- added new test results
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (openocd)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (openocd)
27 @subtitle Edition @value{EDITION} for openocd version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (openocd) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About Openocd.
46 * Developers:: Openocd developers
47 * Building:: Building Openocd
48 * Running:: Running Openocd
49 * Configuration:: Openocd Configuration.
50 * Commands:: Openocd Commands
51 * Sample Scripts:: Sample Target Scripts
52 * GDB and Openocd:: Using GDB and Openocd
53 * FAQ:: Frequently Asked Questions
54 * License:: GNU Free Documentation License
55 * Index:: Main index.
56 @end menu
57
58 @node About
59 @unnumbered About
60 @cindex about
61
62 The Open On-Chip Debugger (openocd) aims to provide debugging, in-system programming
63 and boundary-scan testing for embedded target devices. The targets are interfaced
64 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
65 connection types in the future.
66
67 Openocd currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
68 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
69 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
70 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
71
72 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
73 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
74 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
75
76 @node Developers
77 @chapter Developers
78 @cindex developers
79
80 Openocd has been created by Dominic Rath as part of a diploma thesis written at the
81 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
82 Others interested in improving the state of free and open debug and testing technology
83 are welcome to participate.
84
85 Other developers have contributed support for additional targets and flashes as well
86 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
87
88 @node Building
89 @chapter Building
90 @cindex building openocd
91
92 You can download the current SVN version with SVN client of your choice from the
93 following repositories:
94
95 (@uref{svn://svn.berlios.de/openocd/trunk})
96
97 or
98
99 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
100
101 Using the SVN command line client, you could use the following command to fetch the
102 latest version (make sure there is no (non-svn) directory called "openocd" in the
103 current directory):
104
105 @smallexample
106 svn checkout svn://svn.berlios.de/openocd/trunk openocd
107 @end smallexample
108
109 Building the OpenOCD requires a recent version of the GNU autotools.
110 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
111 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
112 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
113 paths, resulting in obscure dependency errors (This is an observation I've gathered
114 from the logs of one user - correct me if I'm wrong).
115
116 You further need the appropriate driver files, if you want to build support for
117 a FTDI FT2232 based interface:
118 @itemize @bullet
119 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
120 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
121 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
122 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
123 @end itemize
124
125 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
126 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
127
128 In general, the D2XX driver provides superior performance (several times as fast),
129 but has the draw-back of being binary-only - though that isn't as worse, as it isn't
130 a kernel module, only a user space library.
131
132 To build OpenOCD (on both Linux and Cygwin), use the following commands:
133 @smallexample
134 ./bootstrap
135 @end smallexample
136 Bootstrap generates the configure script, and prepares building on your system.
137 @smallexample
138 ./configure
139 @end smallexample
140 Configure generates the Makefiles used to build OpenOCD.
141 @smallexample
142 make
143 @end smallexample
144 Make builds the OpenOCD, and places the final executable in ./src/.
145
146 The configure script takes several options, specifying which JTAG interfaces
147 should be included:
148
149 @itemize @bullet
150 @item
151 @option{--enable-parport}
152 @item
153 @option{--enable-parport_ppdev}
154 @item
155 @option{--enable-amtjtagaccel}
156 @item
157 @option{--enable-ft2232_ftd2xx}
158 @footnote{Using the latest D2XX drivers from FTDI and following their installation
159 instructions, I had to use @option{--enable-ft2232_libftd2xx} for the OpenOCD to
160 build properly.}
161 @item
162 @option{--enable-ft2232_libftdi}
163 @item
164 @option{--with-ftd2xx=/path/to/d2xx/}
165 @end itemize
166
167 If you want to access the parallel port using the PPDEV interface you have to specify
168 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
169 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
170 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
171
172 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
173 absolute path containing no spaces.
174
175 Linux users should copy the various parts of the D2XX package to the appropriate
176 locations, i.e. /usr/include, /usr/lib.
177
178 @node Running
179 @chapter Running
180 @cindex running openocd
181 @cindex --configfile
182 @cindex --debug_level
183 @cindex --logfile
184 @cindex --search
185 The OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
186 Run with @option{--help} or @option{-h} to view the available command line arguments.
187
188 It reads its configuration by default from the file openocd.cfg located in the current
189 working directory. This may be overwritten with the @option{-f <configfile>} command line
190 switch.
191
192 To enable debug output (when reporting problems or working on OpenOCD itself), use
193 the @option{-d} command line switch. This sets the debug_level to "3", outputting
194 the most information, including debug messages. The default setting is "2", outputting
195 only informational messages, warnings and errors. You can also change this setting
196 from within a telnet or gdb session (@option{debug_level <n>}).
197
198 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
199
200 Search paths for config/script files can be added to openocd by using
201 the @option{-s <search>} switch.
202
203 @node Configuration
204 @chapter Configuration
205 @cindex configuration
206 The Open On-Chip Debugger (OpenOCD) runs as a daemon, and reads it current configuration
207 by default from the file openocd.cfg in the current directory. A different configuration
208 file can be specified with the @option{-f <conf.file>} given at the openocd command line.
209
210 The configuration file is used to specify on which ports the daemon listens for new
211 connections, the JTAG interface used to connect to the target, the layout of the JTAG
212 chain, the targets that should be debugged, and connected flashes.
213
214 @section Daemon configuration
215
216 @itemize @bullet
217 @item @b{telnet_port} <@var{number}>
218 @cindex telnet_port
219 Port on which to listen for incoming telnet connections
220 @item @b{gdb_port} <@var{number}>
221 @cindex gdb_port
222 First port on which to listen for incoming GDB connections. The GDB port for the
223 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
224 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
225 @cindex gdb_detach
226 Configures what openocd will do when gdb detaches from the daeman.
227 Default behaviour is <@var{resume}>
228 @item @b{gdb_memory_map} <@var{enable|disable}>
229 @cindex gdb_memory_map
230 Set to <@var{enable}> so that openocd will send the memory configuration to gdb when
231 requested. gdb will then know when to set hardware breakpoints, and program flash
232 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
233 for flash programming to work.
