} using the same syntax.
2203 @subsection flash erase_sector
2204 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2205 @cindex flash erase_sector
2206 @anchor{flash erase_sector}
2207 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2208 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2209 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2210 the CFI driver).
2211 @subsection flash erase_address
2212 @b{flash erase_address} <@var{address}> <@var{length}>
2213 @cindex flash erase_address
2214 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2215 @subsection flash write_bank
2216 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2217 @cindex flash write_bank
2218 @anchor{flash write_bank}
2219 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2220 <@option{offset}> bytes from the beginning of the bank.
2221 @subsection flash write_image
2222 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2223 @cindex flash write_image
2224 @anchor{flash write_image}
2225 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2226 [@var{offset}] can be specified and the file [@var{type}] can be specified
2227 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2228 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2229 if the @option{erase} parameter is given.
2230 @subsection flash protect
2231 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2232 @cindex flash protect
2233 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2234 <@var{last}> of @option{flash bank} <@var{num}>.
2235
2236 @subsection mFlash commands
2237 @cindex mFlash commands
2238 @itemize @bullet
2239 @item @b{mflash probe}
2240 @cindex mflash probe
2241 Probe mflash.
2242 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2243 @cindex mflash write
2244 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2245 <@var{offset}> bytes from the beginning of the bank.
2246 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2247 @cindex mflash dump
2248 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2249 to a <@var{file}>.
2250 @end itemize
2251
2252 @section flash bank command
2253 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2254
2255 @example
2256 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2257 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2258 @end example
2259 @cindex flash bank
2260 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2261 and <@var{bus_width}> bytes using the selected flash <driver>.
2262
2263 @subsection External Flash - cfi options
2264 @cindex cfi options
2265 CFI flashes are external flash chips - often they are connected to a
2266 specific chip select on the CPU. By default, at hard reset, most
2267 CPUs have the ablity to ``boot'' from some flash chip - typically
2268 attached to the CPU's CS0 pin.
2269
2270 For other chip selects: OpenOCD does not know how to configure, or
2271 access a specific chip select. Instead you, the human, might need to
2272 configure additional chip selects via other commands (like: mww) , or
2273 perhaps configure a GPIO pin that controls the ``write protect'' pin
2274 on the flash chip.
2275
2276 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2277 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2278 @*CFI flashes require the number of the target they're connected to as an additional
2279 argument. The CFI driver makes use of a working area (specified for the target)
2280 to significantly speed up operation.
2281
2282 @var{chip_width} and @var{bus_width} are specified in bytes.
2283
2284 The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types.
2285
2286 @var{x16_as_x8} ???
2287
2288 @subsection Internal Flash (Microcontrollers)
2289 @subsubsection lpc2000 options
2290 @cindex lpc2000 options
2291
2292 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2293 <@var{clock}> [@var{calc_checksum}]
2294 @*LPC flashes don't require the chip and bus width to be specified. Additional
2295 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2296 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2297 of the target this flash belongs to (first is 0), the frequency at which the core
2298 is currently running (in kHz - must be an integral number), and the optional keyword
2299 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2300 vector table.
2301
2302
2303 @subsubsection at91sam7 options
2304 @cindex at91sam7 options
2305
2306 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2307 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2308 reading the chip-id and type.
2309
2310 @subsubsection str7 options
2311 @cindex str7 options
2312
2313 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2314 @*variant can be either STR71x, STR73x or STR75x.
2315
2316 @subsubsection str9 options
2317 @cindex str9 options
2318
2319 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2320 @*The str9 needs the flash controller to be configured prior to Flash programming, e.g.
2321 @example
2322 str9x flash_config 0 4 2 0 0x80000
2323 @end example
2324 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2325
2326 @subsubsection str9 options (str9xpec driver)
2327
2328 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2329 @*Before using the flash commands the turbo mode must be enabled using str9xpec
2330 @option{enable_turbo} <@var{num>.}
2331
2332 Only use this driver for locking/unlocking the device or configuring the option bytes.
2333 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2334
2335 @subsubsection Stellaris (LM3Sxxx) options
2336 @cindex Stellaris (LM3Sxxx) options
2337
2338 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2339 @*Stellaris flash plugin only require the @var{target#}.
2340
2341 @subsubsection stm32x options
2342 @cindex stm32x options
2343
2344 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2345 @*stm32x flash plugin only require the @var{target#}.
2346
2347 @subsubsection aduc702x options
2348 @cindex aduc702x options
2349
2350 @b{flash bank aduc702x} 0 0 0 0 <@var{target#}>
2351 @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target#} argument (all devices in this family have the same memory layout).
2352
2353 @subsection mFlash Configuration
2354 @cindex mFlash Configuration
2355 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2356 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2357 @cindex mflash bank
2358 @*Configures a mflash for <@var{soc}> host bank at
2359 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2360 order. Pin number format is dependent on host GPIO calling convention.
2361 If WP or DPD pin was not used, write -1. Currently, mflash bank
2362 support s3c2440 and pxa270.
2363
2364 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2365 @example
2366 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2367 @end example
2368 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2369 @example
2370 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2371 @end example
2372
2373 @section Microcontroller specific Flash Commands
2374
2375 @subsection AT91SAM7 specific commands
2376 @cindex AT91SAM7 specific commands
2377 The flash configuration is deduced from the chip identification register. The flash
2378 controller handles erases automatically on a page (128/265 byte) basis, so erase is
2379 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2380 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2381 that can be erased separatly. Only an EraseAll command is supported by the controller
2382 for each flash plane and this is called with
2383 @itemize @bullet
2384 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2385 @*bulk erase flash planes first_plane to last_plane.
2386 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2387 @cindex at91sam7 gpnvm
2388 @*set or clear a gpnvm bit for the processor
2389 @end itemize
2390
2391 @subsection STR9 specific commands
2392 @cindex STR9 specific commands
2393 @anchor{STR9 specific commands}
2394 These are flash specific commands when using the str9xpec driver.
2395 @itemize @bullet
2396 @item @b{str9xpec enable_turbo} <@var{num}>
2397 @cindex str9xpec enable_turbo
2398 @*enable turbo mode, will simply remove the str9 from the chain and talk
2399 directly to the embedded flash controller.
2400 @item @b{str9xpec disable_turbo} <@var{num}>
2401 @cindex str9xpec disable_turbo
2402 @*restore the str9 into JTAG chain.
2403 @item @b{str9xpec lock} <@var{num}>
2404 @cindex str9xpec lock
2405 @*lock str9 device. The str9 will only respond to an unlock command that will
2406 erase the device.
2407 @item @b{str9xpec unlock} <@var{num}>
2408 @cindex str9xpec unlock
2409 @*unlock str9 device.
2410 @item @b{str9xpec options_read} <@var{num}>
2411 @cindex str9xpec options_read
2412 @*read str9 option bytes.
2413 @item @b{str9xpec options_write} <@var{num}>
2414 @cindex str9xpec options_write
2415 @*write str9 option bytes.
2416 @end itemize
2417
2418 Note: Before using the str9xpec driver here is some background info to help
2419 you better understand how the drivers works. OpenOCD has two flash drivers for
2420 the str9.
2421 @enumerate
2422 @item
2423 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2424 flash programming as it is faster than the @option{str9xpec} driver.
