- add guess-rev.sh and contrib/libdcc to dist
[openocd.git] / doc / openocd.texi
1 \input texinfo  @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd).      Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts.  A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About::                            About OpenOCD.
55 * Developers::                       OpenOCD developers
56 * Building::                         Building OpenOCD
57 * JTAG Hardware Dongles::            JTAG Hardware Dongles
58 * Running::                          Running OpenOCD
59 * Simple Configuration Files::       Simple Configuration Files
60 * Config File Guidelines::           Config File Guidelines
61 * About JIM-Tcl::                    About JIM-Tcl
62 * Daemon Configuration::             Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration::              Reset Configuration
65 * Tap Creation::                     Tap Creation
66 * Target Configuration::             Target Configuration
67 * Flash Configuration::              Flash Configuration
68 * General Commands::                 General Commands
69 * JTAG Commands::                    JTAG Commands
70 * Sample Scripts::                   Sample Target Scripts
71 * TFTP::                             TFTP
72 * GDB and OpenOCD::                  Using GDB and OpenOCD
73 * TCL scripting API::                Tcl scripting API
74 * Upgrading::                        Deprecated/Removed Commands
75 * Target library::                   Target library
76 * FAQ::                              Frequently Asked Questions
77 * TCL Crash Course::                 TCL Crash Course
78 * License::                          GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index::                    Main index.
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) complient taps on your target board.
96
97 @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
98 Based, Parallel Port Based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
102 ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB Protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors. 
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
125
126 @node Building
127 @chapter Building
128 @cindex building OpenOCD
129
130 @section Pre-Built Tools
131 If you are interested in getting actual work done rather than building
132 OpenOCD, then check if your interface supplier provides binaries for
133 you. Chances are that that binary is from some SVN version that is more
134 stable than SVN trunk where bleeding edge development takes place.
135
136 @section Packagers Please Read!
137
138 If you are a @b{PACKAGER} of OpenOCD if you
139
140 @enumerate
141 @item @b{Sell dongles} and include pre-built binaries
142 @item @b{Supply tools} ie: A complete development solution
143 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
144 @item @b{Build packages} ie: RPM files, or DEB files for a Linux Distro
145 @end enumerate
146
147 As a @b{PACKAGER} - you are at the top of the food chain. You solve
148 problems for downstream users. What you fix or solve - solves hundreds
149 if not thousands of user questions. If something does not work for you
150 please let us know. That said, would also like you to follow a few
151 suggestions:
152
153 @enumerate
154 @item @b{Always build with Printer Ports Enabled}
155 @item @b{Try where possible to use LIBFTDI + LIBUSB} You cover more bases
156 @end enumerate
157
158 It is your decision..
159
160 @itemize @bullet
161 @item @b{Why YES to LIBFTDI + LIBUSB}
162 @itemize @bullet
163 @item @b{LESS} work - libusb perhaps already there
164 @item @b{LESS} work - identical code multiple platforms
165 @item @b{MORE} dongles are supported
166 @item @b{MORE} platforms are supported
167 @item @b{MORE} complete solution
168 @end itemize
169 @item @b{Why not LIBFTDI + LIBUSB} (ie: ftd2xx instead)
170 @itemize @bullet
171 @item @b{LESS} Some say it is slower.
172 @item @b{LESS} complex to distribute (external dependencies)
173 @end itemize
174 @end itemize
175
176 @section Building From Source
177
178 You can download the current SVN version with SVN client of your choice from the
179 following repositories:
180
181  (@uref{svn://svn.berlios.de/openocd/trunk})
182
183 or
184
185  (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
186
187 Using the SVN command line client, you can use the following command to fetch the
188 latest version (make sure there is no (non-svn) directory called "openocd" in the
189 current directory):
190
191 @example
192  svn checkout svn://svn.berlios.de/openocd/trunk openocd
193 @end example
194
195 Building OpenOCD requires a recent version of the GNU autotools.
196 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
197 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
198 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
199 paths, resulting in obscure dependency errors (This is an observation I've gathered
200 from the logs of one user - correct me if I'm wrong).
201
202 You further need the appropriate driver files, if you want to build support for
203 a FTDI FT2232 based interface:
204 @itemize @bullet
205 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
206 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
207 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
208 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID. 
209 @end itemize
210
211 libftdi is supported under windows. Do not use versions earlier then 0.14.
212
213 In general, the D2XX driver provides superior performance (several times as fast),
214 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
215 a kernel module, only a user space library.
216
217 To build OpenOCD (on both Linux and Cygwin), use the following commands:
218 @example
219  ./bootstrap 
220 @end example
221 Bootstrap generates the configure script, and prepares building on your system.
222 @example
223  ./configure [options, see below]
224 @end example
225 Configure generates the Makefiles used to build OpenOCD.
226 @example
227  make 
228  make install
229 @end example
230 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
231
232 The configure script takes several options, specifying which JTAG interfaces
233 should be included:
234
235 @itemize @bullet
236 @item
237 @option{--enable-parport} - Bit bang pc printer ports.
238 @item
239 @option{--enable-parport_ppdev} - Parallel Port [see below]
240 @item
241 @option{--enable-parport_giveio} - Parallel Port [see below]
242 @item
243 @option{--enable-amtjtagaccel} - Parallel Port [Amontec, see below]
244 @item
245 @option{--enable-ft2232_ftd2xx} - Numerous USB Type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
246 @item
247 @option{--enable-ft2232_libftdi} - An open source (free) alternate to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin)
248 @item
249 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
250 @item
251 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only equal of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
252 @item
253 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static, specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. Shared is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
254 @item
255 @option{--enable-gw16012}
256 @item
257 @option{--enable-usbprog}
258 @item
259 @option{--enable-presto_libftdi}
260 @item
261 @option{--enable-presto_ftd2xx}
262 @item
263 @option{--enable-jlink} - From SEGGER
264 @item
265 @option{--enable-vsllink}
266 @item
267 @option{--enable-rlink} - Raisonance.com dongle.
268 @end itemize
269
270 @section Parallel Port Dongles
271
272 If you want to access the parallel port using the PPDEV interface you have to specify
273 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
274 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
275 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
276
277 @section FT2232C Based USB Dongles 
278
279 There are 2 methods of using the FTD2232, either (1) using the
280 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
281 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
282
283 The FTDICHIP drivers come as either a (win32) ZIP file, or a (linux)
284 TAR.GZ file. You must unpack them ``some where'' convient. As of this
285 writing (12/26/2008) FTDICHIP does not supply means to install these
286 files ``in an appropriate place'' As a result, there are two
287 ``./configure'' options that help. 
288
289 Below is an example build process:
290
291 1) Check out the latest version of ``openocd'' from SVN.
292
293 2) Download & Unpack either the Windows or Linux FTD2xx Drivers
294     (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
295
296 @example
297    /home/duane/ftd2xx.win32    => the Cygwin/Win32 ZIP file contents.
298    /home/duane/libftd2xx0.4.16 => the Linux TAR file contents.
299 @end example
300
301 3) Configure with these options:
302
303 @example
304 Cygwin FTCICHIP solution
305    ./configure --prefix=/home/duane/mytools \ 
306                   --enable-ft2232_ftd2xx \
307                   --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
308
309 Linux FTDICHIP solution
310    ./configure --prefix=/home/duane/mytools \
311                   --enable-ft2232_ftd2xx \
312                   --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
313
314 Cygwin/Linux LIBFTDI solution
315     Assumes: 
316     1a) For Windows: The windows port of LIBUSB is in place.
317     1b) For Linux: libusb has been built and is inplace.
318
319     2) And libftdi has been built and installed
320     Note: libftdi - relies upon libusb.
321
322     ./configure --prefix=/home/duane/mytools \
323                    --enable-ft2232_libftdi
324        
325 @end example
326
327 4) Then just type ``make'', and perhaps ``make install''.
328
329
330 @section Miscellaneous configure options
331
332 @itemize @bullet
333 @item
334 @option{--enable-gccwarnings} - enable extra gcc warnings during build
335 @end itemize
336
337 @node JTAG Hardware Dongles
338 @chapter JTAG Hardware Dongles
339 @cindex dongles
340 @cindex ftdi
341 @cindex wiggler
342 @cindex zy1000
343 @cindex printer port
344 @cindex usb adapter
345 @cindex rtck
346
347 Defined: @b{dongle}: A small device that plugins into a computer and serves as
348 an adapter .... [snip]
349
350 In the OpenOCD case, this generally refers to @b{a small adapater} one
351 attaches to your computer via USB or the Parallel Printer Port.  The
352 execption being the Zylin ZY1000 which is a small box you attach via
353 an ethernet cable.
354
355
356 @section Choosing a Dongle
357
358 There are three things you should keep in mind when choosing a dongle. 
359
360 @enumerate 
361 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
362 @item @b{Connection} Printer Ports - Does your computer have one?
363 @item @b{Connection} Is that long printer bit-bang cable practical? 
364 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking'' 
365 @end enumerate
366
367 @section Stand alone Systems
368
369 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
370 dongle, but a standalone box.
371
372 @section USB FT2232 Based
373
374 There are many USB jtag dongles on the market, many of them are based
375 on a chip from ``Future Technology Devices International'' (FTDI)
376 known as the FTDI FT2232.
377
378 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
379
380 As of 28/Nov/2008, the following are supported:
381
382 @itemize @bullet
383 @item @b{usbjtag}
384 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
385 @item @b{jtagkey}
386 @* See: @url{http://www.amontec.com/jtagkey.shtml}
387 @item @b{oocdlink}
388 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
389 @item @b{signalyzer}
390 @* See: @url{http://www.signalyzer.com}
391 @item @b{evb_lm3s811}
392 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
393 @item @b{olimex-jtag}
394 @* See: @url{http://www.olimex.com}
395 @item @b{flyswatter}
396 @* See: @url{http://www.tincantools.com}
397 @item @b{turtelizer2}
398 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
399 @item @b{comstick}
400 @* Link: @url{http://www.hitex.com/index.php?id=383}
401 @item @b{stm32stick}
402 @* Link @url{http://www.hitex.com/stm32-stick}
403 @item @b{axm0432_jtag}
404 @* Axiom AXM-0432 Link @url{http://www.axman.com}
405 @end itemize
406
407 @section USB JLINK based
408 There are several OEM versions of the Segger @b{JLINK} adapter. It is
409 an example of a micro controller based JTAG adapter, it uses an
410 AT91SAM764 internally.
411
412 @itemize @bullet
413 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
414 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
415 @item @b{SEGGER JLINK}
416 @* Link: @url{http://www.segger.com/jlink.html}
417 @item @b{IAR J-Link}
418 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
419 @end itemize
420
421 @section USB RLINK based
422 Raisonance has an adapter called @b{RLink}.  It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines.  It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
423
424 @itemize @bullet
425 @item @b{Raisonance RLink}
426 @* Link: @url{http://www.raisonance.com/products/RLink.php}
427 @item @b{STM32 Primer}
428 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
429 @item @b{STM32 Primer2}
430 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
431 @end itemize
432
433 @section USB Other
434 @itemize @bullet
435 @item @b{USBprog}
436 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
437
438 @item @b{USB - Presto} 
439 @* Link: @url{http://tools.asix.net/prg_presto.htm}
440
441 @item @b{Versaloon-Link}
442 @* Link: @url{http://www.simonqian.com/en/Versaloon}
443 @end itemize
444
445 @section IBM PC Parallel Printer Port Based
446
447 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
448 and the MacGraigor Wiggler. There are many clones and variations of
449 these on the market.
450
451 @itemize @bullet
452
453 @item @b{Wiggler} - There are many clones of this.
454 @* Link: @url{http://www.macraigor.com/wiggler.htm}
455
456 @item @b{DLC5} - From XILINX - There are many clones of this
457 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
458 produced, PDF schematics are easily found and it is easy to make.
459
460 @item @b{Amontec - JTAG Accelerator}
461 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
462
463 @item @b{GW16402}
464 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
465
466 @item @b{Wiggler2}
467 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
468
469 @item @b{Wiggler_ntrst_inverted}
470 @* Yet another variation - See the source code, src/jtag/parport.c
471
472 @item @b{old_amt_wiggler}
473 @* Unknown - probably not on the market today
474
475 @item @b{arm-jtag}
476 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
477
478 @item @b{chameleon}
479 @* Link: @url{http://www.amontec.com/chameleon.shtml}
480
481 @item @b{Triton}
482 @* Unknown.
483
484 @item @b{Lattice}
485 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
486
487 @item @b{flashlink}
488 @* From ST Microsystems, link:
489 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
490 Title: FlashLINK JTAG programing cable for PSD and uPSD
491
492 @end itemize
493
494 @section Other...
495 @itemize @bullet
496
497 @item @b{ep93xx}
498 @* An EP93xx based linux machine using the GPIO pins directly.
499
500 @item @b{at91rm9200}
501 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
502
503 @end itemize
504
505 @node Running
506 @chapter Running
507 @cindex running OpenOCD
508 @cindex --configfile
509 @cindex --debug_level
510 @cindex --logfile
511 @cindex --search
512
513 The @option{--help} option shows:
514 @verbatim
515 bash$ openocd --help
516
517 --help       | -h       display this help
518 --version    | -v       display OpenOCD version
519 --file       | -f       use configuration file <name>
520 --search     | -s       dir to search for config files and scripts
521 --debug      | -d       set debug level <0-3>
522 --log_output | -l       redirect log output to file <name>
523 --command    | -c       run <command>
524 --pipe       | -p       use pipes when talking to gdb
525 @end verbatim
526
527 By default OpenOCD reads the file configuration file ``openocd.cfg''
528 in the current directory.  To specify a different (or multiple)
529 configuration file, you can use the ``-f'' option. For example:
530
531 @example
532   openocd -f config1.cfg -f config2.cfg -f config3.cfg
533 @end example
534
535 Once started, OpenOCD runs as a daemon, waiting for connections from
536 clients (Telnet, GDB, Other).
537
538 If you are having problems, you can enable internal debug messages via
539 the ``-d'' option.
540
541 Also it is possible to interleave commands w/config scripts using the
542 @option{-c} command line switch.
543
544 To enable debug output (when reporting problems or working on OpenOCD
545 itself), use the @option{-d} command line switch. This sets the
546 @option{debug_level} to "3", outputting the most information,
547 including debug messages. The default setting is "2", outputting only
548 informational messages, warnings and errors. You can also change this
549 setting from within a telnet or gdb session using @option{debug_level
550 <n>} @xref{debug_level}.
551
552 You can redirect all output from the daemon to a file using the
553 @option{-l <logfile>} switch.
554
555 Search paths for config/script files can be added to OpenOCD by using
556 the @option{-s <search>} switch. The current directory and the OpenOCD
557 target library is in the search path by default.
558
559 For details on the @option{-p} option. @xref{Connecting to GDB}.
560
561 Note! OpenOCD will launch the GDB & telnet server even if it can not
562 establish a connection with the target. In general, it is possible for
563 the JTAG controller to be unresponsive until the target is set up
564 correctly via e.g. GDB monitor commands in a GDB init script.
565
566 @node Simple Configuration Files
567 @chapter Simple Configuration Files
568 @cindex configuration
569
570 @section Outline
571 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
572
573 @enumerate
574 @item A small openocd.cfg file which ``sources'' other configuration files
575 @item A monolithic openocd.cfg file
576 @item Many -f filename options on the command line
577 @item Your Mixed Solution
578 @end enumerate
579
580 @section Small configuration file method
581
582 This is the prefered method, it is simple and is works well for many
583 people.  The developers of OpenOCD would encourage you to use this
584 method. If you create a new configuration please email new
585 configurations to the development list.