234 Default behaviour is <@var{disable}>
235 @item @b{gdb_flash_program} <@var{enable|disable}>
236 @cindex gdb_flash_program
237 Set to <@var{enable}> so that openocd will program the flash memory when a
238 vFlash packet is received.
239 Default behaviour is <@var{disable}>
240 @item @b{daemon_startup} <@var{mode}> either @samp{attach} or @samp{reset}
241 @cindex daemon_startup
242 Tells the OpenOCD whether it should reset the target when the daemon is launched, or
243 if it should just attach to the target.
244 @end itemize
245
246 @section JTAG interface configuration
247
248 @itemize @bullet
249 @item @b{interface} <@var{name}>
250 @cindex interface
251 Use the interface driver <@var{name}> to connect to the target. Currently supported
252 interfaces are
253 @itemize @minus
254 @item parport
255 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
256 @end itemize
257 @itemize @minus
258 @item amt_jtagaccel
259 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
260 mode parallel port
261 @end itemize
262 @itemize @minus
263 @item ft2232
264 FTDI FT2232 based devices using either the open-source libftdi or the binary only
265 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
266 platform. The libftdi uses libusb, and should be portable to all systems that provide
267 libusb.
268 @end itemize
269 @itemize @minus
270 @item ep93xx
271 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
272 @end itemize
273 @end itemize
274
275 @itemize @bullet
276 @item @b{jtag_speed} <@var{reset speed}> <@var{post reset speed}>
277 @cindex jtag_speed
278 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
279 speed. The actual effect of this option depends on the JTAG interface used. Reset
280 speed is used during reset and post reset speed after reset. post reset speed
281 is optional, in which case the reset speed is used.
282 @itemize @minus
283
284
285
286
287
288 @item wiggler: maximum speed / @var{number}
289 @item ft2232: 6MHz / (@var{number}+1)
290 @item amt jtagaccel: 8 / 2**@var{number}
291 @end itemize
292
293 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
294 especially true for synthesized cores (-S).
295
296 @item @b{jtag_khz} <@var{reset speed kHz}> <@var{post reset speed kHz}>
297 @cindex jtag_khz
298 Same as jtag_speed, except that the speed is specified in maximum kHz. If
299 the device can not support the rate asked for, or can not translate from
300 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
301 is not supported, then an error is reported.
302
303 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
304 @cindex reset_config
305 The configuration of the reset signals available on the JTAG interface AND the target.
306 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
307 then OpenOCD can't use it. <@var{signals}> can be @samp{none}, @samp{trst_only},
308 @samp{srst_only} or @samp{trst_and_srst}.
309 [@var{combination}] is an optional value specifying broken reset signal implementations.
310 @samp{srst_pulls_trst} states that the testlogic is reset together with the reset of
311 the system (e.g. Philips LPC2000, "broken" board layout), @samp{trst_pulls_srst} says
312 that the system is reset together with the test logic (only hypothetical, I haven't
313 seen hardware with such a bug, and can be worked around).
314
315 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
316 reset lines to be specified. Possible values are @samp{trst_push_pull} (default)
317 and @samp{trst_open_drain} for the test reset signal, and @samp{srst_open_drain}
318 (default) and @samp{srst_push_pull} for the system reset. These values only affect
319 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
320
321 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
322 @cindex jtag_device
323 Describes the devices that form the JTAG daisy chain, with the first device being
324 the one closest to TDO. The parameters are the length of the instruction register
325 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
326 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
327 The IDCODE instruction will in future be used to query devices for their JTAG
328 identification code. This line is the same for all ARM7 and ARM9 devices.
329 Other devices, like CPLDs, require different parameters. An example configuration
330 line for a Xilinx XC9500 CPLD would look like this:
331 @smallexample
332 jtag_device 8 0x01 0x0e3 0xfe
333 @end smallexample
334 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
335 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
336 The IDCODE instruction is 0xfe.
337
338 @item @b{jtag_nsrst_delay} <@var{ms}>
339 @cindex jtag_nsrst_delay
340 How long (in miliseconds) the OpenOCD should wait after deasserting nSRST before
341 starting new JTAG operations.
342 @item @b{jtag_ntrst_delay} <@var{ms}>
343 @cindex jtag_ntrst_delay
344 How long (in miliseconds) the OpenOCD should wait after deasserting nTRST before
345 starting new JTAG operations.
346
347 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
348 or on-chip features) keep a reset line asserted for some time after the external reset
349 got deasserted.
350 @end itemize
351
352 @section parport options
353
354 @itemize @bullet
355 @item @b{parport_port} <@var{number}>
356 @cindex parport_port
357 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
358 the @file{/dev/parport} device
359
360 When using PPDEV to access the parallel port, use the number of the parallel port:
361 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
362 you may encounter a problem.
363 @item @b{parport_cable} <@var{name}>
364 @cindex parport_cable
365 The layout of the parallel port cable used to connect to the target.
366 Currently supported cables are
367 @itemize @minus
368 @item wiggler
369 @cindex wiggler
370 Original Wiggler layout, also supported by several clones, such
371 as the Olimex ARM-JTAG
372 @item old_amt_wiggler
373 @cindex old_amt_wiggler
374 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
375 version available from the website uses the original Wiggler layout ('@var{wiggler}')
376 @item chameleon
377 @cindex chameleon
378 Describes the connection of the Amontec Chameleon's CPLD when operated in
379 configuration mode. This is only used to program the Chameleon itself, not
380 a connected target.