2425 @item
2426 Direct programming @option{str9xpec} using the flash controller. This is an
2427 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2428 core does not need to be running to program using this flash driver. Typical use
2429 for this driver is locking/unlocking the target and programming the option bytes.
2430 @end enumerate
2431
2432 Before we run any commands using the @option{str9xpec} driver we must first disable
2433 the str9 core. This example assumes the @option{str9xpec} driver has been
2434 configured for flash bank 0.
2435 @example
2436 # assert srst, we do not want core running
2437 # while accessing str9xpec flash driver
2438 jtag_reset 0 1
2439 # turn off target polling
2440 poll off
2441 # disable str9 core
2442 str9xpec enable_turbo 0
2443 # read option bytes
2444 str9xpec options_read 0
2445 # re-enable str9 core
2446 str9xpec disable_turbo 0
2447 poll on
2448 reset halt
2449 @end example
2450 The above example will read the str9 option bytes.
2451 When performing a unlock remember that you will not be able to halt the str9 - it
2452 has been locked. Halting the core is not required for the @option{str9xpec} driver
2453 as mentioned above, just issue the commands above manually or from a telnet prompt.
2454
2455 @subsection STR9 configuration
2456 @cindex STR9 configuration
2457 @itemize @bullet
2458 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2459 <@var{BBADR}> <@var{NBBADR}>
2460 @cindex str9x flash_config
2461 @*Configure str9 flash controller.
2462 @example
2463 e.g. str9x flash_config 0 4 2 0 0x80000
2464 This will setup
2465 BBSR - Boot Bank Size register
2466 NBBSR - Non Boot Bank Size register
2467 BBADR - Boot Bank Start Address register
2468 NBBADR - Boot Bank Start Address register
2469 @end example
2470 @end itemize
2471
2472 @subsection STR9 option byte configuration
2473 @cindex STR9 option byte configuration
2474 @itemize @bullet
2475 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2476 @cindex str9xpec options_cmap
2477 @*configure str9 boot bank.
2478 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2479 @cindex str9xpec options_lvdthd
2480 @*configure str9 lvd threshold.
2481 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2482 @cindex str9xpec options_lvdsel
2483 @*configure str9 lvd source.
2484 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2485 @cindex str9xpec options_lvdwarn
2486 @*configure str9 lvd reset warning source.
2487 @end itemize
2488
2489 @subsection STM32x specific commands
2490 @cindex STM32x specific commands
2491
2492 These are flash specific commands when using the stm32x driver.
2493 @itemize @bullet
2494 @item @b{stm32x lock} <@var{num}>
2495 @cindex stm32x lock
2496 @*lock stm32 device.
2497 @item @b{stm32x unlock} <@var{num}>
2498 @cindex stm32x unlock
2499 @*unlock stm32 device.
2500 @item @b{stm32x options_read} <@var{num}>
2501 @cindex stm32x options_read
2502 @*read stm32 option bytes.
2503 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2504 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2505 @cindex stm32x options_write
2506 @*write stm32 option bytes.
2507 @item @b{stm32x mass_erase} <@var{num}>
2508 @cindex stm32x mass_erase
2509 @*mass erase flash memory.
2510 @end itemize
2511
2512 @subsection Stellaris specific commands
2513 @cindex Stellaris specific commands
2514
2515 These are flash specific commands when using the Stellaris driver.
2516 @itemize @bullet
2517 @item @b{stellaris mass_erase} <@var{num}>
2518 @cindex stellaris mass_erase
2519 @*mass erase flash memory.
2520 @end itemize
2521
2522 @node General Commands
2523 @chapter General Commands
2524 @cindex commands
2525
2526 The commands documented in this chapter here are common commands that
2527 you, as a human, may want to type and see the output of. Configuration type
2528 commands are documented elsewhere.
2529
2530 Intent:
2531 @itemize @bullet
2532 @item @b{Source Of Commands}
2533 @* OpenOCD commands can occur in a configuration script (discussed
2534 elsewhere) or typed manually by a human or supplied programatically,
2535 or via one of several TCP/IP Ports.
2536
2537 @item @b{From the human}
2538 @* A human should interact with the telnet interface (default port: 4444,
2539 or via GDB, default port 3333)
2540
2541 To issue commands from within a GDB session, use the @option{monitor}
2542 command, e.g. use @option{monitor poll} to issue the @option{poll}
2543 command. All output is relayed through the GDB session.
2544
2545 @item @b{Machine Interface}
2546 The Tcl interface's intent is to be a machine interface. The default Tcl
2547 port is 5555.
2548 @end itemize
2549
2550
2551 @section Daemon Commands
2552
2553 @subsection sleep [@var{msec}]
2554 @cindex sleep
2555 @*Wait for n milliseconds before resuming. Useful in connection with script files
2556 (@var{script} command and @var{target_script} configuration).
2557
2558 @subsection shutdown
2559 @cindex shutdown
2560 @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
2561
2562 @subsection debug_level [@var{n}]
2563 @cindex debug_level
2564 @anchor{debug_level}
2565 @*Display or adjust debug level to n<0-3>
2566
2567 @subsection fast [@var{enable|disable}]
2568 @cindex fast
2569 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2570 downloads and fast memory access will work if the JTAG interface isn't too fast and
2571 the core doesn't run at a too low frequency. Note that this option only changes the default
2572 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2573 individually.
2574
2575 The target specific "dangerous" optimisation tweaking options may come and go
2576 as more robust and user friendly ways are found to ensure maximum throughput
2577 and robustness with a minimum of configuration.
2578
2579 Typically the "fast enable" is specified first on the command line:
2580
2581 @example
2582 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2583 @end example
2584
2585 @subsection log_output <@var{file}>
2586 @cindex log_output
2587 @*Redirect logging to <file> (default: stderr)
2588
2589 @subsection script <@var{file}>
2590 @cindex script
2591 @*Execute commands from <file>
2592 See also: ``source [find FILENAME]''
2593
2594 @section Target state handling
2595 @subsection power <@var{on}|@var{off}>
2596 @cindex reg
2597 @*Turn power switch to target on/off.
2598 No arguments: print status.
2599 Not all interfaces support this.
2600
2601 @subsection reg [@option{#}|@option{name}] [value]
2602 @cindex reg
2603 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2604 No arguments: list all available registers for the current target.
2605 Number or name argument: display a register.
2606 Number or name and value arguments: set register value.
2607
2608 @subsection poll [@option{on}|@option{off}]
2609 @cindex poll
2610 @*Poll the target for its current state. If the target is in debug mode, architecture
2611 specific information about the current state is printed. An optional parameter
2612 allows continuous polling to be enabled and disabled.
2613
2614 @subsection halt [@option{ms}]
2615 @cindex halt
2616 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2617 Default [@option{ms}] is 5 seconds if no arg given.
2618 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2619 will stop OpenOCD from waiting.
2620
2621 @subsection wait_halt [@option{ms}]
2622 @cindex wait_halt
2623 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2624 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2625 arg is given.
2626
2627 @subsection resume [@var{address}]
2628 @cindex resume
2629 @*Resume the target at its current code position, or at an optional address.
2630 OpenOCD will wait 5 seconds for the target to resume.
2631
2632 @subsection step [@var{address}]
2633 @cindex step
2634 @*Single-step the target at its current code position, or at an optional address.