586
587 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
588
589 @example
590 source [find interface/signalyzer.cfg]
591
592 # Change the default telnet port...
593 telnet_port 4444
594 # GDB connects here
595 gdb_port 3333
596 # GDB can also flash my flash!
597 gdb_memory_map enable
598 gdb_flash_program enable
599
600 source [find target/sam7x256.cfg]
601 @end example
602
603 There are many example configuration scripts you can work with. You
604 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
605 should find:
606
607 @enumerate
608 @item @b{board} - eval board level configurations
609 @item @b{interface} - specific dongle configurations
610 @item @b{target} - the target chips
611 @item @b{tcl} - helper scripts 
612 @item @b{xscale} - things specific to the xscale.
613 @end enumerate
614
615 Look first in the ``boards'' area, then the ``targets'' area. Often a board
616 configuration is a good example to work from.
617
618 @section Many -f filename options
619 Some believe this is a wonderful solution, others find it painful.
620
621 You can use a series of ``-f filename'' options on the command line,
622 OpenOCD will read each filename in sequence, for example:
623
624 @example
625         openocd -f file1.cfg -f file2.cfg -f file2.cfg
626 @end example
627
628 You can also intermix various commands with the ``-c'' command line
629 option.
630
631 @section Monolithic file
632 The ``Monolithic File'' dispenses with all ``source'' statements and
633 puts everything in one self contained (monolithic) file. This is not
634 encouraged. 
635
636 Please try to ``source'' various files or use the multiple -f
637 technique.
638
639 @section Advice for you
640 Often, one uses a ``mixed approach''. Where possible, please try to
641 ``source'' common things, and if needed cut/paste parts of the
642 standard distribution configuration files as needed.
643
644 @b{REMEMBER:} The ``important parts'' of your configuration file are:
645
646 @enumerate
647 @item @b{Interface} - Defines the dongle
648 @item @b{Taps} - Defines the JTAG Taps
649 @item @b{GDB Targets} - What GDB talks to
650 @item @b{Flash Programing} - Very Helpful
651 @end enumerate
652
653 Some key things you should look at and understand are:
654
655 @enumerate
656 @item The RESET configuration of your debug environment as a hole
657 @item Is there a ``work area'' that OpenOCD can use?
658 @* For ARM - work areas mean up to 10x faster downloads.
659 @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
660 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
661 @end enumerate
662
663
664
665 @node Config File Guidelines
666 @chapter Config File Guidelines
667
668 This section/chapter is aimed at developers and integrators of
669 OpenOCD. These are guidelines for creating new boards and new target
670 configurations as of 28/Nov/2008.
671
672 However, you the user of OpenOCD should be some what familiar with
673 this section as it should help explain some of the internals of what
674 you might be looking at.
675
676 The user should find under @t{$(INSTALLDIR)/lib/openocd} the
677 following directories:
678
679 @itemize @bullet
680 @item @b{interface}
681 @*Think JTAG Dongle. Files that configure the jtag dongle go here.
682 @item @b{board}
683 @* Thing Circuit Board, PWA, PCB, they go by many names.  Board files
684 contain initialization items that are specific to a board - for
685 example: The SDRAM initialization sequence for the board, or the type
686 of external flash and what address it is found at. Any initialization
687 sequence to enable that external flash or sdram should be found in the
688 board file. Boards may also contain multiple targets, ie: Two cpus, or
689 a CPU and an FPGA or CPLD.
690 @item @b{target}
691 @* Think CHIP. The ``target'' directory represents a jtag tap (or
692 chip) OpenOCD should control, not a board. Two common types of targets
693 are ARM chips and FPGA or CPLD chips.
694 @end itemize
695
696 @b{If needed...} The user in their ``openocd.cfg'' file or the board
697 file might override a specific feature in any of the above files by
698 setting a variable or two before sourcing the target file. Or adding
699 various commands specific to their situation.
700
701 @section Interface Config Files
702
703 The user should be able to source one of these files via a command like this:
704
705 @example
706   source [find interface/FOOBAR.cfg]
707 Or:
708   openocd -f interface/FOOBAR.cfg
709 @end example
710
711 A preconfigured interface file should exist for every interface in use
712 today, that said, perhaps some interfaces have only been used by the
713 sole developer who created it.
714
715 @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
716 tcl_platform(platform), it should be called jim_platform (because it
717 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
718 ``cygwin'' or ``mingw''
719
720 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
721
722 @section Board Config Files
723
724 @b{Note: BOARD directory NEW as of 28/nov/2008} 
725
726 The user should be able to source one of these files via a command like this:
727
728 @example
729   source [find board/FOOBAR.cfg]
730 Or:
731   openocd -f board/FOOBAR.cfg
732 @end example
733
734
735 The board file should contain one or more @t{source [find
736 target/FOO.cfg]} statements along with any board specific things.
737
738 In summery the board files should contain (if present)
739
740 @enumerate
741 @item External flash configuration (ie: the flash on CS0)
742 @item SDRAM configuration (size, speed, etc)
743 @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
744 @item Multiple TARGET source statements
745 @item All things that are not ``inside a chip''
746 @item Things inside a chip go in a 'target' file
747 @end enumerate
748
749 @section Target Config Files
750
751 The user should be able to source one of these files via a command like this:
752
753 @example
754   source [find target/FOOBAR.cfg]
755 Or:
756   openocd -f target/FOOBAR.cfg
757 @end example
758
759 In summery the target files should contain
760
761 @enumerate 
762 @item Set Defaults
763 @item Create Taps
764 @item Reset Configuration
765 @item Work Areas
766 @item CPU/Chip/CPU-Core Specific features
767 @item OnChip Flash
768 @end enumerate
769
770 @subsection Important variable names
771
772 By default, the end user should never need to set these
773 variables. However, if the user needs to override a setting they only
774 need to set the variable in a simple way.
775
776 @itemize @bullet
777 @item @b{CHIPNAME}
778 @* This gives a name to the overall chip, and is used as part of the
779 tap identifier dotted name.
780 @item @b{ENDIAN}
781 @* By default little - unless the chip or board is not normally used that way.
782 @item @b{CPUTAPID}
783 @* When OpenOCD examines the JTAG chain, it will attempt to identify
784 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
785 to verify the tap id number verses configuration file and may issue an
786 error or warning like this. The hope is this will help pin point
787 problem OpenOCD configurations.
788
789 @example
790 Info:   JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
791 Error:  ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
792 Error:  ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
793 Error:  ERROR:      got: mfg: 0x787, part: 0xf0f0, ver: 0x3
794 @end example
795
796 @item @b{_TARGETNAME}
797 @* By convention, this variable is created by the target configuration
798 script. The board configuration file may make use of this variable to
799 configure things like a ``reset init'' script, or other things
800 specific to that board and that target.
801
802 If the chip has 2 targets, use the names @b{_TARGETNAME0},
803 @b{_TARGETNAME1}, ... etc.
804
805 @b{Remember:} The ``board file'' may include multiple targets.
806
807 At no time should the name ``target0'' (the default target name if
808 none was specified) be used. The name ``target0'' is a hard coded name
809 - the next target on the board will be some other number.
810
811 The user (or board file) should reasonably be able to:
812
813 @example
814    source [find target/FOO.cfg]
815    $_TARGETNAME configure ... FOO specific parameters
816
817    source [find target/BAR.cfg]
818    $_TARGETNAME configure ... BAR specific parameters
819 @end example
820
821 @end itemize
822
823 @subsection TCL Variables Guide Line
824 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
825
826 Thus the rule we follow in OpenOCD is this: Variables that begin with
827 a leading underscore are temporal in nature, and can be modified and
828 used at will within a ?TARGET? configuration file
829
830 @b{EXAMPLE:} The user should be able to do this:
831
832 @example
833    # Board has 3 chips,
834    #    PXA270 #1 network side, big endian
835    #    PXA270 #2 video side, little endian
836    #    Xilinx    Glue logic
837    set CHIPNAME network
838    set ENDIAN big
839    source [find target/pxa270.cfg]
840    # variable: _TARGETNAME = network.cpu
841    # other commands can refer to the "network.cpu" tap.
842    $_TARGETNAME configure .... params for this cpu..
843    
844    set ENDIAN little
845    set CHIPNAME video
846    source [find target/pxa270.cfg]
847    # variable: _TARGETNAME = video.cpu
848    # other commands can refer to the "video.cpu" tap.
849    $_TARGETNAME configure .... params for this cpu..
850    
851    unset ENDIAN
852    set CHIPNAME xilinx
853    source [find target/spartan3.cfg]
854
855    # Since $_TARGETNAME is temporal..
856    #  these names still work!
857    network.cpu configure ... params
858    video.cpu   configure ... params
859
860 @end example
861
862 @subsection Default Value Boiler Plate Code
863
864 All target configuration files should start with this (or a modified form)
865
866 @example
867 # SIMPLE example
868 if @{ [info exists CHIPNAME] @} @{      
869    set  _CHIPNAME $CHIPNAME    
870 @} else @{       
871    set  _CHIPNAME sam7x256
872 @}
873
874 if @{ [info exists ENDIAN] @} @{        
875    set  _ENDIAN $ENDIAN    
876 @} else @{       
877    set  _ENDIAN little
878 @}
879
880 if @{ [info exists CPUTAPID ] @} @{
881    set _CPUTAPID $CPUTAPID
882 @} else @{
883    set _CPUTAPID 0x3f0f0f0f
884 @}
885
886 @end example
887
888 @subsection Creating Taps
889 After the ``defaults'' are choosen, [see above], the taps are created.
890
891 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
892
893 @example
894 # for an ARM7TDMI.
895 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
896 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
897 @end example
898
899 @b{COMPLEX example:}
900
901 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
902
903 @enumerate
904 @item @b{Unform tap names} - See: Tap Naming Convention
905 @item @b{_TARGETNAME} is created at the end where used.
906 @end enumerate
907
908 @example
909 if @{ [info exists FLASHTAPID ] @} @{
910    set _FLASHTAPID $FLASHTAPID
911 @} else @{
912    set _FLASHTAPID 0x25966041
913 @}
914 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
915
916 if @{ [info exists CPUTAPID ] @} @{
917    set _CPUTAPID $CPUTAPID
918 @} else @{
919    set _CPUTAPID 0x25966041
920 @}
921 jtag newtap $_CHIPNAME cpu   -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
922
923
924 if @{ [info exists BSTAPID ] @} @{
925    set _BSTAPID $BSTAPID
926 @} else @{
927    set _BSTAPID 0x1457f041
928 @}
929 jtag newtap $_CHIPNAME bs    -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
930
931 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
932 @end example
933
934 @b{Tap Naming Convention}
935
936 See the command ``jtag newtap'' for detail, but in breif the names you should use are:
937
938 @itemize @bullet
939 @item @b{tap}
940 @item @b{cpu}
941 @item @b{flash}
942 @item @b{bs}
943 @item @b{jrc}
944 @item @b{unknownN} - it happens :-(
945 @end itemize
946
947 @subsection Reset Configuration
948
949 Some chips have specific ways the TRST and SRST signals are
950 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
951 @b{BOARD SPECIFIC} they go in the board file.
952
953 @subsection Work Areas
954
955 Work areas are small RAM areas used by OpenOCD to speed up downloads,
956 and to download small snippits of code to program flash chips.  
957
958 If the chip includes an form of ``on-chip-ram'' - and many do - define
959 a reasonable work area and use the ``backup'' option.
960
961 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
962 inaccessable if/when the application code enables or disables the MMU.
963
964 @subsection ARM Core Specific Hacks
965
966 If the chip has a DCC, enable it. If the chip is an arm9 with some
967 special high speed download - enable it.
968
969 If the chip has an ARM ``vector catch'' feature - by defeault enable
970 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
971 user is really writing a handler for those situations - they can
972 easily disable it.  Experiance has shown the ``vector catch'' is
973 helpful - for common programing errors.
974
975 If present, the MMU, the MPU and the CACHE should be disabled.
976
977 @subsection Internal Flash Configuration
978
979 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
980
981 @b{Never ever} in the ``target configuration file'' define any type of
982 flash that is external to the chip. (For example the BOOT flash on
983 Chip Select 0). The BOOT flash information goes in a board file - not
984 the TARGET (chip) file.
985
986 Examples:
987 @itemize @bullet
988 @item at91sam7x256 - has 256K flash YES enable it.
989 @item str912 - has flash internal YES enable it.
990 @item imx27 - uses boot flash on CS0 - it goes in the board file.
991 @item pxa270 - again - CS0 flash - it goes in the board file.
992 @end itemize
993
994 @node About JIM-Tcl
995 @chapter About JIM-Tcl
996 @cindex JIM Tcl
997 @cindex tcl
998
999 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1000 learn more about JIM here: @url{http://jim.berlios.de}
1001
1002 @itemize @bullet
1003 @item @b{JIM vrs TCL}
1004 @* JIM-TCL is a stripped down version of the well known Tcl language,
1005 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1006 fewer features. JIM-Tcl is a single .C file and a single .H file and
1007 impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
1008 4.2MEG zip file containing 1540 files.
1009
1010 @item @b{Missing Features}
1011 @* Our practice has been: Add/clone the Real TCL feature if/when
1012 needed. We welcome JIM Tcl improvements, not bloat.
1013
1014 @item @b{Scripts}
1015 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1016 command interpretor today (28/nov/2008) is a mixture of (newer)
1017 JIM-Tcl commands, and (older) the orginal command interpretor.
1018
1019 @item @b{Commands}
1020 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1021 can type a Tcl for() loop, set variables, etc.
1022
1023 @item @b{Historical Note}
1024 @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
1025
1026 @item @b{Need a Crash Course In TCL?}
1027 @* See: @xref{TCL Crash Course}.
1028 @end itemize
1029
1030
1031 @node Daemon Configuration
1032 @chapter Daemon Configuration
1033 The commands here are commonly found in the openocd.cfg file and are
1034 used to specify what TCP/IP ports are used, and how GDB should be
1035 supported.
1036 @section init
1037 @cindex init
1038 This command terminates the configuration stage and
1039 enters the normal command mode. This can be useful to add commands to
1040 the startup scripts and commands such as resetting the target,
1041 programming flash, etc. To reset the CPU upon startup, add "init" and
1042 "reset" at the end of the config script or at the end of the OpenOCD
1043 command line using the @option{-c} command line switch.
1044
1045 If this command does not appear in any startup/configuration file
1046 OpenOCD executes the command for you after processing all
1047 configuration files and/or command line options.
1048
1049 @b{NOTE:} This command normally occurs at or near the end of your
1050 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1051 targets ready. For example: If your openocd.cfg file needs to
1052 read/write memory on your target - the init command must occur before
1053 the memory read/write commands.
1054
1055 @section TCP/IP Ports
1056 @itemize @bullet
1057 @item @b{telnet_port} <@var{number}>
1058 @cindex telnet_port
1059 @*Intended for a human. Port on which to listen for incoming telnet connections.
1060
1061 @item @b{tcl_port} <@var{number}>
1062 @cindex tcl_port
1063 @*Intended as a machine interface. Port on which to listen for
1064 incoming TCL syntax. This port is intended as a simplified RPC
1065 connection that can be used by clients to issue commands and get the
1066 output from the TCL engine.