381 @item dlc5
382 @cindex dlc5
383 Xilinx Parallel cable III.
384 @item triton
385 @cindex triton
386 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
387 This is also the layout used by the HollyGates design
388 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
389 @item flashlink
390 @cindex flashlink
391 ST Parallel cable.
392 @end itemize
393 @item @b{parport_write_on_exit} <@var{on|off}>
394 @cindex parport_write_on_exit
395 This will configure the parallel driver to write a known value to the parallel
396 interface on exiting openocd
397 @end itemize
398
399 @section amt_jtagaccel options
400 @itemize @bullet
401 @item @b{parport_port} <@var{number}>
402 @cindex parport_port
403 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
404 @file{/dev/parport} device
405 @end itemize
406 @section ft2232 options
407
408 @itemize @bullet
409 @item @b{ft2232_device_desc} <@var{description}>
410 @cindex ft2232_device_desc
411 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
412 default value is used. This setting is only valid if compiled with FTD2XX support.
413 @item @b{ft2232_layout} <@var{name}>
414 @cindex ft2232_layout
415 The layout of the FT2232 GPIO signals used to control output-enables and reset
416 signals. Valid layouts are
417 @itemize @minus
418 @item usbjtag
419 The "USBJTAG-1" layout described in the original OpenOCD diploma thesis
420 @item jtagkey
421 Amontec JTAGkey and JTAGkey-tiny
422 @item signalyzer
423 Signalyzer
424 @item olimex-jtag
425 Olimex ARM-USB-OCD
426 @item m5960
427 American Microsystems M5960
428 @item evb_lm3s811
429 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
430 SRST signals on external connector
431 @item comstick
432 Hitex STR9 comstick
433 @item stm32stick
434 Hitex STM32 Performance Stick
435 @item flyswatter
436 Tin Can Tools Flyswatter
437 @item turtelizer2
438 egnite Software turtelizer2
439 @item oocdlink
440 OOCDLink
441 @end itemize
442
443 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
444 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
445 default values are used. This command is not available on Windows.
446 @item @b{ft2232_latency} <@var{ms}>
447 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
448 ft2232_read() fails to return the expected number of bytes. This can be caused by
449 USB communication delays and has proved hard to reproduce and debug. Setting the
450 FT2232 latency timer to a larger value increases delays for short USB packages but it
451 also reduces the risk of timeouts before receiving the expected number of bytes.
452 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
453 @end itemize
454
455 @section ep93xx options
456 @cindex ep93xx options
457 Currently, there are no options available for the ep93xx interface.
458
459 @page
460 @section Target configuration
461
462 @itemize @bullet
463 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
464 <@var{variant}>
465 @cindex target
466 Defines a target that should be debugged. Currently supported types are:
467 @itemize @minus
468 @item arm7tdmi
469 @item arm720t
470 @item arm9tdmi
471 @item arm920t
472 @item arm922t
473 @item arm926ejs
474 @item arm966e
475 @item cortex_m3
476 @item feroceon
477 @item xscale
478 @end itemize
479
480 If you want to use a target board that is not on this list, see Adding a new
481 target board
482
483 Endianess may be @option{little} or @option{big}.
484
485 The reset_mode specifies what should happen to the target when a reset occurs:
486 @itemize @minus
487 @item reset_halt
488 @cindex reset_halt
489 Immediately request a target halt after reset. This allows targets to be debugged
490 from the very first instruction. This is only possible with targets and JTAG
491 interfaces that correctly implement the reset signals.
492 @item reset_init
493 @cindex reset_init
494 Similar to @option{reset_halt}, but executes the script file defined to handle the
495 'reset' event for the target. Like @option{reset_halt} this only works with
496 correct reset implementations.
497 @item reset_run
498 @cindex reset_run
499 Simply let the target run after a reset.
500 @item run_and_halt
501 @cindex run_and_halt
502 Let the target run for some time (default: 1s), and then request halt.
503 @item run_and_init
504 @cindex run_and_init
505 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
506 to run for some time, then halted, and the @option{reset} event script is executed.
507 @end itemize
508
509 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
510 completely independent (like the LPC2000 series), or where the JTAG interface is
511 unavailable for some time during startup (like the STR7 series), you can't use
512 @option{reset_halt} or @option{reset_init}.
513
514 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
515 @cindex target_script
516 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
517
518 TODO: describe exact semantic of events
519 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
520 @cindex run_and_halt_time
521 The amount of time the debugger should wait after releasing reset before it asserts
522 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
523 reset modes.
524 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
525 <@var{backup}|@var{nobackup}>
526 @cindex working_area
527 Specifies a working area for the debugger to use. This may be used to speed-up
528 downloads to target memory and flash operations, or to perform otherwise unavailable
529 operations (some coprocessor operations on ARM7/9 systems, for example). The last
530 parameter decides whether the memory should be preserved <@var{backup}>. If possible, use
531 a working_area that doesn't need to be backed up, as that slows down operation.
532 @end itemize
533
534 @subsection arm7tdmi options
535 @cindex arm7tdmi options
536 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
537 The arm7tdmi target definition requires at least one additional argument, specifying
538 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
539 The optional [@var{variant}] parameter has been removed in recent versions.
540 The correct feature set is determined at runtime.
541
542 @subsection arm720t options
543 @cindex arm720t options
544 ARM720t options are similar to ARM7TDMI options.
545
546 @subsection arm9tdmi options
547 @cindex arm9tdmi options
548 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
549 @option{arm920t}, @option{arm922t} and @option{arm940t}.
550 This enables the hardware single-stepping support found on these cores.
551
552 @subsection arm920t options
553 @cindex arm920t options
554 ARM920t options are similar to ARM9TDMI options.
555
556 @subsection arm966e options
557 @cindex arm966e options
558 ARM966e options are similar to ARM9TDMI options.
559
560 @subsection xscale options
561 @cindex xscale options
562 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
563 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
564
565 @section Flash configuration
566 @cindex Flash configuration
567
568 @itemize @bullet
569 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
570 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
571 @cindex flash bank
572 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
573 and <@var{bus_width}> bytes using the selected flash <driver>.