2635
2636 @subsection reset [@option{run}|@option{halt}|@option{init}]
2637 @cindex reset
2638 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2639
2640 With no arguments a "reset run" is executed
2641 @itemize @minus
2642 @item @b{run}
2643 @cindex reset run
2644 @*Let the target run.
2645 @item @b{halt}
2646 @cindex reset halt
2647 @*Immediately halt the target (works only with certain configurations).
2648 @item @b{init}
2649 @cindex reset init
2650 @*Immediately halt the target, and execute the reset script (works only with certain
2651 configurations)
2652 @end itemize
2653
2654 @subsection soft_reset_halt
2655 @cindex reset
2656 @*Requesting target halt and executing a soft reset. This is often used
2657 when a target cannot be reset and halted. The target, after reset is
2658 released begins to execute code. OpenOCD attempts to stop the CPU and
2659 then sets the program counter back to the reset vector. Unfortunately
2660 the code that was executed may have left the hardware in an unknown
2661 state.
2662
2663
2664 @section Memory access commands
2665 @subsection meminfo
2666 display available RAM memory.
2667 @subsection Memory peek/poke type commands
2668 These commands allow accesses of a specific size to the memory
2669 system. Often these are used to configure the current target in some
2670 special way. For example - one may need to write certian values to the
2671 SDRAM controller to enable SDRAM.
2672
2673 @enumerate
2674 @item To change the current target see the ``targets'' (plural) command
2675 @item In system level scripts these commands are deprecated, please use the TARGET object versions.
2676 @end enumerate
2677
2678 @itemize @bullet
2679 @item @b{mdw} <@var{addr}> [@var{count}]
2680 @cindex mdw
2681 @*display memory words (32bit)
2682 @item @b{mdh} <@var{addr}> [@var{count}]
2683 @cindex mdh
2684 @*display memory half-words (16bit)
2685 @item @b{mdb} <@var{addr}> [@var{count}]
2686 @cindex mdb
2687 @*display memory bytes (8bit)
2688 @item @b{mww} <@var{addr}> <@var{value}>
2689 @cindex mww
2690 @*write memory word (32bit)
2691 @item @b{mwh} <@var{addr}> <@var{value}>
2692 @cindex mwh
2693 @*write memory half-word (16bit)
2694 @item @b{mwb} <@var{addr}> <@var{value}>
2695 @cindex mwb
2696 @*write memory byte (8bit)
2697 @end itemize
2698
2699 @section Image loading commands
2700 @subsection load_image
2701 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2702 @cindex load_image
2703 @anchor{load_image}
2704 @*Load image <@var{file}> to target memory at <@var{address}>
2705 @subsection fast_load_image
2706 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2707 @cindex fast_load_image
2708 @anchor{fast_load_image}
2709 @*Normally you should be using @b{load_image} or GDB load. However, for
2710 testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
2711 host), storing the image in memory and uploading the image to the target
2712 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2713 Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host
2714 memory, i.e. does not affect target. This approach is also useful when profiling
2715 target programming performance as I/O and target programming can easily be profiled
2716 separately.
2717 @subsection fast_load
2718 @b{fast_load}
2719 @cindex fast_image
2720 @anchor{fast_image}
2721 @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
2722 @subsection dump_image
2723 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2724 @cindex dump_image
2725 @anchor{dump_image}
2726 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2727 (binary) <@var{file}>.
2728 @subsection verify_image
2729 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2730 @cindex verify_image
2731 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2732 This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
2733
2734
2735 @section Breakpoint commands
2736 @cindex Breakpoint commands
2737 @itemize @bullet
2738 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2739 @cindex bp
2740 @*set breakpoint <address> <length> [hw]
2741 @item @b{rbp} <@var{addr}>
2742 @cindex rbp
2743 @*remove breakpoint <adress>
2744 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2745 @cindex wp
2746 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2747 @item @b{rwp} <@var{addr}>
2748 @cindex rwp
2749 @*remove watchpoint <adress>
2750 @end itemize
2751
2752 @section Misc Commands
2753 @cindex Other Target Commands
2754 @itemize
2755 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2756
2757 Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling.
2758
2759 @end itemize
2760
2761 @section Target Specific Commands
2762 @cindex Target Specific Commands
2763
2764
2765 @page
2766 @section Architecture Specific Commands
2767 @cindex Architecture Specific Commands
2768
2769 @subsection ARMV4/5 specific commands
2770 @cindex ARMV4/5 specific commands
2771
2772 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2773 or Intel XScale (XScale isn't supported yet).
2774 @itemize @bullet
2775 @item @b{armv4_5 reg}
2776 @cindex armv4_5 reg
2777 @*Display a list of all banked core registers, fetching the current value from every
2778 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2779 register value.
2780 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2781 @cindex armv4_5 core_mode
2782 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2783 The target is resumed in the currently set @option{core_mode}.
2784 @end itemize
2785
2786 @subsection ARM7/9 specific commands
2787 @cindex ARM7/9 specific commands
2788
2789 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2790 ARM920T or ARM926EJ-S.
2791 @itemize @bullet
2792 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2793 @cindex arm7_9 dbgrq
2794 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2795 safe for all but ARM7TDMI--S cores (like Philips LPC).
2796 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2797 @cindex arm7_9 fast_memory_access
2798 @anchor{arm7_9 fast_memory_access}
2799 @*Allow OpenOCD to read and write memory without checking completion of
2800 the operation. This provides a huge speed increase, especially with USB JTAG
2801 cables (FT2232), but might be unsafe if used with targets running at very low
2802 speeds, like the 32kHz startup clock of an AT91RM9200.
2803 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2804 @cindex arm7_9 dcc_downloads
2805 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2806 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2807 unsafe, especially with targets running at very low speeds. This command was introduced
2808 with OpenOCD rev. 60.
2809 @end itemize
2810
2811 @subsection ARM720T specific commands
2812 @cindex ARM720T specific commands
2813
2814 @itemize @bullet
2815 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2816 @cindex arm720t cp15
2817 @*display/modify cp15 register <@option{num}> [@option{value}].
2818 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2819 @cindex arm720t md<bhw>_phys
2820 @*Display memory at physical address addr.
2821 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2822 @cindex arm720t mw<bhw>_phys
2823 @*Write memory at physical address addr.
2824 @item @b{arm720t virt2phys} <@var{va}>
2825 @cindex arm720t virt2phys
2826 @*Translate a virtual address to a physical address.
2827 @end itemize
2828
2829 @subsection ARM9TDMI specific commands
2830 @cindex ARM9TDMI specific commands
2831
2832 @itemize @bullet
2833 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2834 @cindex arm9tdmi vector_catch
2835 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2836 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2837 @option{irq} @option{fiq}.
2838
2839 Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S.
2840 @end itemize
2841
2842 @subsection ARM966E specific commands
2843 @cindex ARM966E specific commands
2844
2845 @itemize @bullet
2846 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2847 @cindex arm966e cp15
2848 @*display/modify cp15 register <@option{num}> [@option{value}].
2849 @end itemize
2850
2851 @subsection ARM920T specific commands
2852 @cindex ARM920T specific commands
2853
2854 @itemize @bullet
2855 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2856 @cindex arm920t cp15
2857 @*display/modify cp15 register <@option{num}> [@option{value}].