1067
1068 @item @b{gdb_port} <@var{number}>
1069 @cindex gdb_port
1070 @*First port on which to listen for incoming GDB connections. The GDB port for the
1071 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on. 
1072 @end itemize
1073
1074 @section GDB Items
1075 @itemize @bullet
1076 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
1077 @cindex gdb_breakpoint_override
1078 @anchor{gdb_breakpoint_override}
1079 @*Force breakpoint type for gdb 'break' commands.
1080 The raison d'etre for this option is to support GDB GUI's without 
1081 a hard/soft breakpoint concept where the default OpenOCD and
1082 GDB behaviour is not sufficient. Note that GDB will use hardware
1083 breakpoints if the memory map has been set up for flash regions.
1084
1085 This option replaces older arm7_9 target commands that addressed
1086 the same issue.
1087
1088 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1089 @cindex gdb_detach
1090 @*Configures what OpenOCD will do when gdb detaches from the daeman.
1091 Default behaviour is <@var{resume}>
1092
1093 @item @b{gdb_memory_map} <@var{enable|disable}>
1094 @cindex gdb_memory_map
1095 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
1096 requested. gdb will then know when to set hardware breakpoints, and program flash
1097 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
1098 for flash programming to work.
1099 Default behaviour is <@var{enable}>
1100 @xref{gdb_flash_program}.
1101
1102 @item @b{gdb_flash_program} <@var{enable|disable}>
1103 @cindex gdb_flash_program
1104 @anchor{gdb_flash_program}
1105 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1106 vFlash packet is received.
1107 Default behaviour is <@var{enable}>
1108 @comment END GDB Items
1109 @end itemize
1110
1111 @node Interface - Dongle Configuration
1112 @chapter Interface - Dongle Configuration
1113 Interface commands are normally found in an interface configuration
1114 file which is sourced by your openocd.cfg file. These commands tell
1115 OpenOCD what type of JTAG dongle you have and how to talk to it.
1116 @section Simple Complete Interface Examples
1117 @b{A Turtelizer FT2232 Based JTAG Dongle}
1118 @verbatim
1119 #interface
1120 interface ft2232
1121 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1122 ft2232_layout turtelizer2
1123 ft2232_vid_pid 0x0403 0xbdc8
1124 @end verbatim
1125 @b{A SEGGER Jlink}
1126 @verbatim
1127 # jlink interface
1128 interface jlink
1129 @end verbatim
1130 @b{A Raisonance RLink}
1131 @verbatim
1132 # rlink interface
1133 interface rlink
1134 @end verbatim
1135 @b{Parallel Port}
1136 @verbatim
1137 interface parport
1138 parport_port 0xc8b8
1139 parport_cable wiggler
1140 jtag_speed 0
1141 @end verbatim
1142 @section Interface Conmmand
1143
1144 The interface command tells OpenOCD what type of jtag dongle you are
1145 using. Depending upon the type of dongle, you may need to have one or
1146 more additional commands.
1147
1148 @itemize @bullet
1149
1150 @item @b{interface} <@var{name}>
1151 @cindex interface
1152 @*Use the interface driver <@var{name}> to connect to the
1153 target. Currently supported interfaces are
1154
1155 @itemize @minus
1156
1157 @item @b{parport}
1158 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1159
1160 @item @b{amt_jtagaccel}
1161 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1162 mode parallel port
1163
1164 @item @b{ft2232}
1165 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1166 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1167 platform. The libftdi uses libusb, and should be portable to all systems that provide
1168 libusb.
1169
1170 @item @b{ep93xx}
1171 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1172
1173 @item @b{presto}
1174 @* ASIX PRESTO USB JTAG programmer.
1175
1176 @item @b{usbprog}
1177 @* usbprog is a freely programmable USB adapter.
1178
1179 @item @b{gw16012}
1180 @* Gateworks GW16012 JTAG programmer.
1181
1182 @item @b{jlink}
1183 @* Segger jlink usb adapter
1184
1185 @item @b{rlink}
1186 @* Raisonance RLink usb adapter
1187
1188 @item @b{vsllink}
1189 @* vsllink is part of Versaloon which is a versatile USB programmer.
1190 @comment - End parameters
1191 @end itemize
1192 @comment - End Interface
1193 @end itemize
1194 @subsection parport options
1195
1196 @itemize @bullet
1197 @item @b{parport_port} <@var{number}>
1198 @cindex parport_port
1199 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1200 the @file{/dev/parport} device
1201
1202 When using PPDEV to access the parallel port, use the number of the parallel port:
1203 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1204 you may encounter a problem.
1205 @item @b{parport_cable} <@var{name}>
1206 @cindex parport_cable
1207 @*The layout of the parallel port cable used to connect to the target.
1208 Currently supported cables are 
1209 @itemize @minus
1210 @item @b{wiggler}
1211 @cindex wiggler
1212 The original Wiggler layout, also supported by several clones, such
1213 as the Olimex ARM-JTAG
1214 @item @b{wiggler2}
1215 @cindex wiggler2
1216 Same as original wiggler except an led is fitted on D5.
1217 @item @b{wiggler_ntrst_inverted}
1218 @cindex wiggler_ntrst_inverted
1219 Same as original wiggler except TRST is inverted.
1220 @item @b{old_amt_wiggler}
1221 @cindex old_amt_wiggler
1222 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1223 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1224 @item @b{chameleon}
1225 @cindex chameleon
1226 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1227 program the Chameleon itself, not a connected target.
1228 @item @b{dlc5}
1229 @cindex dlc5
1230 The Xilinx Parallel cable III.
1231 @item @b{triton}
1232 @cindex triton
1233 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1234 This is also the layout used by the HollyGates design
1235 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1236 @item @b{flashlink}
1237 @cindex flashlink
1238 The ST Parallel cable.
1239 @item @b{arm-jtag}
1240 @cindex arm-jtag
1241 Same as original wiggler except SRST and TRST connections reversed and
1242 TRST is also inverted.
1243 @item @b{altium}
1244 @cindex altium
1245 Altium Universal JTAG cable.
1246 @end itemize
1247 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1248 @cindex parport_write_on_exit
1249 @*This will configure the parallel driver to write a known value to the parallel
1250 interface on exiting OpenOCD
1251 @end itemize
1252
1253 @subsection amt_jtagaccel options
1254 @itemize @bullet
1255 @item @b{parport_port} <@var{number}>
1256 @cindex parport_port
1257 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1258 @file{/dev/parport} device 
1259 @end itemize
1260 @subsection ft2232 options
1261
1262 @itemize @bullet
1263 @item @b{ft2232_device_desc} <@var{description}>
1264 @cindex ft2232_device_desc
1265 @*The USB device description of the FTDI FT2232 device. If not
1266 specified, the FTDI default value is used. This setting is only valid
1267 if compiled with FTD2XX support.
1268
1269 @b{TODO:} Confirm the following: On windows the name needs to end with
1270 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1271 this be added and when must it not be added? Why can't the code in the
1272 interface or in OpenOCD automatically add this if needed? -- Duane.
1273
1274 @item @b{ft2232_serial} <@var{serial-number}>
1275 @cindex ft2232_serial
1276 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default 
1277 values are used.
1278 @item @b{ft2232_layout} <@var{name}>
1279 @cindex ft2232_layout
1280 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1281 signals. Valid layouts are
1282 @itemize @minus
1283 @item @b{usbjtag}
1284 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1285 @item @b{jtagkey}
1286 Amontec JTAGkey and JTAGkey-tiny
1287 @item @b{signalyzer}
1288 Signalyzer
1289 @item @b{olimex-jtag}
1290 Olimex ARM-USB-OCD
1291 @item @b{m5960}
1292 American Microsystems M5960
1293 @item @b{evb_lm3s811}
1294 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1295 SRST signals on external connector
1296 @item @b{comstick}
1297 Hitex STR9 comstick 
1298 @item @b{stm32stick}
1299 Hitex STM32 Performance Stick
1300 @item @b{flyswatter}
1301 Tin Can Tools Flyswatter
1302 @item @b{turtelizer2}
1303 egnite Software turtelizer2
1304 @item @b{oocdlink}
1305 OOCDLink
1306 @item @b{axm0432_jtag}
1307 Axiom AXM-0432
1308 @end itemize
1309
1310 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1311 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1312 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
1313 @example
1314 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1315 @end example
1316 @item @b{ft2232_latency} <@var{ms}>
1317 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
1318 ft2232_read() fails to return the expected number of bytes. This can be caused by
1319 USB communication delays and has proved hard to reproduce and debug. Setting the
1320 FT2232 latency timer to a larger value increases delays for short USB packages but it
1321 also reduces the risk of timeouts before receiving the expected number of bytes.
1322 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful. 
1323 @end itemize
1324
1325 @subsection ep93xx options
1326 @cindex ep93xx options
1327 Currently, there are no options available for the ep93xx interface.
1328
1329 @section JTAG Speed
1330 @itemize @bullet
1331 @item @b{jtag_khz} <@var{reset speed kHz}>
1332 @cindex jtag_khz
1333
1334 It is debatable if this command belongs here - or in a board
1335 configuration file. In fact, in some situations the jtag speed is
1336 changed during the target initialization process (ie: (1) slow at
1337 reset, (2) program the cpu clocks, (3) run fast)
1338
1339 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz. 
1340
1341 Not all interfaces support ``rtck''. If the interface device can not
1342 support the rate asked for, or can not translate from kHz to
1343 jtag_speed, then an error is returned.
1344
1345 Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
1346 especially true for synthesized cores (-S). Also see RTCK.
1347
1348 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1349 please use the command: 'jtag_rclk FREQ'. This TCL proc (in
1350 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1351 the specified frequency.
1352
1353 @example
1354     # Fall back to 3mhz if RCLK is not supported
1355     jtag_rclk 3000
1356 @end example
1357
1358 @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
1359 @cindex jtag_speed
1360 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1361 speed. The actual effect of this option depends on the JTAG interface used. 
1362
1363 The speed used during reset can be adjusted using setting jtag_speed during
1364 pre_reset and post_reset events.
1365 @itemize @minus
1366
1367 @item wiggler: maximum speed / @var{number}
1368 @item ft2232: 6MHz / (@var{number}+1)
1369 @item amt jtagaccel: 8 / 2**@var{number}
1370 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1371 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1372 @comment end speed list.
1373 @end itemize
1374
1375 @comment END command list
1376 @end itemize
1377
1378 @node Reset Configuration
1379 @chapter Reset Configuration
1380 @cindex reset configuration
1381
1382 Every system configuration may require a different reset
1383 configuration. This can also be quite confusing. Please see the
1384 various board files for example.
1385
1386 @section jtag_nsrst_delay <@var{ms}>
1387 @cindex jtag_nsrst_delay
1388 @*How long (in milliseconds) OpenOCD should wait after deasserting
1389 nSRST before starting new JTAG operations.
1390
1391 @section jtag_ntrst_delay <@var{ms}>
1392 @cindex jtag_ntrst_delay
1393 @*Same @b{jtag_nsrst_delay}, but for nTRST  
1394
1395 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1396 big resistor/capacitor, reset supervisor, or on-chip features). This
1397 keeps the signal asserted for some time after the external reset got
1398 deasserted.
1399
1400 @section reset_config
1401
1402 @b{Note:} To maintainer types and integrators. Where exactly the
1403 ``reset configuration'' goes is a good question. It touches several
1404 things at once. In the end, if you have a board file - the board file
1405 should define it and assume 100% that the DONGLE supports
1406 anything. However, that does not mean the target should not also make
1407 not of something the silicon vendor has done inside the
1408 chip. @i{Grr.... nothing is every pretty.}
1409
1410 @* @b{Problems:} 
1411 @enumerate
1412 @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
1413 @item Every board is also slightly different; some boards tie TRST and SRST together.
1414 @item Every chip is slightly different; some chips internally tie the two signals together.
1415 @item Some may not impliment all of the signals the same way.
1416 @item Some signals might be push-pull, others open-drain/collector.
1417 @end enumerate
1418 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1419 reset the TAP via TRST and send commands through the JTAG tap to halt
1420 the CPU at the reset vector before the 1st instruction is executed,
1421 and finally release the SRST signal.
1422 @*Depending upon your board vendor, your chip vendor, etc, these
1423 signals may have slightly different names. 
1424
1425 OpenOCD defines these signals in these terms:
1426 @itemize @bullet
1427 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1428 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1429 @end itemize
1430
1431 The Command:
1432
1433 @itemize @bullet
1434 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1435 @cindex reset_config
1436 @* The @t{reset_config} command tells OpenOCD the reset configuration
1437 of your combination of Dongle, Board, and Chips.
1438 If the JTAG interface provides SRST, but the target doesn't connect
1439 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1440 be @option{none}, @option{trst_only}, @option{srst_only} or
1441 @option{trst_and_srst}.
1442
1443 [@var{combination}] is an optional value specifying broken reset
1444 signal implementations.  @option{srst_pulls_trst} states that the
1445 testlogic is reset together with the reset of the system (e.g. Philips
1446 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1447 the system is reset together with the test logic (only hypothetical, I
1448 haven't seen hardware with such a bug, and can be worked around).
1449 @option{combined} imples both @option{srst_pulls_trst} and
1450 @option{trst_pulls_srst}.  The default behaviour if no option given is
1451 @option{separate}.
1452
1453 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1454 driver type of the reset lines to be specified. Possible values are
1455 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1456 test reset signal, and @option{srst_open_drain} (default) and
1457 @option{srst_push_pull} for the system reset. These values only affect
1458 JTAG interfaces with support for different drivers, like the Amontec
1459 JTAGkey and JTAGAccelerator.
1460
1461 @comment - end command
1462 @end itemize
1463
1464
1465
1466 @node Tap Creation
1467 @chapter Tap Creation
1468 @cindex tap creation
1469 @cindex tap configuration
1470
1471 In order for OpenOCD to control a target, a JTAG tap must be
1472 defined/created.
1473
1474 Commands to create taps are normally found in a configuration file and
1475 are not normally typed by a human.
1476
1477 When a tap is created a @b{dotted.name} is created for the tap. Other
1478 commands use that dotted.name to manipulate or refer to the tap.
1479
1480 Tap Uses:
1481 @itemize @bullet
1482 @item @b{Debug Target} A tap can be used by a GDB debug target
1483 @item @b{Flash Programing} Some chips program the flash via JTAG
1484 @item @b{Boundry Scan} Some chips support boundry scan.
1485 @end itemize
1486
1487
1488 @section jtag newtap
1489 @b{@t{jtag newtap CHIPNAME TAPNAME  configparams ....}}
1490 @cindex jtag_device
1491 @cindex jtag newtap
1492 @cindex tap
1493 @cindex tap order
1494 @cindex tap geometry
1495
1496 @comment START options
1497 @itemize @bullet
1498 @item @b{CHIPNAME}
1499 @* is a symbolic name of the chip. 
1500 @item @b{TAPNAME}
1501 @* is a symbol name of a tap present on the chip.
1502 @item @b{Required configparams}
1503 @* Every tap has 3 required configparams, and several ``optional
1504 parameters'', the required parameters are:
1505 @comment START REQUIRED
1506 @itemize @bullet
1507 @item @b{-irlen NUMBER} - the length in bits of the instruction register
1508 @item @b{-ircapture NUMBER} - the ID code capture command.
1509 @item @b{-irmask NUMBER} - the corresponding mask for the ir register.
1510 @comment END REQUIRED
1511 @end itemize
1512 An example of a FOOBAR Tap
1513 @example
1514 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1515 @end example
1516 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1517 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1518 [6,4,2,0] are checked.