574
575 @item @b{flash auto_erase} <@option{on}|@option{off}>
576 @cindex flash auto_erase
577 auto erase flash banks prior to writing. Currently only works when using
578 @option{flash write_image} command. Default is @option{off}.
579 @end itemize
580
581 @subsection lpc2000 options
582 @cindex lpc2000 options
583
584 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
585 <@var{clock}> [@var{calc_checksum}]
586 LPC flashes don't require the chip and bus width to be specified. Additional
587 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
588 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
589 of the target this flash belongs to (first is 0), the frequency at which the core
590 is currently running (in kHz - must be an integral number), and the optional keyword
591 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
592 vector table.
593
594 @subsection cfi options
595 @cindex cfi options
596
597 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
598 <@var{target#}>
599 CFI flashes require the number of the target they're connected to as an additional
600 argument. The CFI driver makes use of a working area (specified for the target)
601 to significantly speed up operation.
602
603 @var{chip_width} and @var{bus_width} are specified in bytes.
604
605 @subsection at91sam7 options
606 @cindex at91sam7 options
607
608 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
609 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
610 reading the chip-id and type.
611
612 @subsection str7 options
613 @cindex str7 options
614
615 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
616 variant can be either STR71x, STR73x or STR75x.
617
618 @subsection str9 options
619 @cindex str9 options
620
621 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
622 The str9 needs the flash controller to be configured prior to Flash programming, eg.
623 @smallexample
624 str9x flash_config 0 4 2 0 0x80000
625 @end smallexample
626 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
627
628 @subsection str9 options (str9xpec driver)
629
630 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
631 Before using the flash commands the turbo mode will need enabling using str9xpec
632 @option{enable_turbo} <@var{num>.}
633
634 Only use this driver for locking/unlocking the device or configuring the option bytes.
635 Use the standard str9 driver for programming.
636
637 @subsection stellaris (LM3Sxxx) options
638 @cindex stellaris (LM3Sxxx) options
639
640 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
641 stellaris flash plugin only require the @var{target#}.
642
643 @subsection stm32x options
644 @cindex stm32x options
645
646 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
647 stm32x flash plugin only require the @var{target#}.
648
649 @node Commands
650 @chapter Commands
651 @cindex commands
652
653 The Open On-Chip Debugger (OpenOCD) allows user interaction through a telnet interface
654 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
655 is available from both the telnet interface and a GDB session. To issue commands to the
656 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
657 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
658 GDB session.
659
660 @section Daemon
661
662 @itemize @bullet
663 @item @b{sleep} <@var{msec}>
664 @cindex sleep
665 Wait for n milliseconds before resuming. Useful in connection with script files
666 (@var{script} command and @var{target_script} configuration).
667
668 @item @b{shutdown}
669 @cindex shutdown
670 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
671
672 @item @b{debug_level} [@var{n}]
673 @cindex debug_level
674 Display or adjust debug level to n<0-3>
675
676 @item @b{log_output} <@var{file}>
677 @cindex log_output
678 Redirect logging to <file> (default: stderr)
679
680 @item @b{script} <@var{file}>
681 @cindex script
682 Execute commands from <file>
683
684 @end itemize
685
686 @subsection Target state handling
687 @itemize @bullet
688 @item @b{poll} [@option{on}|@option{off}]
689 @cindex poll
690 Poll the target for its current state. If the target is in debug mode, architecture
691 specific information about the current state are printed. An optional parameter
692 allows continuous polling to be enabled and disabled.
693
694 @item @b{halt} [@option{ms}]
695 @cindex halt
696 Send a halt request to the target and waits for it to halt for [@option{ms}].
697 Default [@option{ms}] is 5 seconds if no arg given.
698 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
699 will stop openocd from waiting.
700
701 @item @b{wait_halt} [@option{ms}]
702 @cindex wait_halt
703 Wait for the target to enter debug mode. Optional [@option{ms}] is
704 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
705 arg given.
706
707 @item @b{resume} [@var{address}]
708 @cindex resume
709 Resume the target at its current code position, or at an optional address.
710 Openocd will wait 5 seconds for the target to resume.
711
712 @item @b{step} [@var{address}]
713 @cindex step
714 Single-step the target at its current code position, or at an optional address.
715
716 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
717 |@option{run_and_init}]
718 @cindex reset
719 Do a hard-reset. The optional parameter specifies what should happen after the reset.
720 This optional parameter overwrites the setting specified in the configuration file,
721 making the new behaviour the default for the @option{reset} command.
722 @itemize @minus
723 @item run
724 @cindex reset run
725 Let the target run.
726 @item halt
727 @cindex reset halt
728 Immediately halt the target (works only with certain configurations).
729 @item init
730 @cindex reset init
731 Immediately halt the target, and execute the reset script (works only with certain
732 configurations)
733 @item run_and_halt
734 @cindex reset run_and_halt
735 Let the target run for a certain amount of time, then request a halt.
736 @item run_and_init
737 @cindex reset run_and_init
738 Let the target run for a certain amount of time, then request a halt. Execute the
739 reset script once the target entered debug mode.