2858 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2859 @cindex arm920t cp15i
2860 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2861 @item @b{arm920t cache_info}
2862 @cindex arm920t cache_info
2863 @*Print information about the caches found. This allows to see whether your target
2864 is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2865 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2866 @cindex arm920t md<bhw>_phys
2867 @*Display memory at physical address addr.
2868 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2869 @cindex arm920t mw<bhw>_phys
2870 @*Write memory at physical address addr.
2871 @item @b{arm920t read_cache} <@var{filename}>
2872 @cindex arm920t read_cache
2873 @*Dump the content of ICache and DCache to a file.
2874 @item @b{arm920t read_mmu} <@var{filename}>
2875 @cindex arm920t read_mmu
2876 @*Dump the content of the ITLB and DTLB to a file.
2877 @item @b{arm920t virt2phys} <@var{va}>
2878 @cindex arm920t virt2phys
2879 @*Translate a virtual address to a physical address.
2880 @end itemize
2881
2882 @subsection ARM926EJ-S specific commands
2883 @cindex ARM926EJ-S specific commands
2884
2885 @itemize @bullet
2886 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2887 @cindex arm926ejs cp15
2888 @*display/modify cp15 register <@option{num}> [@option{value}].
2889 @item @b{arm926ejs cache_info}
2890 @cindex arm926ejs cache_info
2891 @*Print information about the caches found.
2892 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2893 @cindex arm926ejs md<bhw>_phys
2894 @*Display memory at physical address addr.
2895 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2896 @cindex arm926ejs mw<bhw>_phys
2897 @*Write memory at physical address addr.
2898 @item @b{arm926ejs virt2phys} <@var{va}>
2899 @cindex arm926ejs virt2phys
2900 @*Translate a virtual address to a physical address.
2901 @end itemize
2902
2903 @subsection CORTEX_M3 specific commands
2904 @cindex CORTEX_M3 specific commands
2905
2906 @itemize @bullet
2907 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2908 @cindex cortex_m3 maskisr
2909 @*Enable masking (disabling) interrupts during target step/resume.
2910 @end itemize
2911
2912 @page
2913 @section Debug commands
2914 @cindex Debug commands
2915 The following commands give direct access to the core, and are most likely
2916 only useful while debugging OpenOCD.
2917 @itemize @bullet
2918 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2919 @cindex arm7_9 write_xpsr
2920 @*Immediately write either the current program status register (CPSR) or the saved
2921 program status register (SPSR), without changing the register cache (as displayed
2922 by the @option{reg} and @option{armv4_5 reg} commands).
2923 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2924 <@var{0=cpsr},@var{1=spsr}>
2925 @cindex arm7_9 write_xpsr_im8
2926 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2927 operation (similar to @option{write_xpsr}).
2928 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2929 @cindex arm7_9 write_core_reg
2930 @*Write a core register, without changing the register cache (as displayed by the
2931 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2932 encoding of the [M4:M0] bits of the PSR.
2933 @end itemize
2934
2935 @section Target Requests
2936 @cindex Target Requests
2937 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2938 See libdcc in the contrib dir for more details.
2939 @itemize @bullet
2940 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}|@var{charmsg}>
2941 @cindex target_request debugmsgs
2942 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running. @var{charmsg} receives messages if Linux kernel ``Kernel low-level debugging via EmbeddedICE DCC channel'' option is enabled.
2943 @end itemize
2944
2945 @node JTAG Commands
2946 @chapter JTAG Commands
2947 @cindex JTAG Commands
2948 Generally most people will not use the bulk of these commands. They
2949 are mostly used by the OpenOCD developers or those who need to
2950 directly manipulate the JTAG taps.
2951
2952 In general these commands control JTAG taps at a very low level. For
2953 example if you need to control a JTAG Route Controller (i.e.: the
2954 OMAP3530 on the Beagle Board has one) you might use these commands in
2955 a script or an event procedure.
2956 @section Commands
2957 @cindex Commands
2958 @itemize @bullet
2959 @item @b{scan_chain}
2960 @cindex scan_chain
2961 @*Print current scan chain configuration.
2962 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2963 @cindex jtag_reset
2964 @*Toggle reset lines.
2965 @item @b{endstate} <@var{tap_state}>
2966 @cindex endstate
2967 @*Finish JTAG operations in <@var{tap_state}>.
2968 @item @b{runtest} <@var{num_cycles}>
2969 @cindex runtest
2970 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2971 @item @b{statemove} [@var{tap_state}]
2972 @cindex statemove
2973 @*Move to current endstate or [@var{tap_state}]
2974 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2975 @cindex irscan
2976 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2977 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2978 @cindex drscan
2979 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2980 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2981 @cindex verify_ircapture
2982 @*Verify value captured during Capture-IR. Default is enabled.
2983 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2984 @cindex var
2985 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2986 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2987 @cindex field
2988 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2989 @end itemize
2990
2991 @section Tap states
2992 @cindex Tap states
2993 Available tap_states are:
2994 @itemize @bullet
2995 @item @b{RESET}
2996 @cindex RESET
2997 @item @b{IDLE}
2998 @cindex IDLE
2999 @item @b{DRSELECT}
3000 @cindex DRSELECT
3001 @item @b{DRCAPTURE}
3002 @cindex DRCAPTURE
3003 @item @b{DRSHIFT}
3004 @cindex DRSHIFT
3005 @item @b{DREXIT1}
3006 @cindex DREXIT1
3007 @item @b{DRPAUSE}
3008 @cindex DRPAUSE
3009 @item @b{DREXIT2}
3010 @cindex DREXIT2
3011 @item @b{DRUPDATE}
3012 @cindex DRUPDATE
3013 @item @b{IRSELECT}
3014 @cindex IRSELECT
3015 @item @b{IRCAPTURE}
3016 @cindex IRCAPTURE
3017 @item @b{IRSHIFT}
3018 @cindex IRSHIFT
3019 @item @b{IREXIT1}
3020 @cindex IREXIT1
3021 @item @b{IRPAUSE}
3022 @cindex IRPAUSE
3023 @item @b{IREXIT2}
3024 @cindex IREXIT2
3025 @item @b{IRUPDATE}
3026 @cindex IRUPDATE
3027 @end itemize
3028
3029
3030 @node TFTP
3031 @chapter TFTP
3032 @cindex TFTP
3033 If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can
3034 be used to access files on PCs (either the developer's PC or some other PC).
3035
3036 The way this works on the ZY1000 is to prefix a filename by
3037 "/tftp/ip/" and append the TFTP path on the TFTP
3038 server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
3039 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
3040 if the file was hosted on the embedded host.
3041
3042 In order to achieve decent performance, you must choose a TFTP server
3043 that supports a packet size bigger than the default packet size (512 bytes). There
3044 are numerous TFTP servers out there (free and commercial) and you will have to do
3045 a bit of googling to find something that fits your requirements.
3046
3047 @node Sample Scripts
3048 @chapter Sample Scripts
3049 @cindex scripts
3050
3051 This page shows how to use the Target Library.
3052
3053 The configuration script can be divided into the following sections:
3054 @itemize @bullet
3055 @item Daemon configuration
3056 @item Interface
3057 @item JTAG scan chain
3058 @item Target configuration
3059 @item Flash configuration
3060 @end itemize
3061
3062 Detailed information about each section can be found at OpenOCD configuration.
3063
3064 @section AT91R40008 example
3065 @cindex AT91R40008 example
3066 To start OpenOCD with a target script for the AT91R40008 CPU and reset
3067 the CPU upon startup of the OpenOCD daemon.