1519
1520 @item @b{Optional configparams}
1521 @comment START Optional
1522 @itemize @bullet
1523 @item @b{-expected-id NUMBER}
1524 @* By default it is zero. If non-zero represents the
1525 expected tap ID used when the Jtag Chain is examined. See below.
1526 @item @b{-disable}
1527 @item @b{-enable}
1528 @* By default not specified the tap is enabled. Some chips have a
1529 jtag route controller (JRC) that is used to enable and/or disable
1530 specific jtag taps. You can later enable or disable any JTAG tap via
1531 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable 
1532 DOTTED.NAME}
1533 @comment END Optional
1534 @end itemize
1535
1536 @comment END OPTIONS
1537 @end itemize
1538 @b{Notes:}
1539 @comment START NOTES
1540 @itemize @bullet
1541 @item @b{Technically}
1542 @* newtap is a sub command of the ``jtag'' command
1543 @item @b{Big Picture Background}
1544 @*GDB Talks to OpenOCD using the GDB protocol via
1545 tcpip. OpenOCD then uses the JTAG interface (the dongle) to
1546 control the JTAG chain on your board. Your board has one or more chips
1547 in a @i{daisy chain configuration}. Each chip may have one or more
1548 jtag taps. GDB ends up talking via OpenOCD to one of the taps.
1549 @item @b{NAME Rules}
1550 @*Names follow ``C'' symbol name rules (start with alpha ...)
1551 @item @b{TAPNAME - Conventions}
1552 @itemize @bullet
1553 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1554 @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1555 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1556 @item @b{bs} - for boundary scan if this is a seperate tap.
1557 @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
1558 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1559 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1560 @item @b{When in doubt} - use the chip makers name in their data sheet.
1561 @end itemize
1562 @item @b{DOTTED.NAME}
1563 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1564 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1565 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1566 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1567 numerous other places to refer to various taps.
1568 @item @b{ORDER}
1569 @* The order this command appears via the config files is
1570 important.
1571 @item @b{Multi Tap Example}
1572 @* This example is based on the ST Microsystems STR912. See the ST
1573 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1574 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
1575
1576 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1577 @*@b{checked: 28/nov/2008}
1578
1579 The diagram shows the TDO pin connects to the flash tap, flash TDI
1580 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1581 tap which then connects to the TDI pin.
1582
1583 @example
1584    # The order is...
1585    # create tap: 'str912.flash'
1586    jtag newtap str912 flash  ... params ...
1587    # create tap: 'str912.cpu'
1588    jtag newtap str912 cpu  ... params ...
1589    # create tap: 'str912.bs'
1590    jtag newtap str912 bs  ... params ...
1591 @end example
1592
1593 @item @b{Note: Deprecated} - Index Numbers
1594 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1595 feature is still present, however its use is highly discouraged and
1596 should not be counted upon.
1597 @item @b{Multiple chips}
1598 @* If your board has multiple chips, you should be
1599 able to @b{source} two configuration files, in the proper order, and
1600 have the taps created in the proper order.
1601 @comment END NOTES
1602 @end itemize
1603 @comment at command level
1604 @comment DOCUMENT old command
1605 @section jtag_device - REMOVED
1606 @example
1607 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1608 @end example
1609 @cindex jtag_device
1610
1611 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1612 by the ``jtag newtap'' command. The documentation remains here so that
1613 one can easily convert the old syntax to the new syntax. About the old
1614 syntax: The old syntax is positional, ie: The 3rd parameter is the
1615 ``irmask''. The new syntax requires named prefixes, and supports
1616 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1617 @b{jtag newtap} command for details.
1618 @example
1619 OLD: jtag_device 8 0x01 0xe3 0xfe
1620 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1621 @end example
1622
1623 @section Enable/Disable Taps
1624 @b{Note:} These commands are intended to be used as a machine/script
1625 interface. Humans might find the ``scan_chain'' command more helpful
1626 when querying the state of the JTAG taps.
1627
1628 @b{By default, all taps are enabled}
1629
1630 @itemize @bullet
1631 @item @b{jtag tapenable} @var{DOTTED.NAME}
1632 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1633 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1634 @end itemize
1635 @cindex tap enable
1636 @cindex tap disable
1637 @cindex JRC
1638 @cindex route controller
1639
1640 These commands are used when your target has a JTAG Route controller
1641 that effectively adds or removes a tap from the jtag chain in a
1642 non-standard way.
1643
1644 The ``standard way'' to remove a tap would be to place the tap in
1645 bypass mode. But with the advent of modern chips, this is not always a
1646 good solution. Some taps operate slowly, others operate fast, and
1647 there are other JTAG clock syncronization problems one must face. To
1648 solve that problem, the JTAG Route controller was introduced. Rather
1649 then ``bypass'' the tap, the tap is completely removed from the
1650 circuit and skipped.
1651
1652
1653 From OpenOCD's view point, a JTAG TAP is in one of 3 states:
1654
1655 @itemize @bullet
1656 @item @b{Enabled - Not In ByPass} and has a variable bit length
1657 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1658 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1659 @end itemize
1660
1661 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1662 @b{Historical note:} this feature was added 28/nov/2008
1663
1664 @b{jtag tapisenabled DOTTED.NAME}
1665
1666 This command returns 1 if the named tap is currently enabled, 0 if not.
1667 This command exists so that scripts that manipulate a JRC (like the
1668 Omap3530 has) can determine if OpenOCD thinks a tap is presently
1669 enabled, or disabled.
1670
1671 @page
1672 @node Target Configuration
1673 @chapter Target Configuration
1674
1675 This chapter discusses how to create a GDB Debug Target.  Before
1676 creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
1677
1678 @section targets [NAME]
1679 @b{Note:} This command name is PLURAL - not singular.  
1680
1681 With NO parameter, this plural @b{targets} command lists all known
1682 targets in a human friendly form.
1683
1684 With a parameter, this pural @b{targets} command sets the current
1685 target to the given name. (ie: If there are multiple debug targets)
1686
1687 Example:
1688 @verbatim
1689 (gdb) mon targets
1690       CmdName     Type     Endian    ChainPos   State     
1691 --  ---------- ---------- ---------- -------- ----------
1692     0: target0  arm7tdmi   little        0      halted
1693 @end verbatim
1694
1695 @section target COMMANDS
1696 @b{Note:} This command name is SINGULAR - not plural. It is used to
1697 manipulate specific targets, to create targets and other things.
1698
1699 Once a target is created, a TARGETNAME (object) command is created;
1700 see below for details.
1701
1702 The TARGET command accepts these sub-commands:
1703 @itemize @bullet
1704 @item @b{create} .. parameters ..
1705 @* creates a new target, See below for details.
1706 @item @b{types}
1707 @* Lists all supported target types (perhaps some are not yet in this document).
1708 @item @b{names}
1709 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1710 @verbatim  
1711         foreach t [target names] {
1712             puts [format "Target: %s\n" $t]
1713         }
1714 @end verbatim
1715 @item @b{current}
1716 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1717 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1718 @item @b{number} @b{NUMBER}
1719 @* Internally OpenOCD maintains a list of targets - in numerical index
1720 (0..N-1) this command returns the name of the target at index N.
1721 Example usage:
1722 @verbatim
1723     set thename [target number $x]
1724     puts [format "Target %d is: %s\n" $x $thename]
1725 @end verbatim
1726 @item @b{count}
1727 @* Returns the number of targets known to OpenOCD (see number above)
1728 Example:
1729 @verbatim
1730     set c [target count]
1731     for { set x 0 } { $x < $c } { incr x } {
1732         # Assuming you have created this function
1733         print_target_details $x
1734     }
1735 @end verbatim
1736
1737 @end itemize
1738
1739 @section TARGETNAME (object) commands
1740 @b{Use:} Once a target is created, an ``object name'' that represents the
1741 target is created. By convention, the target name is identical to the
1742 tap name. In a multiple target system, one can preceed many common
1743 commands with a specific target name and effect only that target.
1744 @example
1745     str912.cpu    mww 0x1234 0x42
1746     omap3530.cpu  mww 0x5555 123
1747 @end example
1748
1749 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1750 good example is a on screen button, once a button is created a button
1751 has a name (a path in TK terms) and that name is useable as a 1st
1752 class command. For example in TK, one can create a button and later
1753 configure it like this:
1754
1755 @example
1756     # Create
1757     button .foobar -background red -command @{ foo @}
1758     # Modify
1759     .foobar configure -foreground blue
1760     # Query
1761     set x [.foobar cget -background]
1762     # Report
1763     puts [format "The button is %s" $x]
1764 @end example
1765     
1766 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1767 button. Commands avaialble as a ``target object'' are:
1768
1769 @comment START targetobj commands.
1770 @itemize @bullet
1771 @item @b{configure} - configure the target; see Target Config/Cget Options below
1772 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1773 @item @b{curstate} - current target state (running, halt, etc)
1774 @item @b{eventlist}
1775 @* Intended for a human to see/read the currently configure target events.
1776 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1777 @comment start memory
1778 @itemize @bullet
1779 @item @b{mww} ...
1780 @item @b{mwh} ...
1781 @item @b{mwb} ...
1782 @item @b{mdw} ...
1783 @item @b{mdh} ...
1784 @item @b{mdb} ...
1785 @comment end memory
1786 @end itemize
1787 @item @b{Memory To Array, Array To Memory}
1788 @* These are aimed at a machine interface to memory
1789 @itemize @bullet
1790 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1791 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1792 @* Where:
1793 @*   @b{ARRAYNAME} is the name of an array variable
1794 @*   @b{WIDTH} is 8/16/32 - indicating the memory access size
1795 @*   @b{ADDRESS} is the target memory address
1796 @*   @b{COUNT} is the number of elements to process
1797 @end itemize
1798 @item @b{Used during ``reset''}
1799 @* These commands are used internally by the OpenOCD scripts to deal
1800 with odd reset situations and are not documented here.
1801 @itemize @bullet
1802 @item @b{arp_examine}
1803 @item @b{arp_poll}
1804 @item @b{arp_reset}
1805 @item @b{arp_halt}
1806 @item @b{arp_waitstate}
1807 @end itemize
1808 @item @b{invoke-event} @b{EVENT-NAME}
1809 @* Invokes the specific event manually for the target
1810 @end itemize
1811
1812 @section Target Events
1813 At various times, certain things can happen, or you want them to happen.
1814
1815 Examples:
1816 @itemize @bullet
1817 @item What should happen when GDB connects? Should your target reset?
1818 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1819 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1820 @end itemize
1821
1822 All of the above items are handled by target events.
1823
1824 To specify an event action, either during target creation, or later
1825 via ``$_TARGETNAME configure'' see this example.
1826
1827 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1828 target event name, and BODY is a tcl procedure or string of commands
1829 to execute. 
1830
1831 The programmers model is the ``-command'' option used in Tcl/Tk
1832 buttons and events. Below are two identical examples, the first
1833 creates and invokes small procedure. The second inlines the procedure.
1834
1835 @example
1836    proc my_attach_proc @{ @} @{
1837        puts "RESET...."
1838        reset halt
1839    @}
1840    mychip.cpu configure -event gdb-attach my_attach_proc 
1841    mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1842 @end example
1843
1844 @section Current Events
1845 The following events are available:
1846 @itemize @bullet
1847 @item @b{debug-halted}
1848 @* The target has halted for debug reasons (ie: breakpoint)
1849 @item @b{debug-resumed}
1850 @* The target has resumed (ie: gdb said run)
1851 @item @b{early-halted}
1852 @* Occurs early in the halt process
1853 @item @b{examine-end}
1854 @* Currently not used (goal: when JTAG examine completes)
1855 @item @b{examine-start}
1856 @* Currently not used (goal: when JTAG examine starts)
1857 @item @b{gdb-attach}
1858 @* When GDB connects
1859 @item @b{gdb-detach}
1860 @* When GDB disconnects
1861 @item @b{gdb-end}
1862 @* When the taret has halted and GDB is not doing anything (see early halt)
1863 @item @b{gdb-flash-erase-start}
1864 @* Before the GDB flash process tries to erase the flash
1865 @item @b{gdb-flash-erase-end}
1866 @* After the GDB flash process has finished erasing the flash
1867 @item @b{gdb-flash-write-start}
1868 @* Before GDB writes to the flash
1869 @item @b{gdb-flash-write-end}
1870 @* After GDB writes to the flash
1871 @item @b{gdb-start}
1872 @* Before the taret steps, gdb is trying to start/resume the tarfget
1873 @item @b{halted}
1874 @* The target has halted
1875 @item @b{old-gdb_program_config}
1876 @* DO NOT USE THIS: Used internally
1877 @item @b{old-pre_resume}
1878 @* DO NOT USE THIS: Used internally
1879 @item @b{reset-assert-pre}
1880 @* Before reset is asserted on the tap.
1881 @item @b{reset-assert-post}
1882 @* Reset is now asserted on the tap.
1883 @item @b{reset-deassert-pre}
1884 @* Reset is about to be released on the tap
1885 @item @b{reset-deassert-post}
1886 @* Reset has been released on the tap
1887 @item @b{reset-end}
1888 @* Currently not used.
1889 @item @b{reset-halt-post}
1890 @* Currently not usd
1891 @item @b{reset-halt-pre}
1892 @* Currently not used
1893 @item @b{reset-init}
1894 @* Currently not used
1895 @item @b{reset-start}
1896 @* Currently not used
1897 @item @b{reset-wait-pos}
1898 @* Currently not used
1899 @item @b{reset-wait-pre}
1900 @* Currently not used
1901 @item @b{resume-start}
1902 @* Before any target is resumed
1903 @item @b{resume-end}
1904 @* After all targets have resumed
1905 @item @b{resume-ok}
1906 @* Success
1907 @item @b{resumed}
1908 @* Target has resumed
1909 @item @b{tap-enable}
1910 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
1911 @example
1912 jtag configure DOTTED.NAME -event tap-enable @{
1913   puts "Enabling CPU"
1914   ...
1915 @}
1916 @end example
1917 @item @b{tap-disable}
1918 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
1919 @example
1920 jtag configure DOTTED.NAME -event tap-disable @{
1921   puts "Disabling CPU"
1922   ...
1923 @}
1924 @end example
1925 @end itemize
1926
1927
1928 @section target create
1929 @cindex target
1930 @cindex target creation
1931
1932 @example
1933 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1934 @end example
1935 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1936 @comment START params
1937 @itemize @bullet
1938 @item @b{NAME}
1939 @* Is the name of the debug target. By convention it should be the tap
1940 DOTTED.NAME, this name is also used to create the target object
1941 command.
1942 @item @b{TYPE}
1943 @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
1944 @comment START types
1945 @itemize @minus
1946 @item @b{arm7tdmi}
1947 @item @b{arm720t}
1948 @item @b{arm9tdmi}
1949 @item @b{arm920t}
1950 @item @b{arm922t}
1951 @item @b{arm926ejs}
1952 @item @b{arm966e} 
1953 @item @b{cortex_m3}
1954 @item @b{feroceon}
1955 @item @b{xscale}
1956 @item @b{arm11}
1957 @item @b{mips_m4k}
1958 @comment end TYPES
1959 @end itemize
1960 @item @b{PARAMS}
1961 @*PARAMs are various target configure parameters, the following are mandatory
1962 at configuration:
1963 @comment START mandatory
1964 @itemize @bullet
1965 @item @b{-endian big|little}
1966 @item @b{-chain-position DOTTED.NAME}
1967 @comment end MANDATORY
1968 @end itemize
1969 @comment END params
1970 @end itemize
1971
1972 @section Target Config/Cget Options
1973 These options can be specified when the target is created, or later
1974 via the configure option or to query the target via cget.