740 @end itemize
741 @end itemize
742
743 @subsection Memory access commands
744 These commands allow accesses of a specific size to the memory system:
745 @itemize @bullet
746 @item @b{mdw} <@var{addr}> [@var{count}]
747 @cindex mdw
748 display memory words
749 @item @b{mdh} <@var{addr}> [@var{count}]
750 @cindex mdh
751 display memory half-words
752 @item @b{mdb} <@var{addr}> [@var{count}]
753 @cindex mdb
754 display memory bytes
755 @item @b{mww} <@var{addr}> <@var{value}>
756 @cindex mww
757 write memory word
758 @item @b{mwh} <@var{addr}> <@var{value}>
759 @cindex mwh
760 write memory half-word
761 @item @b{mwb} <@var{addr}> <@var{value}>
762 @cindex mwb
763 write memory byte
764
765 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
766 @cindex load_image
767 Load image <@var{file}> to target memory at <@var{address}>
768 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
769 @cindex dump_image
770 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
771 (binary) <@var{file}>.
772 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
773 @cindex verify_image
774 Verify <@var{file}> to target memory starting at <@var{address}>.
775 This will first attempt using a crc checksum, if this fails it will try a binary compare.
776 @item @b{load_binary} <@var{file}> <@var{address}> [DEPRECATED]
777 @cindex load_binary
778 Load binary <@var{file}> to target memory at <@var{address}>
779 @item @b{dump_binary} <@var{file}> <@var{address}> <@var{size}> [DEPRECATED]
780 @cindex dump_binary
781 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
782 (binary) <@var{file}>.
783 @end itemize
784
785 @subsection Flash commands
786 @cindex Flash commands
787 @itemize @bullet
788 @item @b{flash banks}
789 @cindex flash banks
790 List configured flash banks
791 @item @b{flash info} <@var{num}>
792 @cindex flash info
793 Print info about flash bank <@option{num}>
794 @item @b{flash probe} <@var{num}>
795 @cindex flash probe
796 Identify the flash, or validate the parameters of the configured flash. Operation
797 depends on the flash type.
798 @item @b{flash erase_check} <@var{num}>
799 @cindex flash erase_check
800 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
801 updates the erase state information displayed by @option{flash info}. That means you have
802 to issue an @option{erase_check} command after erasing or programming the device to get
803 updated information.
804 @item @b{flash protect_check} <@var{num}>
805 @cindex flash protect_check
806 Check protection state of sectors in flash bank <num>.
807
808 @item @b{flash erase} <@var{num}> <@var{first}> <@var{last}> [DEPRECATED]
809 @cindex flash erase
810 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
811 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
812 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
813 the CFI driver). This command was replaced by the new command
814 @option{flash erase_sector} using the same syntax.
815 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
816 @cindex flash erase_sector
817 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
818 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
819 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
820 the CFI driver).
821 @item @b{flash erase_address} <@var{address}> <@var{length}>
822 @cindex flash erase_address
823 Erase sectors starting at <@var{address}> for <@var{length}> number of bytes
824 @item @b{flash write} <@var{num}> <@var{file}> <@var{offset}> [DEPRECATED]
825 @cindex flash write
826 Write the binary <@var{file}> to flash bank <@var{num}>, starting at <@var{offset}>
827 bytes from the beginning of the bank. This command was replaced by the new command
828 @option{flash write_binary} using the same syntax.
829 @item @b{flash write_binary} <@var{num}> <@var{file}> <@var{offset}>
830 @cindex flash write_binary
831 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
832 <@option{offset}> bytes from the beginning of the bank.
833 @item @b{flash write_image} <@var{file}> [@var{offset}] [@var{type}]
834 @cindex flash write_image
835 Write the image <@var{file}> to the current target's flash bank(s). A relocation
836 [@var{offset}] can be specified and the file [@var{type}] can be specified
837 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
838 (ELF file) or @option{s19} (Motorola s19).
839 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
840 @cindex flash protect
841 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
842 <@var{last}> of @option{flash bank} <@var{num}>.
843 @item @b{flash auto_erase} <@var{on}|@var{off}>
844 @cindex flash auto_erase
845 Enable (@option{on}) to erase flash banks prior to writing using the flash @option{write_image} command
846 only. Default is (@option{off}), flash banks have to be erased using @option{flash erase} command.
847 @end itemize
848
849 @page
850 @section Target Specific Commands
851 @cindex Target Specific Commands
852
853 @subsection AT91SAM7 specific commands
854 @cindex AT91SAM7 specific commands
855 The flash configuration is deduced from the chip identification register. The flash
856 controller handles erases automatically on a page (128/265 byte) basis so erase is
857 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
858 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
859 that can be erased separatly.Only an EraseAll command is supported by the controller
860 for each flash plane and this is called with
861 @itemize @bullet
862 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
863 bulk erase flash planes first_plane to last_plane.
864 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
865 @cindex at91sam7 gpnvm
866 set or clear a gpnvm bit for the processor
867 @end itemize
868
869 @subsection STR9 specific commands
870 @cindex STR9 specific commands
871 These are flash specific commands when using the str9xpec driver.
872 @itemize @bullet
873 @item @b{str9xpec enable_turbo} <@var{num}>
874 @cindex str9xpec enable_turbo
875 enable turbo mode, simply this will remove the str9 from the chain and talk
876 directly to the embedded flash controller.
877 @item @b{str9xpec disable_turbo} <@var{num}>
878 @cindex str9xpec disable_turbo
879 restore the str9 into jtag chain.
880 @item @b{str9xpec lock} <@var{num}>
881 @cindex str9xpec lock
882 lock str9 device. The str9 will only respond to an unlock command that will
883 erase the device.
884 @item @b{str9xpec unlock} <@var{num}>
885 @cindex str9xpec unlock
886 unlock str9 device.
887 @item @b{str9xpec options_read} <@var{num}>
888 @cindex str9xpec options_read
889 read str9 option bytes.
890 @item @b{str9xpec options_write} <@var{num}>
891 @cindex str9xpec options_write
892 write str9 option bytes.