3068 @example
3069 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
3070 @end example
3071
3072
3073 @node GDB and OpenOCD
3074 @chapter GDB and OpenOCD
3075 @cindex GDB and OpenOCD
3076 OpenOCD complies with the remote gdbserver protocol, and as such can be used
3077 to debug remote targets.
3078
3079 @section Connecting to GDB
3080 @cindex Connecting to GDB
3081 @anchor{Connecting to GDB}
3082 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
3083 instance GDB 6.3 has a known bug that produces bogus memory access
3084 errors, which has since been fixed: look up 1836 in
3085 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
3086
3087 @*OpenOCD can communicate with GDB in two ways:
3088 @enumerate
3089 @item
3090 A socket (TCP/IP) connection is typically started as follows:
3091 @example
3092 target remote localhost:3333
3093 @end example
3094 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
3095 @item
3096 A pipe connection is typically started as follows:
3097 @example
3098 target remote | openocd --pipe
3099 @end example
3100 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
3101 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
3102 session.
3103 @end enumerate
3104
3105 @*To see a list of available OpenOCD commands type @option{monitor help} on the
3106 GDB command line.
3107
3108 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3109 to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes
3110 packet size and the device's memory map.
3111
3112 Previous versions of OpenOCD required the following GDB options to increase
3113 the packet size and speed up GDB communication:
3114 @example
3115 set remote memory-write-packet-size 1024
3116 set remote memory-write-packet-size fixed
3117 set remote memory-read-packet-size 1024
3118 set remote memory-read-packet-size fixed
3119 @end example
3120 This is now handled in the @option{qSupported} PacketSize and should not be required.
3121
3122 @section Programming using GDB
3123 @cindex Programming using GDB
3124
3125 By default the target memory map is sent to GDB. This can be disabled by
3126 the following OpenOCD configuration option:
3127 @example
3128 gdb_memory_map disable
3129 @end example
3130 For this to function correctly a valid flash configuration must also be set
3131 in OpenOCD. For faster performance you should also configure a valid
3132 working area.
3133
3134 Informing GDB of the memory map of the target will enable GDB to protect any
3135 flash areas of the target and use hardware breakpoints by default. This means
3136 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3137 using a memory map. @xref{gdb_breakpoint_override}.
3138
3139 To view the configured memory map in GDB, use the GDB command @option{info mem}
3140 All other unassigned addresses within GDB are treated as RAM.
3141
3142 GDB 6.8 and higher set any memory area not in the memory map as inaccessible.
3143 This can be changed to the old behaviour by using the following GDB command
3144 @example
3145 set mem inaccessible-by-default off
3146 @end example
3147
3148 If @option{gdb_flash_program enable} is also used, GDB will be able to
3149 program any flash memory using the vFlash interface.
3150
3151 GDB will look at the target memory map when a load command is given, if any
3152 areas to be programmed lie within the target flash area the vFlash packets
3153 will be used.
3154
3155 If the target needs configuring before GDB programming, an event
3156 script can be executed:
3157 @example
3158 $_TARGETNAME configure -event EVENTNAME BODY
3159 @end example
3160
3161 To verify any flash programming the GDB command @option{compare-sections}
3162 can be used.
3163
3164 @node Tcl Scripting API
3165 @chapter Tcl Scripting API
3166 @cindex Tcl Scripting API
3167 @cindex Tcl scripts
3168 @section API rules
3169
3170 The commands are stateless. E.g. the telnet command line has a concept
3171 of currently active target, the Tcl API proc's take this sort of state
3172 information as an argument to each proc.
3173
3174 There are three main types of return values: single value, name value
3175 pair list and lists.
3176
3177 Name value pair. The proc 'foo' below returns a name/value pair
3178 list.
3179
3180 @verbatim
3181
3182 > set foo(me) Duane
3183 > set foo(you) Oyvind
3184 > set foo(mouse) Micky
3185 > set foo(duck) Donald
3186
3187 If one does this:
3188
3189 > set foo
3190
3191 The result is:
3192
3193 me Duane you Oyvind mouse Micky duck Donald
3194
3195 Thus, to get the names of the associative array is easy:
3196
3197 foreach { name value } [set foo] {
3198 puts "Name: $name, Value: $value"
3199 }
3200 @end verbatim
3201
3202 Lists returned must be relatively small. Otherwise a range
3203 should be passed in to the proc in question.
3204
3205 @section Internal low-level Commands
3206
3207 By low-level, the intent is a human would not directly use these commands.
3208
3209 Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
3210 is the low level API upon which "flash banks" is implemented.
3211
3212 @itemize @bullet
3213 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3214
3215 Read memory and return as a Tcl array for script processing
3216 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3217
3218 Convert a Tcl array to memory locations and write the values
3219 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3220
3221 Return information about the flash banks
3222 @end itemize
3223
3224 OpenOCD commands can consist of two words, e.g. "flash banks". The
3225 startup.tcl "unknown" proc will translate this into a Tcl proc
3226 called "flash_banks".
3227
3228 @section OpenOCD specific Global Variables
3229
3230 @subsection HostOS
3231
3232 Real Tcl has ::tcl_platform(), and platform::identify, and many other
3233 variables. JimTCL, as implemented in OpenOCD creates $HostOS which
3234 holds one of the following values:
3235
3236 @itemize @bullet
3237 @item @b{winxx} Built using Microsoft Visual Studio
3238 @item @b{linux} Linux is the underlying operating sytem
3239 @item @b{darwin} Darwin (mac-os) is the underlying operating sytem.
3240 @item @b{cygwin} Running under Cygwin
3241 @item @b{mingw32} Running under MingW32
3242 @item @b{other} Unknown, none of the above.
3243 @end itemize
3244
3245 Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
3246
3247 @node Upgrading
3248 @chapter Deprecated/Removed Commands
3249 @cindex Deprecated/Removed Commands
3250 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3251
3252 @itemize @bullet
3253 @item @b{arm7_9 fast_writes}
3254 @cindex arm7_9 fast_writes
3255 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3256 @item @b{arm7_9 force_hw_bkpts}
3257 @cindex arm7_9 force_hw_bkpts
3258 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3259 for flash if the GDB memory map has been set up(default when flash is declared in
3260 target configuration). @xref{gdb_breakpoint_override}.
3261 @item @b{arm7_9 sw_bkpts}
3262 @cindex arm7_9 sw_bkpts
3263 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3264 @item @b{daemon_startup}
3265 @cindex daemon_startup
3266 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3267 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3268 and @option{target cortex_m3 little reset_halt 0}.
3269 @item @b{dump_binary}
3270 @cindex dump_binary
3271 @*use @option{dump_image} command with same args. @xref{dump_image}.
3272 @item @b{flash erase}
3273 @cindex flash erase
3274 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3275 @item @b{flash write}
3276 @cindex flash write
3277 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3278 @item @b{flash write_binary}
3279 @cindex flash write_binary
3280 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3281 @item @b{flash auto_erase}
3282 @cindex flash auto_erase
3283 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3284 @item @b{load_binary}
3285 @cindex load_binary
3286 @*use @option{load_image} command with same args. @xref{load_image}.