1975 @itemize @bullet
1976 @item @b{-type} - returns the target type
1977 @item @b{-event NAME BODY} see Target events
1978 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
1979 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
1980 @item @b{-work-area-size [ADDRESS]} specify/set the work area
1981 @item @b{-work-area-backup [0|1]} does the work area get backed up
1982 @item @b{-endian  [big|little]} 
1983 @item @b{-variant [NAME]} some chips have varients OpenOCD needs to know about
1984 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
1985 @end itemize
1986 Example:
1987 @example
1988   for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
1989     set name [target number $x]
1990     set y [$name cget -endian]
1991     set z [$name cget -type]
1992     puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
1993   @}
1994 @end example
1995
1996 @section Target Varients
1997 @itemize @bullet
1998 @item @b{arm7tdmi}
1999 @* Unknown (please write me)
2000 @item @b{arm720t}
2001 @* Unknown (please write me) (simular to arm7tdmi)
2002 @item @b{arm9tdmi}
2003 @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
2004 This enables the hardware single-stepping support found on these
2005 cores.
2006 @item @b{arm920t}
2007 @* None.
2008 @item @b{arm966e}
2009 @* None (this is also used as the ARM946)
2010 @item @b{cortex_m3}
2011 @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
2012 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2013 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2014 be detected and the normal reset behaviour used.
2015 @item @b{xscale}
2016 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2017 @item @b{arm11}
2018 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2019 @item @b{mips_m4k}
2020 @* Use variant @option{ejtag_srst} when debugging targets that do not
2021 provide a functional SRST line on the EJTAG connector.  This causes
2022 OpenOCD to instead use an EJTAG software reset command to reset the
2023 processor.  You still need to enable @option{srst} on the reset
2024 configuration command to enable OpenOCD hardware reset functionality.
2025 @comment END varients
2026 @end itemize
2027 @section working_area - Command Removed
2028 @cindex working_area
2029 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2030 @* This documentation remains because there are existing scripts that
2031 still use this that need to be converted.
2032 @example
2033   working_area target# address  size backup| [virtualaddress]
2034 @end example
2035 @* The target# is a the 0 based target numerical index.
2036
2037 This command specifies a working area for the debugger to use. This
2038 may be used to speed-up downloads to target memory and flash
2039 operations, or to perform otherwise unavailable operations (some
2040 coprocessor operations on ARM7/9 systems, for example). The last
2041 parameter decides whether the memory should be preserved
2042 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
2043 possible, use a working_area that doesn't need to be backed up, as
2044 performing a backup slows down operation.
2045
2046 @node Flash Configuration
2047 @chapter Flash Programing
2048 @cindex Flash Configuration
2049
2050 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2051 flash that a micro may boot from. Perhaps you the reader would like to
2052 contribute support for this.
2053
2054 Flash Steps:
2055 @enumerate
2056 @item Configure via the command @b{flash bank} 
2057 @* Normally this is done in a configuration file.
2058 @item Operate on the flash via @b{flash SOMECOMMAND}
2059 @* Often commands to manipulate the flash are typed by a human, or run
2060 via a script in some automated way. For example: To program the boot
2061 flash on your board.
2062 @item GDB Flashing
2063 @* Flashing via GDB requires the flash be configured via ``flash
2064 bank'', and the GDB flash features be enabled. See the Daemon
2065 configuration section for more details.
2066 @end enumerate
2067
2068 @section Flash commands
2069 @cindex Flash commands
2070 @subsection flash banks
2071 @b{flash banks}
2072 @cindex flash banks
2073 @*List configured flash banks 
2074 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2075 @subsection flash info
2076 @b{flash info} <@var{num}>
2077 @cindex flash info
2078 @*Print info about flash bank <@option{num}> 
2079 @subsection flash probe
2080 @b{flash probe} <@var{num}>
2081 @cindex flash probe
2082 @*Identify the flash, or validate the parameters of the configured flash. Operation
2083 depends on the flash type. 
2084 @subsection flash erase_check
2085 @b{flash erase_check} <@var{num}>
2086 @cindex flash erase_check
2087 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2088 updates the erase state information displayed by @option{flash info}. That means you have
2089 to issue an @option{erase_check} command after erasing or programming the device to get
2090 updated information. 
2091 @subsection flash protect_check
2092 @b{flash protect_check} <@var{num}>
2093 @cindex flash protect_check
2094 @*Check protection state of sectors in flash bank <num>. 
2095 @option{flash erase_sector} using the same syntax. 
2096 @subsection flash erase_sector
2097 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2098 @cindex flash erase_sector
2099 @anchor{flash erase_sector}
2100 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2101 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2102 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2103 the CFI driver).
2104 @subsection flash erase_address
2105 @b{flash erase_address} <@var{address}> <@var{length}>
2106 @cindex flash erase_address
2107 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2108 @subsection flash write_bank
2109 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2110 @cindex flash write_bank
2111 @anchor{flash write_bank}
2112 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2113 <@option{offset}> bytes from the beginning of the bank.
2114 @subsection flash write_image
2115 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2116 @cindex flash write_image
2117 @anchor{flash write_image}
2118 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2119 [@var{offset}] can be specified and the file [@var{type}] can be specified
2120 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2121 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2122 if the @option{erase} parameter is given.
2123 @subsection flash protect
2124 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2125 @cindex flash protect
2126 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2127 <@var{last}> of @option{flash bank} <@var{num}>.
2128
2129 @subsection mFlash commands
2130 @cindex mFlash commands
2131 @itemize @bullet
2132 @item @b{mflash probe} 
2133 @cindex mflash probe
2134 Probe mflash.
2135 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2136 @cindex mflash write
2137 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2138 <@var{offset}> bytes from the beginning of the bank.
2139 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2140 @cindex mflash dump
2141 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank 
2142 to a <@var{file}>.
2143 @end itemize
2144
2145 @section flash bank command
2146 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2147
2148 @example
2149 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2150 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2151 @end example
2152 @cindex flash bank
2153 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2154 and <@var{bus_width}> bytes using the selected flash <driver>.
2155
2156 @subsection External Flash - cfi options
2157 @cindex cfi options
2158 CFI flash are external flash chips - often they are connected to a
2159 specific chip select on the micro. By default at hard reset most
2160 micros have the ablity to ``boot'' from some flash chip - typically
2161 attached to the chips CS0 pin.
2162
2163 For other chip selects: OpenOCD does not know how to configure, or
2164 access a specific chip select. Instead you the human might need to via
2165 other commands (like: mww) configure additional chip selects, or
2166 perhaps configure a GPIO pin that controls the ``write protect'' pin
2167 on the FLASH chip.
2168
2169 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2170 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2171 @*CFI flashes require the number of the target they're connected to as an additional
2172 argument. The CFI driver makes use of a working area (specified for the target)
2173 to significantly speed up operation. 
2174
2175 @var{chip_width} and @var{bus_width} are specified in bytes.
2176
2177 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
2178
2179 @var{x16_as_x8} ???
2180
2181 @subsection Internal Flash (Micro Controllers)
2182 @subsubsection lpc2000 options
2183 @cindex lpc2000 options
2184
2185 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2186 <@var{clock}> [@var{calc_checksum}]
2187 @*LPC flashes don't require the chip and bus width to be specified. Additional
2188 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2189 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2190 of the target this flash belongs to (first is 0), the frequency at which the core
2191 is currently running (in kHz - must be an integral number), and the optional keyword
2192 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2193 vector table. 
2194
2195
2196 @subsubsection at91sam7 options
2197 @cindex at91sam7 options
2198
2199 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2200 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2201 reading the chip-id and type. 
2202
2203 @subsubsection str7 options
2204 @cindex str7 options
2205
2206 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2207 @*variant can be either STR71x, STR73x or STR75x. 
2208
2209 @subsubsection str9 options
2210 @cindex str9 options
2211
2212 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2213 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
2214 @example
2215 str9x flash_config 0 4 2 0 0x80000
2216 @end example
2217 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively. 
2218
2219 @subsubsection str9 options (str9xpec driver)
2220
2221 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2222 @*Before using the flash commands the turbo mode will need enabling using str9xpec
2223 @option{enable_turbo} <@var{num>.}
2224
2225 Only use this driver for locking/unlocking the device or configuring the option bytes.
2226 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2227
2228 @subsubsection stellaris (LM3Sxxx) options
2229 @cindex stellaris (LM3Sxxx) options
2230
2231 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2232 @*stellaris flash plugin only require the @var{target#}. 
2233
2234 @subsubsection stm32x options
2235 @cindex stm32x options
2236
2237 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2238 @*stm32x flash plugin only require the @var{target#}. 
2239
2240 @subsubsection aduc702x options
2241 @cindex aduc702x options
2242
2243 @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2244 @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
2245
2246 @subsection mFlash configuration
2247 @cindex mFlash configuration
2248 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2249 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2250 @cindex mflash bank
2251 @*Configures a mflash for <@var{soc}> host bank at
2252 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2253 order. Pin number format is dependent on host GPIO calling convention.
2254 If WP or DPD pin was not used, write -1. Currently, mflash bank
2255 support s3c2440 and pxa270.
2256
2257 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2258 @example
2259 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2260 @end example
2261 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2262 @example
2263 mflash bank pxa270 0x08000000 2 2 43 -1 51 0  
2264 @end example
2265
2266 @section Micro Controller Specific Flash Commands
2267
2268 @subsection AT91SAM7 specific commands
2269 @cindex AT91SAM7 specific commands
2270 The flash configuration is deduced from the chip identification register. The flash
2271 controller handles erases automatically on a page (128/265 byte) basis so erase is
2272 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2273 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2274 that can be erased separatly. Only an EraseAll command is supported by the controller
2275 for each flash plane and this is called with
2276 @itemize @bullet
2277 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2278 @*bulk erase flash planes first_plane to last_plane. 
2279 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2280 @cindex at91sam7 gpnvm
2281 @*set or clear a gpnvm bit for the processor 
2282 @end itemize
2283
2284 @subsection STR9 specific commands
2285 @cindex STR9 specific commands
2286 @anchor{STR9 specific commands}
2287 These are flash specific commands when using the str9xpec driver.
2288 @itemize @bullet
2289 @item @b{str9xpec enable_turbo} <@var{num}>
2290 @cindex str9xpec enable_turbo
2291 @*enable turbo mode, simply this will remove the str9 from the chain and talk
2292 directly to the embedded flash controller. 
2293 @item @b{str9xpec disable_turbo} <@var{num}>
2294 @cindex str9xpec disable_turbo
2295 @*restore the str9 into jtag chain. 
2296 @item @b{str9xpec lock} <@var{num}>
2297 @cindex str9xpec lock
2298 @*lock str9 device. The str9 will only respond to an unlock command that will
2299 erase the device. 
2300 @item @b{str9xpec unlock} <@var{num}>
2301 @cindex str9xpec unlock
2302 @*unlock str9 device. 
2303 @item @b{str9xpec options_read} <@var{num}>
2304 @cindex str9xpec options_read
2305 @*read str9 option bytes. 
2306 @item @b{str9xpec options_write} <@var{num}>
2307 @cindex str9xpec options_write
2308 @*write str9 option bytes. 
2309 @end itemize
2310
2311 Note: Before using the str9xpec driver here is some background info to help
2312 you better understand how the drivers works. OpenOCD has two flash drivers for
2313 the str9.
2314 @enumerate
2315 @item
2316 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2317 flash programming as it is faster than the @option{str9xpec} driver.
2318 @item
2319 Direct programming @option{str9xpec} using the flash controller, this is
2320 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2321 core does not need to be running to program using this flash driver. Typical use
2322 for this driver is locking/unlocking the target and programming the option bytes.
2323 @end enumerate
2324
2325 Before we run any cmds using the @option{str9xpec} driver we must first disable
2326 the str9 core. This example assumes the @option{str9xpec} driver has been
2327 configured for flash bank 0.
2328 @example
2329 # assert srst, we do not want core running
2330 # while accessing str9xpec flash driver
2331 jtag_reset 0 1
2332 # turn off target polling
2333 poll off
2334 # disable str9 core
2335 str9xpec enable_turbo 0
2336 # read option bytes
2337 str9xpec options_read 0
2338 # re-enable str9 core
2339 str9xpec disable_turbo 0
2340 poll on
2341 reset halt
2342 @end example
2343 The above example will read the str9 option bytes.
2344 When performing a unlock remember that you will not be able to halt the str9 - it
2345 has been locked. Halting the core is not required for the @option{str9xpec} driver
2346 as mentioned above, just issue the cmds above manually or from a telnet prompt.
2347
2348 @subsection STR9 configuration
2349 @cindex STR9 configuration
2350 @itemize @bullet
2351 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2352 <@var{BBADR}> <@var{NBBADR}>
2353 @cindex str9x flash_config
2354 @*Configure str9 flash controller.
2355 @example
2356 eg. str9x flash_config 0 4 2 0 0x80000
2357 This will setup
2358 BBSR - Boot Bank Size register
2359 NBBSR - Non Boot Bank Size register
2360 BBADR - Boot Bank Start Address register
2361 NBBADR - Boot Bank Start Address register
2362 @end example
2363 @end itemize
2364
2365 @subsection STR9 option byte configuration
2366 @cindex STR9 option byte configuration
2367 @itemize @bullet
2368 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2369 @cindex str9xpec options_cmap
2370 @*configure str9 boot bank. 
2371 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2372 @cindex str9xpec options_lvdthd
2373 @*configure str9 lvd threshold. 
2374 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2375 @cindex str9xpec options_lvdsel
2376 @*configure str9 lvd source. 
2377 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2378 @cindex str9xpec options_lvdwarn
2379 @*configure str9 lvd reset warning source. 
2380 @end itemize
2381
2382 @subsection STM32x specific commands
2383 @cindex STM32x specific commands
2384  
2385 These are flash specific commands when using the stm32x driver.
2386 @itemize @bullet
2387 @item @b{stm32x lock} <@var{num}>
2388 @cindex stm32x lock
2389 @*lock stm32 device. 
2390 @item @b{stm32x unlock} <@var{num}>
2391 @cindex stm32x unlock
2392 @*unlock stm32 device. 
2393 @item @b{stm32x options_read} <@var{num}>
2394 @cindex stm32x options_read
2395 @*read stm32 option bytes. 
2396 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2397 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2398 @cindex stm32x options_write
2399 @*write stm32 option bytes. 
2400 @item @b{stm32x mass_erase} <@var{num}>
2401 @cindex stm32x mass_erase
2402 @*mass erase flash memory. 
2403 @end itemize
2404
2405 @subsection Stellaris specific commands
2406 @cindex Stellaris specific commands
2407  
2408 These are flash specific commands when using the Stellaris driver.
2409 @itemize @bullet
2410 @item @b{stellaris mass_erase} <@var{num}>
2411 @cindex stellaris mass_erase
2412 @*mass erase flash memory. 
2413 @end itemize
2414
2415  
2416 @node General Commands
2417 @chapter General Commands
2418 @cindex commands
2419
2420 The commands documented in this chapter here are common commands that
2421 you a human may want to type and see the output of. Configuration type
2422 commands are documented elsewhere.