893 @end itemize
894
895 @subsection STR9 configuration
896 @cindex STR9 configuration
897 @itemize @bullet
898 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
899 <@var{BBADR}> <@var{NBBADR}>
900 @cindex str9x flash_config
901 Configure str9 flash controller.
902 @smallexample
903 eg. str9x flash_config 0 4 2 0 0x80000
904 This will setup
905 BBSR - Boot Bank Size register
906 NBBSR - Non Boot Bank Size register
907 BBADR - Boot Bank Start Address register
908 NBBADR - Boot Bank Start Address register
909 @end smallexample
910 @end itemize
911
912 @subsection STR9 option byte configuration
913 @cindex STR9 option byte configuration
914 @itemize @bullet
915 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
916 @cindex str9xpec options_cmap
917 configure str9 boot bank.
918 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
919 @cindex str9xpec options_lvdthd
920 configure str9 lvd threshold.
921 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
922 @cindex str9xpec options_lvdsel
923 configure str9 lvd source.
924 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
925 @cindex str9xpec options_lvdwarn
926 configure str9 lvd reset warning source.
927 @end itemize
928
929 @subsection STM32x specific commands
930 @cindex STM32x specific commands
931
932 These are flash specific commands when using the stm32x driver.
933 @itemize @bullet
934 @item @b{stm32x lock} <@var{num}>
935 @cindex stm32x lock
936 lock stm32 device.
937 @item @b{stm32x unlock} <@var{num}>
938 @cindex stm32x unlock
939 unlock stm32 device.
940 @item @b{stm32x options_read} <@var{num}>
941 @cindex stm32x options_read
942 read stm32 option bytes.
943 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
944 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
945 @cindex stm32x options_write
946 write stm32 option bytes.
947 @item @b{stm32x mass_erase} <@var{num}>
948 @cindex stm32x mass_erase
949 mass erase flash memory.
950 @end itemize
951
952 @page
953 @section Architecture Specific Commands
954 @cindex Architecture Specific Commands
955
956 @subsection ARMV4/5 specific commands
957 @cindex ARMV4/5 specific commands
958
959 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
960 or Intel XScale (XScale isn't supported yet).
961 @itemize @bullet
962 @item @b{armv4_5 reg}
963 @cindex armv4_5 reg
964 Display a list of all banked core registers, fetching the current value from every
965 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
966 register value.
967 @item @b{armv4_5 core_mode} [@option{arm}|@option{thumb}]
968 @cindex armv4_5 core_mode
969 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
970 The target is resumed in the currently set @option{core_mode}.
971 @end itemize
972
973 @subsection ARM7/9 specific commands
974 @cindex ARM7/9 specific commands
975
976 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
977 ARM920t or ARM926EJ-S.
978 @itemize @bullet
979 @item @b{arm7_9 sw_bkpts} <@option{enable}|@option{disable}>
980 @cindex arm7_9 sw_bkpts
981 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
982 one of the watchpoint registers to implement software breakpoints. Disabling
983 SW Bkpts frees that register again.
984 @item @b{arm7_9 force_hw_bkpts} <@option{enable}|@option{disable}>
985 @cindex arm7_9 force_hw_bkpts
986 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
987 breakpoints are turned into hardware breakpoints.
988 @item @b{arm7_9 dbgrq} <@option{enable}|@option{disable}>
989 @cindex arm7_9 dbgrq
990 Enable use of the DBGRQ bit to force entry into debug mode. This should be
991 safe for all but ARM7TDMI--S cores (like Philips LPC).
992 @item @b{arm7_9 fast_writes} <@option{enable}|@option{disable}>
993 @cindex arm7_9 fast_writes [DEPRECATED]
994 See @option{arm7_9 fast_memory_access} instead.
995 @item @b{arm7_9 fast_memory_access} <@option{enable}|@option{disable}>
996 @cindex arm7_9 fast_memory_access
997 Allow the OpenOCD to read and write memory without checking completion of
998 the operation. This provides a huge speed increase, especially with USB JTAG
999 cables (FT2232), but might be unsafe if used with targets running at a very low
1000 speed, like the 32kHz startup clock of an AT91RM9200.
1001 @item @b{arm7_9 dcc_downloads} <@option{enable}|@option{disable}>
1002 @cindex arm7_9 dcc_downloads
1003 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1004 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1005 unsafe, especially with targets running at a very low speed. This command was introduced
1006 with OpenOCD rev. 60.
1007 @end itemize
1008
1009 @subsection ARM920T specific commands
1010 @cindex ARM920T specific commands
1011
1012 @itemize @bullet
1013 @item @b{arm920t cache_info}
1014 @cindex arm920t cache_info
1015 Print information about the caches found. This allows you to see if your target
1016 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1017 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1018 @cindex arm920t md<bhw>_phys
1019 Display memory at physical address addr.
1020 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1021 @cindex arm920t mw<bhw>_phys
1022 Write memory at physical address addr.
1023 @item @b{arm920t read_cache} <@var{filename}>
1024 @cindex arm920t read_cache
1025 Dump the content of ICache and DCache to a file.
1026 @item @b{arm920t read_mmu} <@var{filename}>
1027 @cindex arm920t read_mmu
1028 Dump the content of the ITLB and DTLB to a file.
1029 @item @b{arm920t virt2phys} <@var{VA}>
1030 @cindex arm920t virt2phys
1031 Translate a virtual address to a physical address.
1032 @end itemize
1033
1034 @page
1035 @section Debug commands
1036 @cindex Debug commands
1037 The following commands give direct access to the core, and are most likely
1038 only useful while debugging the OpenOCD.
1039 @itemize @bullet
1040 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1041 @cindex arm7_9 write_xpsr
1042 Immediately write either the current program status register (CPSR) or the saved
1043 program status register (SPSR), without changing the register cache (as displayed
1044 by the @option{reg} and @option{armv4_5 reg} commands).
1045 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1046 <@var{0=cpsr},@var{1=spsr}>
1047 @cindex arm7_9 write_xpsr_im8
1048 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1049 operation (similar to @option{write_xpsr}).