3287 @item @b{run_and_halt_time}
3288 @cindex run_and_halt_time
3289 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3290 following commands:
3291 @smallexample
3292 reset run
3293 sleep 100
3294 halt
3295 @end smallexample
3296 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3297 @cindex target
3298 @*use the create subcommand of @option{target}.
3299 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3300 @cindex target_script
3301 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3302 @item @b{working_area}
3303 @cindex working_area
3304 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3305 @end itemize
3306
3307 @node FAQ
3308 @chapter FAQ
3309 @cindex faq
3310 @enumerate
3311 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3312 @cindex RTCK
3313 @cindex adaptive clocking
3314 @*
3315
3316 In digital circuit design it is often refered to as ``clock
3317 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
3318 operating at some speed, your target is operating at another. The two
3319 clocks are not synchronised, they are ``asynchronous''
3320
3321 In order for the two to work together they must be synchronised. Otherwise
3322 the two systems will get out of sync with each other and nothing will
3323 work. There are 2 basic options:
3324 @enumerate
3325 @item
3326 Use a special circuit.
3327 @item
3328 One clock must be some multiple slower than the other.
3329 @end enumerate
3330
3331 @b{Does this really matter?} For some chips and some situations, this
3332 is a non-issue (i.e.: A 500MHz ARM926) but for others - for example some
3333 Atmel SAM7 and SAM9 chips start operation from reset at 32kHz -
3334 program/enable the oscillators and eventually the main clock. It is in
3335 those critical times you must slow the JTAG clock to sometimes 1 to
3336 4kHz.
3337
3338 Imagine debugging a 500MHz ARM926 hand held battery powered device
3339 that ``deep sleeps'' at 32kHz between every keystroke. It can be
3340 painful.
3341
3342 @b{Solution #1 - A special circuit}
3343
3344 In order to make use of this, your JTAG dongle must support the RTCK
3345 feature. Not all dongles support this - keep reading!
3346
3347 The RTCK signal often found in some ARM chips is used to help with
3348 this problem. ARM has a good description of the problem described at
3349 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3350 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic
3351 work? / how does adaptive clocking work?''.
3352
3353 The nice thing about adaptive clocking is that ``battery powered hand
3354 held device example'' - the adaptiveness works perfectly all the
3355 time. One can set a break point or halt the system in the deep power
3356 down code, slow step out until the system speeds up.
3357
3358 @b{Solution #2 - Always works - but may be slower}
3359
3360 Often this is a perfectly acceptable solution.
3361
3362 In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3363 the target clock speed. But what that ``magic division'' is varies
3364 depending on the chips on your board. @b{ARM rule of thumb} Most ARM
3365 based systems require an 8:1 division. @b{Xilinx rule of thumb} is
3366 1/12 the clock speed.
3367
3368 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
3369
3370 You can still debug the 'low power' situations - you just need to
3371 manually adjust the clock speed at every step. While painful and
3372 tedious, it is not always practical.
3373
3374 It is however easy to ``code your way around it'' - i.e.: Cheat a little,
3375 have a special debug mode in your application that does a ``high power
3376 sleep''. If you are careful - 98% of your problems can be debugged
3377 this way.
3378
3379 To set the JTAG frequency use the command:
3380
3381 @example
3382 # Example: 1.234MHz
3383 jtag_khz 1234
3384 @end example
3385
3386
3387 @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths?
3388
3389 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3390 around Windows filenames.
3391
3392 @example
3393 > echo \a
3394
3395 > echo @{\a@}
3396 \a
3397 > echo "\a"
3398
3399 >
3400 @end example
3401
3402
3403 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3404
3405 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3406 claims to come with all the necessary DLLs. When using Cygwin, try launching
3407 OpenOCD from the Cygwin shell.
3408
3409 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3410 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3411 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3412
3413 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3414 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
3415 software breakpoints consume one of the two available hardware breakpoints.
3416
3417 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
3418
3419 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3420 clock at the time you're programming the flash. If you've specified the crystal's
3421 frequency, make sure the PLL is disabled. If you've specified the full core speed
3422 (e.g. 60MHz), make sure the PLL is enabled.
3423
3424 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3425 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3426 out while waiting for end of scan, rtck was disabled".
3427
3428 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3429 settings in your PC BIOS (ECP, EPP, and different versions of those).
3430
3431 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3432 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3433 memory read caused data abort".
3434
3435 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3436 beyond the last valid frame. It might be possible to prevent this by setting up
3437 a proper "initial" stack frame, if you happen to know what exactly has to
3438 be done, feel free to add this here.
3439
3440 @b{Simple:} In your startup code - push 8 registers of zeros onto the
3441 stack before calling main(). What GDB is doing is ``climbing'' the run
3442 time stack by reading various values on the stack using the standard
3443 call frame for the target. GDB keeps going - until one of 2 things
3444 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3445 stackframes have been processed. By pushing zeros on the stack, GDB
3446 gracefully stops.
3447
3448 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3449 your C code, do the same - artifically push some zeros onto the stack,
3450 remember to pop them off when the ISR is done.
3451
3452 @b{Also note:} If you have a multi-threaded operating system, they
3453 often do not @b{in the intrest of saving memory} waste these few
3454 bytes. Painful...
3455
3456
3457 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3458 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3459
3460 This warning doesn't indicate any serious problem, as long as you don't want to
3461 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3462 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3463 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3464 independently. With this setup, it's not possible to halt the core right out of
3465 reset, everything else should work fine.
3466
3467 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3468 toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3469 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3470 quit with an error message. Is there a stability issue with OpenOCD?
3471
3472 No, this is not a stability issue concerning OpenOCD. Most users have solved
3473 this issue by simply using a self-powered USB hub, which they connect their
3474 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3475 supply stable enough for the Amontec JTAGkey to be operated.
3476
3477 @b{Laptops running on battery have this problem too...}
3478
3479 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3480 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3481 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3482 What does that mean and what might be the reason for this?
3483
3484 First of all, the reason might be the USB power supply. Try using a self-powered
3485 hub instead of a direct connection to your computer. Secondly, the error code 4
3486 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3487 chip ran into some sort of error - this points us to a USB problem.
3488
3489 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3490 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3491 What does that mean and what might be the reason for this?
3492
3493 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3494 has closed the connection to OpenOCD. This might be a GDB issue.
3495
3496 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3497 are described, there is a parameter for specifying the clock frequency
3498 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3499 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3500 specified in kilohertz. However, I do have a quartz crystal of a
3501 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3502 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3503 clock frequency?
3504
3505 No. The clock frequency specified here must be given as an integral number.
3506 However, this clock frequency is used by the In-Application-Programming (IAP)
3507 routines of the LPC2000 family only, which seems to be very tolerant concerning
3508 the given clock frequency, so a slight difference between the specified clock
3509 frequency and the actual clock frequency will not cause any trouble.
3510
3511 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3512
3513 Well, yes and no. Commands can be given in arbitrary order, yet the
3514 devices listed for the JTAG scan chain must be given in the right
3515 order (jtag newdevice), with the device closest to the TDO-Pin being
3516 listed first. In general, whenever objects of the same type exist
3517 which require an index number, then these objects must be given in the
3518 right order (jtag newtap, targets and flash banks - a target
3519 references a jtag newtap and a flash bank references a target).