2423
2424 Intent:
2425 @itemize @bullet
2426 @item @b{Source Of Commands}
2427 @* OpenOCD commands can occur in a configuration script (discussed
2428 elsewhere) or typed manually by a human or supplied programatically,
2429 or via one of several Tcp/Ip Ports.
2430
2431 @item @b{From the human}
2432 @* A human should interact with the Telnet interface (default port: 4444,
2433 or via GDB, default port 3333)
2434
2435 To issue commands from within a GDB session, use the @option{monitor}
2436 command, e.g. use @option{monitor poll} to issue the @option{poll}
2437 command. All output is relayed through the GDB session.
2438
2439 @item @b{Machine Interface}
2440 The TCL interface intent is to be a machine interface. The default TCL
2441 port is 5555.
2442 @end itemize
2443
2444
2445 @section Daemon Commands
2446
2447 @subsection sleep [@var{msec}]
2448 @cindex sleep
2449 @*Wait for n milliseconds before resuming. Useful in connection with script files
2450 (@var{script} command and @var{target_script} configuration). 
2451
2452 @subsection shutdown
2453 @cindex shutdown
2454 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other). 
2455
2456 @subsection debug_level [@var{n}]
2457 @cindex debug_level
2458 @anchor{debug_level}
2459 @*Display or adjust debug level to n<0-3> 
2460
2461 @subsection fast [@var{enable|disable}]
2462 @cindex fast
2463 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2464 downloads and fast memory access will work if the JTAG interface isn't too fast and
2465 the core doesn't run at a too low frequency. Note that this option only changes the default
2466 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2467 individually. 
2468
2469 The target specific "dangerous" optimisation tweaking options may come and go
2470 as more robust and user friendly ways are found to ensure maximum throughput
2471 and robustness with a minimum of configuration. 
2472
2473 Typically the "fast enable" is specified first on the command line:
2474
2475 @example
2476 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2477 @end example
2478
2479 @subsection log_output <@var{file}>
2480 @cindex log_output
2481 @*Redirect logging to <file> (default: stderr) 
2482
2483 @subsection script <@var{file}>
2484 @cindex script
2485 @*Execute commands from <file> 
2486 Also see: ``source [find FILENAME]''
2487
2488 @section Target state handling
2489 @subsection power <@var{on}|@var{off}>
2490 @cindex reg
2491 @*Turn power switch to target on/off. 
2492 No arguments: print status.
2493 Not all interfaces support this.
2494
2495 @subsection reg [@option{#}|@option{name}] [value]
2496 @cindex reg
2497 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2498 No arguments: list all available registers for the current target.
2499 Number or name argument: display a register
2500 Number or name and value arguments: set register value
2501
2502 @subsection poll [@option{on}|@option{off}]
2503 @cindex poll
2504 @*Poll the target for its current state. If the target is in debug mode, architecture
2505 specific information about the current state is printed. An optional parameter
2506 allows continuous polling to be enabled and disabled.
2507
2508 @subsection halt [@option{ms}]
2509 @cindex halt
2510 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2511 Default [@option{ms}] is 5 seconds if no arg given.
2512 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2513 will stop OpenOCD from waiting.
2514
2515 @subsection wait_halt [@option{ms}]
2516 @cindex wait_halt
2517 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2518 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2519 arg given.
2520
2521 @subsection resume [@var{address}]
2522 @cindex resume
2523 @*Resume the target at its current code position, or at an optional address.
2524 OpenOCD will wait 5 seconds for the target to resume.
2525
2526 @subsection step [@var{address}]
2527 @cindex step
2528 @*Single-step the target at its current code position, or at an optional address. 
2529
2530 @subsection reset [@option{run}|@option{halt}|@option{init}]
2531 @cindex reset
2532 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2533
2534 With no arguments a "reset run" is executed
2535 @itemize @minus
2536 @item @b{run}
2537 @cindex reset run
2538 @*Let the target run.
2539 @item @b{halt}
2540 @cindex reset halt
2541 @*Immediately halt the target (works only with certain configurations).
2542 @item @b{init}
2543 @cindex reset init
2544 @*Immediately halt the target, and execute the reset script (works only with certain
2545 configurations)
2546 @end itemize
2547
2548 @subsection soft_reset_halt
2549 @cindex reset
2550 @*Requesting target halt and executing a soft reset.  This often used
2551 when a target cannot be reset and halted. The target, after reset is
2552 released begins to execute code. OpenOCD attempts to stop the CPU and
2553 then sets the Program counter back at the reset vector. Unfortunatlly
2554 that code that was executed may have left hardware in an unknown
2555 state.
2556
2557
2558 @section Memory access commands
2559 @subsection meminfo
2560 display available ram memory.
2561 @subsection Memory Peek/Poke type commands
2562 These commands allow accesses of a specific size to the memory
2563 system. Often these are used to configure the current target in some
2564 special way. For example - one may need to write certian values to the
2565 SDRAM controller to enable SDRAM.
2566
2567 @enumerate
2568 @item To change the current target see the ``targets'' (plural) command
2569 @item In system level scripts these commands are depricated, please use the TARGET object versions.
2570 @end enumerate
2571
2572 @itemize @bullet
2573 @item @b{mdw} <@var{addr}> [@var{count}]
2574 @cindex mdw
2575 @*display memory words (32bit)
2576 @item @b{mdh} <@var{addr}> [@var{count}]
2577 @cindex mdh
2578 @*display memory half-words (16bit)
2579 @item @b{mdb} <@var{addr}> [@var{count}]
2580 @cindex mdb
2581 @*display memory bytes (8bit)
2582 @item @b{mww} <@var{addr}> <@var{value}>
2583 @cindex mww
2584 @*write memory word (32bit)
2585 @item @b{mwh} <@var{addr}> <@var{value}>
2586 @cindex mwh
2587 @*write memory half-word (16bit)
2588 @item @b{mwb} <@var{addr}> <@var{value}>
2589 @cindex mwb
2590 @*write memory byte (8bit)
2591 @end itemize
2592
2593 @section Image Loading Commands
2594 @subsection load_image
2595 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2596 @cindex load_image
2597 @anchor{load_image}
2598 @*Load image <@var{file}> to target memory at <@var{address}> 
2599 @subsection fast_load_image
2600 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2601 @cindex fast_load_image
2602 @anchor{fast_load_image}
2603 @*Normally you should be using @b{load_image} or GDB load. However, for
2604 testing purposes or when IO overhead is significant(OpenOCD running on embedded
2605 host), then storing the image in memory and uploading the image to the target
2606 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2607 Arguments as @b{load_image}, but image is stored in OpenOCD host
2608 memory, i.e. does not affect target.  This approach is also useful when profiling
2609 target programming performance as IO and target programming can easily be profiled
2610 seperately.
2611 @subsection fast_load
2612 @b{fast_load}
2613 @cindex fast_image
2614 @anchor{fast_image}
2615 @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
2616 @subsection dump_image
2617 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2618 @cindex dump_image
2619 @anchor{dump_image}
2620 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2621 (binary) <@var{file}>.
2622 @subsection verify_image
2623 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2624 @cindex verify_image
2625 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2626 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
2627
2628
2629 @section Breakpoint commands
2630 @cindex Breakpoint commands
2631 @itemize @bullet
2632 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2633 @cindex bp
2634 @*set breakpoint <address> <length> [hw]
2635 @item @b{rbp} <@var{addr}>
2636 @cindex rbp
2637 @*remove breakpoint <adress>
2638 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2639 @cindex wp
2640 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2641 @item @b{rwp} <@var{addr}>
2642 @cindex rwp
2643 @*remove watchpoint <adress>
2644 @end itemize
2645
2646 @section Misc Commands
2647 @cindex Other Target Commands
2648 @itemize
2649 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2650
2651 Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
2652 @end itemize
2653
2654 @section Target Specific Commands
2655 @cindex Target Specific Commands
2656
2657
2658 @page
2659 @section Architecture Specific Commands
2660 @cindex Architecture Specific Commands
2661
2662 @subsection ARMV4/5 specific commands
2663 @cindex ARMV4/5 specific commands
2664
2665 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2666 or Intel XScale (XScale isn't supported yet).
2667 @itemize @bullet
2668 @item @b{armv4_5 reg}
2669 @cindex armv4_5 reg
2670 @*Display a list of all banked core registers, fetching the current value from every
2671 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2672 register value. 
2673 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2674 @cindex armv4_5 core_mode
2675 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2676 The target is resumed in the currently set @option{core_mode}. 
2677 @end itemize
2678
2679 @subsection ARM7/9 specific commands
2680 @cindex ARM7/9 specific commands
2681
2682 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2683 ARM920t or ARM926EJ-S.
2684 @itemize @bullet
2685 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2686 @cindex arm7_9 dbgrq
2687 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2688 safe for all but ARM7TDMI--S cores (like Philips LPC). 
2689 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2690 @cindex arm7_9 fast_memory_access
2691 @anchor{arm7_9 fast_memory_access}
2692 @*Allow OpenOCD to read and write memory without checking completion of
2693 the operation. This provides a huge speed increase, especially with USB JTAG
2694 cables (FT2232), but might be unsafe if used with targets running at a very low
2695 speed, like the 32kHz startup clock of an AT91RM9200. 
2696 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2697 @cindex arm7_9 dcc_downloads
2698 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2699 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2700 unsafe, especially with targets running at a very low speed. This command was introduced
2701 with OpenOCD rev. 60. 
2702 @end itemize
2703
2704 @subsection ARM720T specific commands
2705 @cindex ARM720T specific commands
2706
2707 @itemize @bullet
2708 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2709 @cindex arm720t cp15
2710 @*display/modify cp15 register <@option{num}> [@option{value}].
2711 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2712 @cindex arm720t md<bhw>_phys
2713 @*Display memory at physical address addr. 
2714 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2715 @cindex arm720t mw<bhw>_phys
2716 @*Write memory at physical address addr.
2717 @item @b{arm720t virt2phys} <@var{va}>
2718 @cindex arm720t virt2phys
2719 @*Translate a virtual address to a physical address. 
2720 @end itemize
2721
2722 @subsection ARM9TDMI specific commands
2723 @cindex ARM9TDMI specific commands
2724
2725 @itemize @bullet
2726 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2727 @cindex arm9tdmi vector_catch
2728 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2729 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2730 @option{irq} @option{fiq}.
2731
2732 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
2733 @end itemize
2734
2735 @subsection ARM966E specific commands
2736 @cindex ARM966E specific commands
2737
2738 @itemize @bullet
2739 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2740 @cindex arm966e cp15
2741 @*display/modify cp15 register <@option{num}> [@option{value}].
2742 @end itemize
2743
2744 @subsection ARM920T specific commands
2745 @cindex ARM920T specific commands
2746
2747 @itemize @bullet
2748 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2749 @cindex arm920t cp15
2750 @*display/modify cp15 register <@option{num}> [@option{value}].
2751 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2752 @cindex arm920t cp15i
2753 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2754 @item @b{arm920t cache_info}
2755 @cindex arm920t cache_info
2756 @*Print information about the caches found. This allows you to see if your target
2757 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache). 
2758 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2759 @cindex arm920t md<bhw>_phys
2760 @*Display memory at physical address addr. 
2761 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2762 @cindex arm920t mw<bhw>_phys
2763 @*Write memory at physical address addr. 
2764 @item @b{arm920t read_cache} <@var{filename}>
2765 @cindex arm920t read_cache
2766 @*Dump the content of ICache and DCache to a file. 
2767 @item @b{arm920t read_mmu} <@var{filename}>
2768 @cindex arm920t read_mmu
2769 @*Dump the content of the ITLB and DTLB to a file. 
2770 @item @b{arm920t virt2phys} <@var{va}>
2771 @cindex arm920t virt2phys
2772 @*Translate a virtual address to a physical address. 
2773 @end itemize
2774
2775 @subsection ARM926EJS specific commands
2776 @cindex ARM926EJS specific commands
2777
2778 @itemize @bullet
2779 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2780 @cindex arm926ejs cp15
2781 @*display/modify cp15 register <@option{num}> [@option{value}].
2782 @item @b{arm926ejs cache_info}
2783 @cindex arm926ejs cache_info
2784 @*Print information about the caches found.
2785 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2786 @cindex arm926ejs md<bhw>_phys
2787 @*Display memory at physical address addr. 
2788 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2789 @cindex arm926ejs mw<bhw>_phys
2790 @*Write memory at physical address addr. 
2791 @item @b{arm926ejs virt2phys} <@var{va}>
2792 @cindex arm926ejs virt2phys
2793 @*Translate a virtual address to a physical address. 
2794 @end itemize
2795
2796 @subsection CORTEX_M3 specific commands
2797 @cindex CORTEX_M3 specific commands
2798
2799 @itemize @bullet
2800 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2801 @cindex cortex_m3 maskisr
2802 @*Enable masking (disabling) interrupts during target step/resume.
2803 @end itemize
2804
2805 @page
2806 @section Debug commands
2807 @cindex Debug commands
2808 The following commands give direct access to the core, and are most likely
2809 only useful while debugging OpenOCD.
2810 @itemize @bullet
2811 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2812 @cindex arm7_9 write_xpsr
2813 @*Immediately write either the current program status register (CPSR) or the saved
2814 program status register (SPSR), without changing the register cache (as displayed
2815 by the @option{reg} and @option{armv4_5 reg} commands). 
2816 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2817 <@var{0=cpsr},@var{1=spsr}>
2818 @cindex arm7_9 write_xpsr_im8
2819 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2820 operation (similar to @option{write_xpsr}). 
2821 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2822 @cindex arm7_9 write_core_reg
2823 @*Write a core register, without changing the register cache (as displayed by the
2824 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2825 encoding of the [M4:M0] bits of the PSR. 
2826 @end itemize
2827
2828 @section Target Requests
2829 @cindex Target Requests
2830 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2831 See libdcc in the contrib dir for more details.
2832 @itemize @bullet
2833 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
2834 @cindex target_request debugmsgs
2835 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
2836 @end itemize
2837
2838 @node JTAG Commands
2839 @chapter JTAG Commands
2840 @cindex JTAG commands
2841 Generally most people will not use the bulk of these commands. They
2842 are mostly used by the OpenOCD developers or those who need to
2843 directly manipulate the JTAG taps.
2844
2845 In general these commands control JTAG taps at a very low level. For
2846 example if you need to control a JTAG Route Controller (ie: the
2847 OMAP3530 on the Beagle Board has one) you might use these commands in
2848 a script or an event procedure.
2849 @section Commands
2850 @cindex Commands
2851 @itemize @bullet
2852 @item @b{scan_chain}
2853 @cindex scan_chain
2854 @*Print current scan chain configuration. 
2855 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2856 @cindex jtag_reset
2857 @*Toggle reset lines. 
2858 @item @b{endstate} <@var{tap_state}>
2859 @cindex endstate
2860 @*Finish JTAG operations in <@var{tap_state}>. 
2861 @item @b{runtest} <@var{num_cycles}>
2862 @cindex runtest
2863 @*Move to Run-Test/Idle, and execute <@var{num_cycles}> 
2864 @item @b{statemove} [@var{tap_state}]
2865 @cindex statemove
2866 @*Move to current endstate or [@var{tap_state}] 
2867 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2868 @cindex irscan
2869 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ... 
2870 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2871 @cindex drscan
2872 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ... 
2873 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2874 @cindex verify_ircapture
2875 @*Verify value captured during Capture-IR. Default is enabled.
2876 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ... 
2877 @cindex var
2878 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ... 