1050 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1051 @cindex arm7_9 write_core_reg
1052 Write a core register, without changing the register cache (as displayed by the
1053 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1054 encoding of the [M4:M0] bits of the PSR.
1055 @end itemize
1056
1057 @page
1058 @section JTAG commands
1059 @cindex JTAG commands
1060 @itemize @bullet
1061 @item @b{scan_chain}
1062 @cindex scan_chain
1063 Print current scan chain configuration.
1064 @item @b{jtag_reset}
1065 @cindex jtag_reset
1066 Toggle reset lines <@var{trst}> <@var{srst}>.
1067 @item @b{endstate} <@var{tap_state}>
1068 @cindex endstate
1069 Finish JTAG operations in <@var{tap_state}>.
1070 @item @b{runtest} <@var{num_cycles}>
1071 @cindex runtest
1072 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1073 @item @b{statemove} [@var{tap_state}]
1074 @cindex statemove
1075 Move to current endstate or [@var{tap_state}]
1076 @item @b{irscan}
1077 @cindex irscan
1078 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1079 @item @b{drscan}
1080 @cindex drscan
1081 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1082 @item @b{verify_ircapture}
1083 @cindex verify_ircapture
1084 Verify value captured during Capture-IR <@option{enable}|@option{disable}>
1085 @item @b{var}
1086 @cindex var
1087 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1088 @item @b{field}
1089 @cindex field
1090 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1091 @end itemize
1092
1093 @node Sample Scripts
1094 @chapter Sample Scripts
1095 @cindex scripts
1096
1097 This page will collect some script examples for different CPUs.
1098
1099 The configuration script can be divided in the following section:
1100 @itemize @bullet
1101 @item daemon configuration
1102 @item interface
1103 @item jtag scan chain
1104 @item target configuration
1105 @item flash configuration
1106 @end itemize
1107
1108 Detailed information about each section can be found at OpenOCD configuration
1109
1110 @section OMAP5912 Flash Debug
1111 @cindex OMAP5912 Flash Debug
1112 The following two scripts were used with a wiggler PP and and a TI OMAP5912
1113 dual core processor - (@uref{http://www.ti.com}), on a OMAP5912 OSK board
1114 - (@uref{http://www.spectrumdigital.com}).
1115 @subsection Openocd config
1116 @smallexample
1117 #daemon configuration
1118 telnet_port 4444
1119 gdb_port 3333
1120
1121 #interface
1122 interface parport
1123 parport_port 0x378
1124 parport_cable wiggler
1125 jtag_speed 0
1126
1127 #use combined on interfaces or targets that can't set TRST/SRST separately
1128 reset_config trst_and_srst
1129
1130 #jtag scan chain
1131 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1132 jtag_device 38 0x0 0x0 0x0
1133 jtag_device 4 0x1 0x0 0xe
1134 jtag_device 8 0x0 0x0 0x0
1135
1136 #target configuration
1137 daemon_startup reset
1138
1139 #target <type> <endianness> <reset mode> <chainpos> <variant>
1140 target arm926ejs little run_and_init 1 arm926ejs
1141 target_script 0 reset omap5912_osk.init
1142 run_and_halt_time 0 30
1143
1144 # omap5912 lcd frame buffer as working area
1145 working_area 0 0x20000000 0x3e800 nobackup
1146
1147 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1148 flash bank cfi 0x00000000 0x1000000 2 2 0
1149 @end smallexample
1150
1151 @subsection Openocd init
1152 @smallexample
1153 #
1154 # halt target
1155 #
1156 poll
1157 sleep 1
1158 halt
1159 wait_halt
1160 #
1161 # disable wdt
1162 #
1163 mww 0xfffec808 0x000000f5
1164 mww 0xfffec808 0x000000a0
1165
1166 mww 0xfffeb048 0x0000aaaa
1167 sleep 500
1168 mww 0xfffeb048 0x00005555
1169 sleep 500
1170 #
1171 # detect flash
1172 #
1173 flash probe 0
1174
1175 @end smallexample
1176
1177 @section STR71x Script
1178 @cindex STR71x Script
1179 The following script was used with an Amontec JTAGkey and a STR710 / STR711 CPU:
1180 @smallexample
1181 #daemon configuration
1182 telnet_port 4444
1183 gdb_port 3333
1184
1185 #interface
1186 interface ft2232
1187 ft2232_device_desc "Amontec JTAGkey A"
1188 ft2232_layout jtagkey
1189 ft2232_vid_pid 0x0403 0xcff8
1190 jtag_speed 0
1191
1192 #use combined on interfaces or targets that can't set TRST/SRST separately
1193 reset_config trst_and_srst srst_pulls_trst
1194
1195 #jtag scan chain
1196 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1197 jtag_device 4 0x1 0xf 0xe
1198
1199 #target configuration
1200 daemon_startup reset
1201
1202 #target <type> <startup mode>
1203 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1204 target arm7tdmi little run_and_halt 0 arm7tdmi
1205 run_and_halt_time 0 30
1206
1207 working_area 0 0x2000C000 0x4000 nobackup
1208
1209 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1210 flash bank str7x 0x40000000 0x00040000 0 0 0 STR71x
1211 @end smallexample
1212
1213 @section STR750 Script
1214 @cindex STR750 Script
1215 The following script was used with an Amontec JTAGkey and a STR750 CPU:
1216 @smallexample
1217 #daemon configuration
1218 telnet_port 4444
1219 gdb_port 3333
1220
1221 #interface
1222 interface ft2232
1223 ft2232_device_desc "Amontec JTAGkey A"
1224 ft2232_layout jtagkey
1225 ft2232_vid_pid 0x0403 0xcff8
1226 jtag_speed 19
1227
1228 #use combined on interfaces or targets that can't set TRST/SRST separately