3520
3521 You can use the ``scan_chain'' command to verify and display the tap order.
3522
3523 @item @b{JTAG Tap Order} JTAG tap order - command order
3524
3525 Many newer devices have multiple JTAG taps. For example: ST
3526 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3527 ``Cortex-M3'' tap. Example: The STM32 reference manual, Document ID:
3528 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3529 connected to the boundary scan tap, which then connects to the
3530 Cortex-M3 tap, which then connects to the TDO pin.
3531
3532 Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then
3533 (2) The boundary scan tap. If your board includes an additional JTAG
3534 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3535 place it before or after the STM32 chip in the chain. For example:
3536
3537 @itemize @bullet
3538 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3539 @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input)
3540 @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin
3541 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3542 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3543 @end itemize
3544
3545 The ``jtag device'' commands would thus be in the order shown below. Note:
3546
3547 @itemize @bullet
3548 @item jtag newtap Xilinx tap -irlen ...
3549 @item jtag newtap stm32 cpu -irlen ...
3550 @item jtag newtap stm32 bs -irlen ...
3551 @item # Create the debug target and say where it is
3552 @item target create stm32.cpu -chain-position stm32.cpu ...
3553 @end itemize
3554
3555
3556 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3557 log file, I can see these error messages: Error: arm7_9_common.c:561
3558 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3559
3560 TODO.
3561
3562 @end enumerate
3563
3564 @node Tcl Crash Course
3565 @chapter Tcl Crash Course
3566 @cindex Tcl
3567
3568 Not everyone knows Tcl - this is not intended to be a replacement for
3569 learning Tcl, the intent of this chapter is to give you some idea of
3570 how the Tcl scripts work.
3571
3572 This chapter is written with two audiences in mind. (1) OpenOCD users
3573 who need to understand a bit more of how JIM-Tcl works so they can do
3574 something useful, and (2) those that want to add a new command to
3575 OpenOCD.
3576
3577 @section Tcl Rule #1
3578 There is a famous joke, it goes like this:
3579 @enumerate
3580 @item Rule #1: The wife is always correct
3581 @item Rule #2: If you think otherwise, See Rule #1
3582 @end enumerate
3583
3584 The Tcl equal is this:
3585
3586 @enumerate
3587 @item Rule #1: Everything is a string
3588 @item Rule #2: If you think otherwise, See Rule #1
3589 @end enumerate
3590
3591 As in the famous joke, the consequences of Rule #1 are profound. Once
3592 you understand Rule #1, you will understand Tcl.
3593
3594 @section Tcl Rule #1b
3595 There is a second pair of rules.
3596 @enumerate
3597 @item Rule #1: Control flow does not exist. Only commands
3598 @* For example: the classic FOR loop or IF statement is not a control
3599 flow item, they are commands, there is no such thing as control flow
3600 in Tcl.
3601 @item Rule #2: If you think otherwise, See Rule #1
3602 @* Actually what happens is this: There are commands that by
3603 convention, act like control flow key words in other languages. One of
3604 those commands is the word ``for'', another command is ``if''.
3605 @end enumerate
3606
3607 @section Per Rule #1 - All Results are strings
3608 Every Tcl command results in a string. The word ``result'' is used
3609 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3610 Everything is a string}
3611
3612 @section Tcl Quoting Operators
3613 In life of a Tcl script, there are two important periods of time, the
3614 difference is subtle.
3615 @enumerate
3616 @item Parse Time
3617 @item Evaluation Time
3618 @end enumerate
3619
3620 The two key items here are how ``quoted things'' work in Tcl. Tcl has
3621 three primary quoting constructs, the [square-brackets] the
3622 @{curly-braces@} and ``double-quotes''
3623
3624 By now you should know $VARIABLES always start with a $DOLLAR
3625 sign. BTW: To set a variable, you actually use the command ``set'', as
3626 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3627 = 1'' statement, but without the equal sign.
3628
3629 @itemize @bullet
3630 @item @b{[square-brackets]}
3631 @* @b{[square-brackets]} are command substitutions. It operates much
3632 like Unix Shell `back-ticks`. The result of a [square-bracket]
3633 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3634 string}. These two statements are roughly identical:
3635 @example
3636 # bash example
3637 X=`date`
3638 echo "The Date is: $X"
3639 # Tcl example
3640 set X [date]
3641 puts "The Date is: $X"
3642 @end example
3643 @item @b{``double-quoted-things''}
3644 @* @b{``double-quoted-things''} are just simply quoted
3645 text. $VARIABLES and [square-brackets] are expanded in place - the
3646 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3647 is a string}
3648 @example
3649 set x "Dinner"
3650 puts "It is now \"[date]\", $x is in 1 hour"
3651 @end example
3652 @item @b{@{Curly-Braces@}}
3653 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3654 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3655 'single-quote' operators in BASH shell scripts, with the added
3656 feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is
3657 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3658 28/nov/2008, Jim/OpenOCD does not have a date command.
3659 @end itemize
3660
3661 @section Consequences of Rule 1/2/3/4
3662
3663 The consequences of Rule 1 are profound.
3664
3665 @subsection Tokenisation & Execution.
3666
3667 Of course, whitespace, blank lines and #comment lines are handled in
3668 the normal way.
3669
3670 As a script is parsed, each (multi) line in the script file is
3671 tokenised and according to the quoting rules. After tokenisation, that
3672 line is immedatly executed.
3673
3674 Multi line statements end with one or more ``still-open''
3675 @{curly-braces@} which - eventually - closes a few lines later.
3676
3677 @subsection Command Execution
3678
3679 Remember earlier: There are no ``control flow''
3680 statements in Tcl. Instead there are COMMANDS that simply act like
3681 control flow operators.
3682
3683 Commands are executed like this:
3684
3685 @enumerate
3686 @item Parse the next line into (argc) and (argv[]).
3687 @item Look up (argv[0]) in a table and call its function.
3688 @item Repeat until End Of File.
3689 @end enumerate
3690
3691 It sort of works like this:
3692 @example
3693 for(;;)@{
3694 ReadAndParse( &argc, &argv );
3695
3696 cmdPtr = LookupCommand( argv[0] );
3697
3698 (*cmdPtr->Execute)( argc, argv );
3699 @}
3700 @end example
3701
3702 When the command ``proc'' is parsed (which creates a procedure
3703 function) it gets 3 parameters on the command line. @b{1} the name of
3704 the proc (function), @b{2} the list of parameters, and @b{3} the body
3705 of the function. Not the choice of words: LIST and BODY. The PROC
3706 command stores these items in a table somewhere so it can be found by
3707 ``LookupCommand()''
3708
3709 @subsection The FOR command
3710
3711 The most interesting command to look at is the FOR command. In Tcl,
3712 the FOR command is normally implemented in C. Remember, FOR is a
3713 command just like any other command.
3714
3715 When the ascii text containing the FOR command is parsed, the parser
3716 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3717 are:
3718
3719 @enumerate 0
3720 @item The ascii text 'for'
3721 @item The start text
3722 @item The test expression
3723 @item The next text
3724 @item The body text
3725 @end enumerate
3726
3727 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3728 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3729 Often many of those parameters are in @{curly-braces@} - thus the
3730 variables inside are not expanded or replaced until later.