2879 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2880 @cindex field
2881 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2882 @end itemize
2883
2884 @section Tap states
2885 @cindex Tap states
2886 Available tap_states are:
2887 @itemize @bullet
2888 @item @b{RESET}
2889 @cindex RESET
2890 @item @b{IDLE}
2891 @cindex IDLE
2892 @item @b{DRSELECT}
2893 @cindex DRSELECT
2894 @item @b{DRCAPTURE}
2895 @cindex DRCAPTURE
2896 @item @b{DRSHIFT}
2897 @cindex DRSHIFT
2898 @item @b{DREXIT1}
2899 @cindex DREXIT1
2900 @item @b{DRPAUSE}
2901 @cindex DRPAUSE
2902 @item @b{DREXIT2}
2903 @cindex DREXIT2
2904 @item @b{DRUPDATE}
2905 @cindex DRUPDATE
2906 @item @b{IRSELECT}
2907 @cindex IRSELECT
2908 @item @b{IRCAPTURE}
2909 @cindex IRCAPTURE
2910 @item @b{IRSHIFT}
2911 @cindex IRSHIFT
2912 @item @b{IREXIT1}
2913 @cindex IREXIT1
2914 @item @b{IRPAUSE}
2915 @cindex IRPAUSE
2916 @item @b{IREXIT2}
2917 @cindex IREXIT2
2918 @item @b{IRUPDATE}
2919 @cindex IRUPDATE
2920 @end itemize
2921
2922
2923 @node TFTP
2924 @chapter TFTP
2925 @cindex TFTP
2926 If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
2927 be used to access files on PCs(either developer PC or some other PC).
2928
2929 The way this works on the ZY1000 is to prefix a filename by
2930 "/tftp/ip/" and append the tftp path on the tftp
2931 server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2932 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2933 if the file was hosted on the embedded host.
2934
2935 In order to achieve decent performance, you must choose a tftp server
2936 that supports a packet size bigger than the default packet size(512 bytes). There
2937 are numerous tftp servers out there(free and commercial) and you will have to do
2938 a bit of googling to find something that fits your requirements.
2939
2940 @node Sample Scripts
2941 @chapter Sample Scripts
2942 @cindex scripts
2943
2944 This page shows how to use the target library.
2945
2946 The configuration script can be divided in the following section:
2947 @itemize @bullet
2948 @item daemon configuration
2949 @item interface
2950 @item jtag scan chain
2951 @item target configuration
2952 @item flash configuration 
2953 @end itemize
2954
2955 Detailed information about each section can be found at OpenOCD configuration. 
2956
2957 @section AT91R40008 example
2958 @cindex AT91R40008 example
2959 To start OpenOCD with a target script for the AT91R40008 CPU and reset
2960 the CPU upon startup of the OpenOCD daemon.
2961 @example
2962 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset 
2963 @end example
2964
2965
2966 @node GDB and OpenOCD
2967 @chapter GDB and OpenOCD
2968 @cindex GDB and OpenOCD
2969 OpenOCD complies with the remote gdbserver protocol, and as such can be used
2970 to debug remote targets.
2971
2972 @section Connecting to GDB
2973 @cindex Connecting to GDB
2974 @anchor{Connecting to GDB}
2975 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
2976 instance 6.3 has a known bug where it produces bogus memory access
2977 errors, which has since been fixed: look up 1836 in
2978 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
2979
2980 @*OpenOCD can communicate with GDB in two ways:
2981 @enumerate
2982 @item
2983 A socket (tcp) connection is typically started as follows:
2984 @example
2985 target remote localhost:3333
2986 @end example
2987 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
2988 @item
2989 A pipe connection is typically started as follows:
2990 @example
2991 target remote | openocd --pipe
2992 @end example
2993 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
2994 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
2995 session.
2996 @end enumerate
2997
2998 @*To see a list of available OpenOCD commands type @option{monitor help} on the
2999 GDB commandline.
3000
3001 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3002 to be sent by the gdb server (OpenOCD) to GDB. Typical information includes
3003 packet size and device memory map.
3004
3005 Previous versions of OpenOCD required the following GDB options to increase
3006 the packet size and speed up GDB communication.
3007 @example
3008 set remote memory-write-packet-size 1024
3009 set remote memory-write-packet-size fixed
3010 set remote memory-read-packet-size 1024
3011 set remote memory-read-packet-size fixed
3012 @end example
3013 This is now handled in the @option{qSupported} PacketSize and should not be required.
3014
3015 @section Programming using GDB
3016 @cindex Programming using GDB
3017
3018 By default the target memory map is sent to GDB, this can be disabled by
3019 the following OpenOCD config option:
3020 @example
3021 gdb_memory_map disable
3022 @end example
3023 For this to function correctly a valid flash config must also be configured
3024 in OpenOCD. For faster performance you should also configure a valid 
3025 working area.
3026
3027 Informing GDB of the memory map of the target will enable GDB to protect any
3028 flash area of the target and use hardware breakpoints by default. This means
3029 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3030 using a memory map. @xref{gdb_breakpoint_override}.
3031
3032 To view the configured memory map in GDB, use the gdb command @option{info mem}
3033 All other unasigned addresses within GDB are treated as RAM.
3034
3035 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
3036 this can be changed to the old behaviour by using the following GDB command.
3037 @example
3038 set mem inaccessible-by-default off
3039 @end example
3040
3041 If @option{gdb_flash_program enable} is also used, GDB will be able to
3042 program any flash memory using the vFlash interface.
3043
3044 GDB will look at the target memory map when a load command is given, if any
3045 areas to be programmed lie within the target flash area the vFlash packets
3046 will be used.
3047
3048 If the target needs configuring before GDB programming, an event
3049 script can be executed.
3050 @example
3051 $_TARGETNAME configure -event EVENTNAME BODY
3052 @end example
3053
3054 To verify any flash programming the GDB command @option{compare-sections}
3055 can be used.
3056
3057 @node TCL scripting API
3058 @chapter TCL scripting API
3059 @cindex TCL scripting API
3060 API rules
3061
3062 The commands are stateless. E.g. the telnet command line has a concept
3063 of currently active target, the Tcl API proc's take this sort of state
3064 information as an argument to each proc.
3065
3066 There are three main types of return values: single value, name value
3067 pair list and lists. 
3068
3069 Name value pair. The proc 'foo' below returns a name/value pair
3070 list. 
3071
3072 @verbatim
3073
3074  >  set foo(me)  Duane
3075  >  set foo(you) Oyvind
3076  >  set foo(mouse) Micky
3077  >  set foo(duck) Donald
3078
3079 If one does this:
3080
3081  >  set foo
3082
3083 The result is:
3084
3085     me Duane you Oyvind mouse Micky duck Donald
3086
3087 Thus, to get the names of the associative array is easy:
3088
3089      foreach  { name value }   [set foo]   {
3090                 puts "Name: $name, Value: $value"
3091      }
3092 @end verbatim
3093  
3094 Lists returned must be relatively small. Otherwise a range
3095 should be passed in to the proc in question.
3096
3097 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
3098 is the low level API upon which "flash banks" is implemented.
3099
3100 @itemize @bullet
3101 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3102
3103 Read memory and return as a TCL array for script processing
3104 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3105
3106 Convert a TCL array to memory locations and write the values
3107 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3108
3109 Return information about the flash banks
3110 @end itemize
3111
3112 OpenOCD commands can consist of two words, e.g. "flash banks". The
3113 startup.tcl "unknown" proc will translate this into a tcl proc
3114 called "flash_banks".
3115
3116
3117 @node Upgrading
3118 @chapter Deprecated/Removed Commands
3119 @cindex Deprecated/Removed Commands
3120 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3121
3122 @itemize @bullet
3123 @item @b{arm7_9 fast_writes}
3124 @cindex arm7_9 fast_writes
3125 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3126 @item @b{arm7_9 force_hw_bkpts}
3127 @cindex arm7_9 force_hw_bkpts
3128 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3129 for flash if the gdb memory map has been set up(default when flash is declared in
3130 target configuration). @xref{gdb_breakpoint_override}.
3131 @item @b{arm7_9 sw_bkpts}
3132 @cindex arm7_9 sw_bkpts
3133 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3134 @item @b{daemon_startup}
3135 @cindex daemon_startup
3136 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3137 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3138 and @option{target cortex_m3 little reset_halt 0}.
3139 @item @b{dump_binary}
3140 @cindex dump_binary
3141 @*use @option{dump_image} command with same args. @xref{dump_image}.
3142 @item @b{flash erase}
3143 @cindex flash erase
3144 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3145 @item @b{flash write}
3146 @cindex flash write
3147 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3148 @item @b{flash write_binary}
3149 @cindex flash write_binary
3150 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3151 @item @b{flash auto_erase}
3152 @cindex flash auto_erase
3153 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3154 @item @b{load_binary}
3155 @cindex load_binary
3156 @*use @option{load_image} command with same args. @xref{load_image}.
3157 @item @b{run_and_halt_time}
3158 @cindex run_and_halt_time
3159 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3160 following commands:
3161 @smallexample
3162 reset run
3163 sleep 100
3164 halt
3165 @end smallexample
3166 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3167 @cindex target
3168 @*use the create subcommand of @option{target}.
3169 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3170 @cindex target_script
3171 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3172 @item @b{working_area}
3173 @cindex working_area
3174 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3175 @end itemize
3176
3177 @node FAQ
3178 @chapter FAQ
3179 @cindex faq
3180 @enumerate
3181 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3182 @cindex RTCK
3183 @cindex adaptive clocking
3184 @*
3185
3186 In digital circuit design it is often refered to as ``clock
3187 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
3188 operating at some speed, your target is operating at another.  The two
3189 clocks are not synchronised, they are ``asynchronous''
3190
3191 In order for the two to work together they must be synchronised. Otherwise
3192 the two systems will get out of sync with each other and nothing will
3193 work. There are 2 basic options.
3194 @enumerate
3195 @item
3196 Use a special circuit.
3197 @item
3198 One clock must be some multiple slower the the other.
3199 @end enumerate
3200
3201 @b{Does this really matter?} For some chips and some situations, this
3202 is a non-issue (ie: A 500MHz ARM926) but for others - for example some
3203 ATMEL SAM7 and SAM9 chips start operation from reset at 32kHz -
3204 program/enable the oscillators and eventually the main clock. It is in
3205 those critical times you must slow the jtag clock to sometimes 1 to
3206 4kHz.
3207
3208 Imagine debugging that 500MHz ARM926 hand held battery powered device
3209 that ``deep sleeps'' at 32kHz between every keystroke. It can be
3210 painful.
3211
3212 @b{Solution #1 - A special circuit} 
3213
3214 In order to make use of this your jtag dongle must support the RTCK
3215 feature. Not all dongles support this - keep reading!
3216
3217 The RTCK signal often found in some ARM chips is used to help with
3218 this problem. ARM has a good description of the problem described at
3219 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3220 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
3221 work? / how does adaptive clocking work?''.
3222
3223 The nice thing about adaptive clocking is that ``battery powered hand
3224 held device example'' - the adaptiveness works perfectly all the
3225 time. One can set a break point or halt the system in the deep power
3226 down code, slow step out until the system speeds up.
3227
3228 @b{Solution #2 - Always works - but may be slower}
3229
3230 Often this is a perfectly acceptable solution.
3231
3232 In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3233 the target clock speed. But what is that ``magic division'' it varies
3234 depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
3235 based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
3236 1/12 the clock speed.
3237
3238 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
3239
3240 You can still debug the 'lower power' situations - you just need to
3241 manually adjust the clock speed at every step. While painful and
3242 teadious, it is not always practical.
3243
3244 It is however easy to ``code your way around it'' - ie: Cheat a little
3245 have a special debug mode in your application that does a ``high power
3246 sleep''. If you are careful - 98% of your problems can be debugged
3247 this way.
3248
3249 To set the JTAG frequency use the command:
3250
3251 @example
3252         # Example: 1.234MHz
3253         jtag_khz 1234
3254 @end example
3255
3256
3257 @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
3258
3259 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3260 around Windows filenames. 
3261
3262 @example
3263 > echo \a
3264
3265 > echo @{\a@}
3266 \a
3267 > echo "\a"
3268
3269 >
3270 @end example
3271
3272
3273 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3274
3275 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3276 claims to come with all the necessary dlls. When using Cygwin, try launching
3277 OpenOCD from the Cygwin shell.
3278
3279 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3280 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3281 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3282
3283 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3284 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
3285 software breakpoints consume one of the two available hardware breakpoints.  
3286
3287 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
3288 and works sometimes fine.
3289
3290 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3291 clock at the time you're programming the flash. If you've specified the crystal's
3292 frequency, make sure the PLL is disabled, if you've specified the full core speed
3293 (e.g. 60MHz), make sure the PLL is enabled.
3294
3295 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3296 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3297 out while waiting for end of scan, rtck was disabled".
3298
3299 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3300 settings in your PC BIOS (ECP, EPP, and different versions of those).
3301
3302 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3303 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3304 memory read caused data abort". 
3305
3306 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3307 beyond the last valid frame. It might be possible to prevent this by setting up
3308 a proper "initial" stack frame, if you happen to know what exactly has to
3309 be done, feel free to add this here.
3310
3311 @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
3312 stack before calling main(). What GDB is doing is ``climbing'' the run
3313 time stack by reading various values on the stack using the standard
3314 call frame for the target. GDB keeps going - until one of 2 things
3315 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3316 stackframes have been processed. By pushing ZEROs on the stack, GDB
3317 gracefully stops.
3318
3319 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3320 your C code, do the same, artifically push some zeros on to the stack,
3321 remember to pop them off when the ISR is done.
3322
3323 @b{Also note:} If you have a multi-threaded operating system, they
3324 often do not @b{in the intrest of saving memory} waste these few
3325 bytes. Painful... 
3326
3327
3328 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3329 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3330
3331 This warning doesn't indicate any serious problem, as long as you don't want to
3332 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3333 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3334 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3335 independently. With this setup, it's not possible to halt the core right out of
3336 reset, everything else should work fine.
3337
3338 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3339 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3340 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3341 quit with an error message. Is there a stability issue with OpenOCD?
3342
3343 No, this is not a stability issue concerning OpenOCD. Most users have solved
3344 this issue by simply using a self-powered USB hub, which they connect their
3345 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3346 supply stable enough for the Amontec JTAGkey to be operated.
3347
3348 @b{Laptops running on battery have this problem too...}
3349
3350 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3351 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3352 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3353 What does that mean and what might be the reason for this?
3354
3355 First of all, the reason might be the USB power supply. Try using a self-powered
3356 hub instead of a direct connection to your computer. Secondly, the error code 4
3357 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3358 chip ran into some sort of error - this points us to a USB problem.
3359
3360 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3361 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3362 What does that mean and what might be the reason for this?
3363
3364 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3365 has closed the connection to OpenOCD. This might be a GDB issue.
3366
3367 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3368 are described, there is a parameter for specifying the clock frequency
3369 for LPC2000 internal flash devices (e.g.  @option{flash bank lpc2000
3370 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3371 specified in kilohertz. However, I do have a quartz crystal of a
3372 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3373 i.e. 14,745.600 kHz).  Is it possible to specify real numbers for the
3374 clock frequency?
3375
3376 No. The clock frequency specified here must be given as an integral number.
3377 However, this clock frequency is used by the In-Application-Programming (IAP)
3378 routines of the LPC2000 family only, which seems to be very tolerant concerning
3379 the given clock frequency, so a slight difference between the specified clock
3380 frequency and the actual clock frequency will not cause any trouble.
3381
3382 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3383
3384 Well, yes and no. Commands can be given in arbitrary order, yet the
3385 devices listed for the JTAG scan chain must be given in the right
3386 order (jtag newdevice), with the device closest to the TDO-Pin being
3387 listed first. In general, whenever objects of the same type exist
3388 which require an index number, then these objects must be given in the
3389 right order (jtag newtap, targets and flash banks - a target
3390 references a jtag newtap and a flash bank references a target).
3391
3392 You can use the ``scan_chain'' command to verify and display the tap order.
3393
3394 @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
3395
3396 Many newer devices have multiple JTAG taps. For example: ST
3397 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3398 ``CortexM3'' tap.  Example: The STM32 reference manual, Document ID:
3399 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3400 connected to the Boundary Scan Tap, which then connects to the
3401 CortexM3 Tap, which then connects to the TDO pin.
3402
3403 Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
3404 (2) The Boundary Scan Tap. If your board includes an additional JTAG
3405 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3406 place it before or after the stm32 chip in the chain. For example:
3407
3408 @itemize @bullet
3409 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3410 @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
3411 @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
3412 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3413 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3414 @end itemize
3415
3416 The ``jtag device'' commands would thus be in the order shown below. Note 
3417
3418 @itemize @bullet
3419 @item jtag newtap Xilinx tap -irlen ...
3420 @item jtag newtap stm32  cpu -irlen ...
3421 @item jtag newtap stm32  bs  -irlen ...
3422 @item # Create the debug target and say where it is
3423 @item target create stm32.cpu -chain-position stm32.cpu ...
3424 @end itemize
3425
3426
3427 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3428 log file, I can see these error messages: Error: arm7_9_common.c:561
3429 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3430
3431 TODO.
3432                                                         
3433 @end enumerate
3434
3435 @node TCL Crash Course
3436 @chapter TCL Crash Course
3437 @cindex TCL 
3438
3439 Not everyone knows TCL - this is not intended to be a replacement for
3440 learning TCL, the intent of this chapter is to give you some idea of
3441 how the TCL Scripts work.
3442
3443 This chapter is written with two audiences in mind. (1) OpenOCD users
3444 who need to understand a bit more of how JIM-Tcl works so they can do
3445 something useful, and (2) those that want to add a new command to
3446 OpenOCD.
3447
3448 @section TCL Rule #1
3449 There is a famous joke, it goes like this:
3450 @enumerate
3451 @item Rule #1: The wife is always correct
3452 @item Rule #2: If you think otherwise, See Rule #1
3453 @end enumerate
3454
3455 The TCL equal is this:
3456
3457 @enumerate
3458 @item Rule #1: Everything is a string
3459 @item Rule #2: If you think otherwise, See Rule #1
3460 @end enumerate
3461
3462 As in the famous joke, the consequences of Rule #1 are profound. Once
3463 you understand Rule #1, you will understand TCL.
3464
3465 @section TCL Rule #1b
3466 There is a second pair of rules.
3467 @enumerate
3468 @item Rule #1: Control flow does not exist. Only commands
3469 @* For example: the classic FOR loop or IF statement is not a control
3470 flow item, they are commands, there is no such thing as control flow
3471 in TCL.
3472 @item Rule #2: If you think otherwise, See Rule #1
3473 @* Actually what happens is this: There are commands that by
3474 convention, act like control flow key words in other languages. One of
3475 those commands is the word ``for'', another command is ``if''.
3476 @end enumerate
3477
3478 @section Per Rule #1 - All Results are strings
3479 Every TCL command results in a string. The word ``result'' is used
3480 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3481 Everything is a string}
3482
3483 @section TCL Quoting Operators
3484 In life of a TCL script, there are two important periods of time, the
3485 difference is subtle.
3486 @enumerate
3487 @item Parse Time
3488 @item Evaluation Time
3489 @end enumerate
3490
3491 The two key items here are how ``quoted things'' work in TCL. TCL has
3492 three primary quoting constructs, the [square-brackets] the
3493 @{curly-braces@} and ``double-quotes''
3494
3495 By now you should know $VARIABLES always start with a $DOLLAR
3496 sign. BTW, to set a variable, you actually use the command ``set'', as
3497 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3498 = 1'' statement, but without the equal sign.
3499
3500 @itemize @bullet
3501 @item @b{[square-brackets]}
3502 @* @b{[square-brackets]} are command subsitution. It operates much
3503 like Unix Shell `back-ticks`. The result of a [square-bracket]
3504 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3505 string}. These two statments are roughly identical.
3506 @example
3507     # bash example
3508     X=`date`
3509     echo "The Date is: $X"
3510     # TCL example
3511     set X [date]
3512     puts "The Date is: $X"
3513 @end example
3514 @item @b{``double-quoted-things''}
3515 @* @b{``double-quoted-things''} are just simply quoted
3516 text. $VARIABLES and [square-brackets] are expanded in place - the
3517 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3518 is a string}
3519 @example
3520     set x "Dinner"
3521     puts "It is now \"[date]\", $x is in 1 hour"
3522 @end example
3523 @item @b{@{Curly-Braces@}}
3524 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3525 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3526 'single-quote' operators in BASH shell scripts, with the added
3527 feature: @{curly-braces@} nest, single quotes can not.  @{@{@{this is
3528 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3529 28/nov/2008, Jim/OpenOCD does not have a date command.
3530 @end itemize
3531
3532 @section Consequences of Rule 1/2/3/4
3533
3534 The consequences of Rule 1 is profound.
3535
3536 @subsection Tokenizing & Execution.
3537
3538 Of course, whitespace, blank lines and #comment lines are handled in
3539 the normal way.
3540
3541 As a script is parsed, each (multi) line in the script file is
3542 tokenized and according to the quoting rules. After tokenizing, that
3543 line is immedatly executed.
3544
3545 Multi line statements end with one or more ``still-open''
3546 @{curly-braces@} which - eventually - a few lines later closes.
3547
3548 @subsection Command Execution
3549
3550 Remember earlier: There is no such thing as ``control flow''
3551 statements in TCL. Instead there are COMMANDS that simpily act like
3552 control flow operators.
3553
3554 Commands are executed like this:
3555
3556 @enumerate 
3557 @item Parse the next line into (argc) and (argv[]).
3558 @item Look up (argv[0]) in a table and call its function.
3559 @item Repeat until End Of File.
3560 @end enumerate
3561
3562 It sort of works like this:
3563 @example
3564     for(;;)@{
3565         ReadAndParse( &argc, &argv );
3566
3567         cmdPtr = LookupCommand( argv[0] );
3568
3569         (*cmdPtr->Execute)( argc, argv );
3570     @}
3571 @end example
3572
3573 When the command ``proc'' is parsed (which creates a procedure
3574 function) it gets 3 parameters on the command line. @b{1} the name of
3575 the proc (function), @b{2} the list of parameters, and @b{3} the body
3576 of the function. Not the choice of words: LIST and BODY. The PROC
3577 command stores these items in a table somewhere so it can be found by
3578 ``LookupCommand()''
3579
3580 @subsection The FOR Command
3581
3582 The most interesting command to look at is the FOR command.  In TCL,
3583 the FOR command is normally implimented in C. Remember, FOR is a
3584 command just like any other command.
3585
3586 When the ascii text containing the FOR command is parsed, the parser
3587 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3588 are:
3589
3590 @enumerate 0
3591 @item The ascii text 'for'
3592 @item The start text
3593 @item The test expression
3594 @item The next text
3595 @item The body text
3596 @end enumerate
3597
3598 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3599 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3600 Often many of those parameters are in @{curly-braces@} - thus the
3601 variables inside are not expanded or replaced until later.
3602
3603 Remember that every TCL command looks like the classic ``main( argc,
3604 argv )'' function in C. In JimTCL - they actually look like this:
3605
3606 @example
3607 int
3608 MyCommand( Jim_Interp *interp,
3609            int *argc,
3610            Jim_Obj * const *argvs );
3611 @end example
3612
3613 Real TCL is nearly identical. Although the newer versions have
3614 introduced a byte-code parser and intepreter, but at the core, it
3615 still operates in the same basic way.
3616
3617 @subsection FOR Command Implimentation
3618
3619 To understand TCL it is perhaps most helpful to see the FOR
3620 command. Remember, it is a COMMAND not a control flow structure.
3621
3622 In TCL there are two underying C helper functions.
3623
3624 Remember Rule #1 - You are a string.
3625
3626 The @b{first} helper parses and executes commands found in an ascii
3627 string. Commands can be seperated by semi-colons, or newlines. While
3628 parsing, variables are expanded per the quoting rules
3629
3630 The @b{second} helper evaluates an ascii string as a numerical
3631 expression and returns a value.
3632
3633 Here is an example of how the @b{FOR} command could be
3634 implimented. The pseudo code below does not show error handling.
3635 @example
3636 void Execute_AsciiString( void *interp, const char *string );
3637
3638 int Evaluate_AsciiExpression( void *interp, const char *string );
3639
3640 int
3641 MyForCommand( void *interp,
3642               int argc,
3643               char **argv )
3644 @{
3645    if( argc != 5 )@{
3646        SetResult( interp, "WRONG number of parameters");
3647        return ERROR;
3648    @}
3649    
3650    // argv[0] = the ascii string just like C
3651
3652    // Execute the start statement.
3653    Execute_AsciiString( interp, argv[1] );
3654
3655    // Top of loop test
3656    for(;;)@{
3657         i = Evaluate_AsciiExpression(interp, argv[2]);
3658         if( i == 0 )
3659             break;
3660
3661         // Execute the body
3662         Execute_AsciiString( interp, argv[3] );
3663
3664         // Execute the LOOP  part
3665         Execute_AsciiString( interp, argv[4] );
3666     @}
3667
3668     // Return no error
3669     SetResult( interp, "" );
3670     return SUCCESS;
3671 @}
3672 @end example        
3673
3674 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3675 in the same basic way.
3676
3677 @section OpenOCD TCL Usage
3678
3679 @subsection source and find commands
3680 @b{Where:} In many configuration files
3681 @* Example: @b{ source [find FILENAME] }
3682 @*Remember the parsing rules
3683 @enumerate
3684 @item The FIND command is in square brackets.
3685 @* The FIND command is executed with the parameter FILENAME. It should
3686 find the full path to the named file. The RESULT is a string, which is
3687 subsituted on the orginal command line.
3688 @item The command source is executed with the resulting filename.
3689 @* SOURCE reads a file and executes as a script.
3690 @end enumerate
3691 @subsection format command
3692 @b{Where:} Generally occurs in numerous places.  
3693 @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
3694 @b{sprintf()}.  
3695 @b{Example}
3696 @example
3697     set x 6
3698     set y 7
3699     puts [format "The answer: %d" [expr $x * $y]]
3700 @end example
3701 @enumerate
3702 @item The SET command creates 2 variables, X and Y.
3703 @item The double [nested] EXPR command performs math
3704 @* The EXPR command produces numerical result as a string. 
3705 @* Refer to Rule #1
3706 @item The format command is executed, producing a single string
3707 @* Refer to Rule #1.
3708 @item The PUTS command outputs the text.
3709 @end enumerate
3710 @subsection Body Or Inlined Text
3711 @b{Where:} Various TARGET scripts.
3712 @example
3713 #1 Good
3714    proc someproc @{@} @{
3715        ... multiple lines of stuff ...
3716    @}
3717    $_TARGETNAME configure -event FOO  someproc
3718 #2 Good - no variables
3719    $_TARGETNAME confgure -event foo "this ; that;"
3720 #3 Good Curly Braces
3721    $_TARGETNAME configure -event FOO @{
3722         puts "Time: [date]"
3723    @}
3724 #4 DANGER DANGER DANGER
3725    $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3726 @end example
3727 @enumerate 
3728 @item The $_TARGETNAME is an OpenOCD variable convention.
3729 @*@b{$_TARGETNAME} represents the last target created, the value changes
3730 each time a new target is created. Remember the parsing rules. When
3731 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3732 the name of the target which happens to be a TARGET (object)
3733 command.
3734 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3735 @*There are 4 examples:
3736 @enumerate
3737 @item The TCLBODY is a simple string that happens to be a proc name
3738 @item The TCLBODY is several simple commands semi-colon seperated
3739 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3740 @item The TCLBODY is a string with variables that get expanded.
3741 @end enumerate
3742
3743 In the end, when the target event FOO occurs the TCLBODY is
3744 evaluated. Method @b{#1} and @b{#2} are functionally identical.  For
3745 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3746
3747 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3748 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3749 and the text is evaluated. In case #4, they are replaced before the
3750 ``Target Object Command'' is executed. This occurs at the same time
3751 $_TARGETNAME is replaced. In case #4 the date will never
3752 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3753 Jim/OpenOCD does not have a date command@}
3754 @end enumerate
3755 @subsection Global Variables
3756 @b{Where:} You might discover this when writing your own procs @* In
3757 simple terms: Inside a PROC, if you need to access a global variable
3758 you must say so. Also see ``upvar''. Example:
3759 @example
3760 proc myproc @{ @} @{
3761      set y 0  #Local variable Y
3762      global x #Global variable X
3763      puts [format "X=%d, Y=%d" $x $y]
3764 @}
3765 @end example
3766 @section Other Tcl Hacks
3767 @b{Dynamic Variable Creation}
3768 @example
3769 # Dynamically create a bunch of variables.
3770 for @{ set x 0  @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3771     # Create var name
3772     set vn [format "BIT%d" $x]
3773     # Make it a global
3774     global $vn
3775     # Set it.
3776     set $vn   [expr (1 << $x)]
3777 @}
3778 @end example
3779 @b{Dynamic Proc/Command Creation}
3780 @example
3781 # One "X" function - 5 uart functions.
3782 foreach who @{A B C D E@}
3783    proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3784 @}
3785 @end example
3786
3787 @node Target library
3788 @chapter Target library
3789 @cindex Target library
3790
3791 OpenOCD comes with a target configuration script library. These scripts can be
3792 used as-is or serve as a starting point.
3793
3794 The target library is published together with the OpenOCD executable and 
3795 the path to the target library is in the OpenOCD script search path.
3796 Similarly there are example scripts for configuring the JTAG interface. 
3797
3798 The command line below uses the example parport configuration scripts
3799 that ship with OpenOCD, then configures the str710.cfg target and
3800 finally issues the init and reset command. The communication speed
3801 is set to 10kHz for reset and 8MHz for post reset.
3802
3803
3804 @example
3805 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3806 @end example
3807
3808
3809 To list the target scripts available:
3810
3811 @example
3812 $ ls  /usr/local/lib/openocd/target
3813
3814 arm7_fast.cfg    lm3s6965.cfg  pxa255.cfg      stm32.cfg   xba_revA3.cfg
3815 at91eb40a.cfg    lpc2148.cfg   pxa255_sst.cfg  str710.cfg  zy1000.cfg
3816 at91r40008.cfg   lpc2294.cfg   sam7s256.cfg    str912.cfg
3817 at91sam9260.cfg  nslu2.cfg     sam7x256.cfg    wi-9c.cfg
3818 @end example
3819
3820
3821
3822 @include fdl.texi
3823
3824 @node OpenOCD Index
3825 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3826 @comment case issue with ``Index.html'' and ``index.html''
3827 @comment Occurs when creating ``--html --no-split'' output
3828 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3829 @unnumbered OpenOCD Index
3830
3831 @printindex cp
3832
3833 @bye