3731
3732 Remember that every Tcl command looks like the classic ``main( argc,
3733 argv )'' function in C. In JimTCL - they actually look like this:
3734
3735 @example
3736 int
3737 MyCommand( Jim_Interp *interp,
3738 int *argc,
3739 Jim_Obj * const *argvs );
3740 @end example
3741
3742 Real Tcl is nearly identical. Although the newer versions have
3743 introduced a byte-code parser and intepreter, but at the core, it
3744 still operates in the same basic way.
3745
3746 @subsection FOR command implementation
3747
3748 To understand Tcl it is perhaps most helpful to see the FOR
3749 command. Remember, it is a COMMAND not a control flow structure.
3750
3751 In Tcl there are two underlying C helper functions.
3752
3753 Remember Rule #1 - You are a string.
3754
3755 The @b{first} helper parses and executes commands found in an ascii
3756 string. Commands can be seperated by semicolons, or newlines. While
3757 parsing, variables are expanded via the quoting rules.
3758
3759 The @b{second} helper evaluates an ascii string as a numerical
3760 expression and returns a value.
3761
3762 Here is an example of how the @b{FOR} command could be
3763 implemented. The pseudo code below does not show error handling.
3764 @example
3765 void Execute_AsciiString( void *interp, const char *string );
3766
3767 int Evaluate_AsciiExpression( void *interp, const char *string );
3768
3769 int
3770 MyForCommand( void *interp,
3771 int argc,
3772 char **argv )
3773 @{
3774 if( argc != 5 )@{
3775 SetResult( interp, "WRONG number of parameters");
3776 return ERROR;
3777 @}
3778
3779 // argv[0] = the ascii string just like C
3780
3781 // Execute the start statement.
3782 Execute_AsciiString( interp, argv[1] );
3783
3784 // Top of loop test
3785 for(;;)@{
3786 i = Evaluate_AsciiExpression(interp, argv[2]);
3787 if( i == 0 )
3788 break;
3789
3790 // Execute the body
3791 Execute_AsciiString( interp, argv[3] );
3792
3793 // Execute the LOOP part
3794 Execute_AsciiString( interp, argv[4] );
3795 @}
3796
3797 // Return no error
3798 SetResult( interp, "" );
3799 return SUCCESS;
3800 @}
3801 @end example
3802
3803 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3804 in the same basic way.
3805
3806 @section OpenOCD Tcl Usage
3807
3808 @subsection source and find commands
3809 @b{Where:} In many configuration files
3810 @* Example: @b{ source [find FILENAME] }
3811 @*Remember the parsing rules
3812 @enumerate
3813 @item The FIND command is in square brackets.
3814 @* The FIND command is executed with the parameter FILENAME. It should
3815 find the full path to the named file. The RESULT is a string, which is
3816 substituted on the orginal command line.
3817 @item The command source is executed with the resulting filename.
3818 @* SOURCE reads a file and executes as a script.
3819 @end enumerate
3820 @subsection format command
3821 @b{Where:} Generally occurs in numerous places.
3822 @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
3823 @b{sprintf()}.
3824 @b{Example}
3825 @example
3826 set x 6
3827 set y 7
3828 puts [format "The answer: %d" [expr $x * $y]]
3829 @end example
3830 @enumerate
3831 @item The SET command creates 2 variables, X and Y.
3832 @item The double [nested] EXPR command performs math
3833 @* The EXPR command produces numerical result as a string.
3834 @* Refer to Rule #1
3835 @item The format command is executed, producing a single string
3836 @* Refer to Rule #1.
3837 @item The PUTS command outputs the text.
3838 @end enumerate
3839 @subsection Body or Inlined Text
3840 @b{Where:} Various TARGET scripts.
3841 @example
3842 #1 Good
3843 proc someproc @{@} @{
3844 ... multiple lines of stuff ...
3845 @}
3846 $_TARGETNAME configure -event FOO someproc
3847 #2 Good - no variables
3848 $_TARGETNAME confgure -event foo "this ; that;"
3849 #3 Good Curly Braces
3850 $_TARGETNAME configure -event FOO @{
3851 puts "Time: [date]"
3852 @}
3853 #4 DANGER DANGER DANGER
3854 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3855 @end example
3856 @enumerate
3857 @item The $_TARGETNAME is an OpenOCD variable convention.
3858 @*@b{$_TARGETNAME} represents the last target created, the value changes
3859 each time a new target is created. Remember the parsing rules. When
3860 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3861 the name of the target which happens to be a TARGET (object)
3862 command.
3863 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3864 @*There are 4 examples:
3865 @enumerate
3866 @item The TCLBODY is a simple string that happens to be a proc name
3867 @item The TCLBODY is several simple commands seperated by semicolons
3868 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3869 @item The TCLBODY is a string with variables that get expanded.
3870 @end enumerate
3871
3872 In the end, when the target event FOO occurs the TCLBODY is
3873 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3874 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3875
3876 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3877 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3878 and the text is evaluated. In case #4, they are replaced before the
3879 ``Target Object Command'' is executed. This occurs at the same time
3880 $_TARGETNAME is replaced. In case #4 the date will never
3881 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3882 Jim/OpenOCD does not have a date command@}
3883 @end enumerate
3884 @subsection Global Variables
3885 @b{Where:} You might discover this when writing your own procs @* In
3886 simple terms: Inside a PROC, if you need to access a global variable
3887 you must say so. See also ``upvar''. Example:
3888 @example
3889 proc myproc @{ @} @{
3890 set y 0 #Local variable Y
3891 global x #Global variable X
3892 puts [format "X=%d, Y=%d" $x $y]
3893 @}
3894 @end example
3895 @section Other Tcl Hacks
3896 @b{Dynamic variable creation}
3897 @example
3898 # Dynamically create a bunch of variables.
3899 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3900 # Create var name
3901 set vn [format "BIT%d" $x]
3902 # Make it a global
3903 global $vn
3904 # Set it.
3905 set $vn [expr (1 << $x)]
3906 @}
3907 @end example
3908 @b{Dynamic proc/command creation}
3909 @example
3910 # One "X" function - 5 uart functions.
3911 foreach who @{A B C D E@}
3912 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3913 @}
3914 @end example
3915
3916 @node Target Library
3917 @chapter Target Library
3918 @cindex Target Library
3919
3920 OpenOCD comes with a target configuration script library. These scripts can be
3921 used as-is or serve as a starting point.
3922
3923 The target library is published together with the OpenOCD executable and
3924 the path to the target library is in the OpenOCD script search path.
3925 Similarly there are example scripts for configuring the JTAG interface.
3926
3927 The command line below uses the example parport configuration script
3928 that ship with OpenOCD, then configures the str710.cfg target and
3929 finally issues the init and reset commands. The communication speed
3930 is set to 10kHz for reset and 8MHz for post reset.
3931
3932 @example
3933 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3934 @end example
3935
3936 To list the target scripts available:
3937
3938 @example
3939 $ ls /usr/local/lib/openocd/target
3940
3941 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3942 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3943 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3944 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3945 @end example
3946
3947 @include fdl.texi
3948
3949 @node OpenOCD Index
3950 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3951 @comment case issue with ``Index.html'' and ``index.html''
3952 @comment Occurs when creating ``--html --no-split'' output
3953 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3954 @unnumbered OpenOCD Index
3955
3956 @printindex cp
3957
3958 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)