1229 #reset_config trst_and_srst srst_pulls_trst
1230 reset_config trst_and_srst srst_pulls_trst
1231
1232 #jtag scan chain
1233 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1234 jtag_device 4 0x1 0xf 0xe
1235
1236 #jtag nTRST and nSRST delay
1237 jtag_nsrst_delay 500
1238 jtag_ntrst_delay 500
1239
1240 #target configuration
1241 daemon_startup reset
1242
1243 #target <type> <startup mode>
1244 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1245 target arm7tdmi little run_and_halt 0 arm7tdmi
1246 run_and_halt_time 0 30
1247
1248 working_area 0 0x40000000 0x4000 nobackup
1249
1250 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1251 flash bank str7x 0x20000000 0x000040000 0 0 0 STR75x
1252 @end smallexample
1253
1254 @section STR912 Script
1255 @cindex STR912 Script
1256 The following script was used with an Amontec JTAGkey and a STR912 CPU:
1257 @smallexample
1258 #daemon configuration
1259 telnet_port 4444
1260 gdb_port 3333
1261
1262 #interface
1263 interface ft2232
1264 ft2232_device_desc "Amontec JTAGkey A"
1265 ft2232_layout jtagkey
1266 jtag_speed 1
1267
1268 #use combined on interfaces or targets that can't set TRST/SRST separately
1269 reset_config trst_and_srst
1270
1271 #jtag scan chain
1272 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1273 jtag_device 8 0x1 0x1 0xfe
1274 jtag_device 4 0x1 0xf 0xe
1275 jtag_device 5 0x1 0x1 0x1e
1276
1277 #target configuration
1278 daemon_startup reset
1279
1280 #target <type> <startup mode>
1281 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1282 target arm966e little reset_halt 1 arm966e
1283 run_and_halt_time 0 30
1284
1285 working_area 0 0x50000000 16384 nobackup
1286
1287 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1288 flash bank str9x 0x00000000 0x00080000 0 0 0
1289 @end smallexample
1290
1291 @section STR912 comstick
1292 @cindex STR912 comstick Script
1293 The following script was used with a Hitex STR9 Comstick:
1294 @smallexample
1295 #daemon configuration
1296 telnet_port 4444
1297 gdb_port 3333
1298
1299 #interface
1300 interface ft2232
1301 ft2232_device_desc "STR9-comStick A"
1302 ft2232_layout comstick
1303 jtag_speed 1
1304
1305 jtag_nsrst_delay 100
1306 jtag_ntrst_delay 100
1307
1308 #use combined on interfaces or targets that can't set TRST/SRST separately
1309 reset_config trst_and_srst
1310
1311 #jtag scan chain
1312 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1313 jtag_device 8 0x1 0x1 0xfe
1314 jtag_device 4 0x1 0xf 0xe
1315 jtag_device 5 0x1 0x1 0x1e
1316
1317 #target configuration
1318 daemon_startup reset
1319
1320 #target <type> <startup mode>
1321 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1322 target arm966e little reset_halt 1 arm966e
1323 run_and_halt_time 0 30
1324
1325 working_area 0 0x50000000 16384 nobackup
1326
1327 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1328 flash bank str9x 0x00000000 0x00080000 0 0 0
1329 @end smallexample
1330
1331 @section STM32x Script
1332 @cindex STM32x Script
1333 The following script was used with an Amontec JTAGkey and a STM32x CPU:
1334 @smallexample
1335 #daemon configuration
1336 telnet_port 4444
1337 gdb_port 3333
1338
1339 #interface
1340 interface ft2232
1341 ft2232_device_desc "Amontec JTAGkey A"
1342 ft2232_layout jtagkey
1343 jtag_speed 10
1344
1345 jtag_nsrst_delay 100
1346 jtag_ntrst_delay 100
1347
1348 #use combined on interfaces or targets that can't set TRST/SRST separately
1349 reset_config trst_and_srst
1350
1351 #jtag scan chain
1352 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1353 jtag_device 4 0x1 0xf 0xe
1354 jtag_device 5 0x1 0x1 0x1e
1355
1356 #target configuration
1357 daemon_startup reset
1358
1359 #target <type> <startup mode>
1360 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1361 target cortex_m3 little run_and_halt 0
1362 run_and_halt_time 0 30
1363
1364 working_area 0 0x20000000 16384 nobackup
1365
1366 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1367 flash bank stm32x 0x08000000 0x00020000 0 0 0
1368 @end smallexample
1369
1370 @section STM32x Performance Stick
1371 @cindex STM32x Performance Stick Script
1372 The following script was used with the Hitex STM32 Performance Stick
1373 @smallexample
1374 #daemon configuration
1375 telnet_port 4444
1376 gdb_port 3333
1377
1378 #interface
1379 interface ft2232
1380 ft2232_device_desc "STM32-PerformanceStick A"
1381 ft2232_layout stm32stick
1382 jtag_speed 10
1383
1384 jtag_nsrst_delay 100
1385 jtag_ntrst_delay 100
1386
1387 #use combined on interfaces or targets that can't set TRST/SRST separately
1388 reset_config trst_and_srst
1389
1390 #jtag scan chain
1391 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1392 jtag_device 4 0x1 0xf 0xe
1393 jtag_device 5 0x1 0x1 0x1e
1394 jtag_device 4 0x1 0xf 0xe
1395
1396 #target configuration
1397 daemon_startup reset
1398
1399 #target <type> <startup mode>
1400 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1401 target cortex_m3 little run_and_halt 0
1402 run_and_halt_time 0 30
1403
1404 working_area 0 0x20000000 16384 nobackup
1405
1406 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1407 flash bank stm32x 0x08000000 0x00020000 0 0 0
1408 @end smallexample
1409
1410 @section LPC2129 Script
1411 @cindex LPC2129 Script
1412 The following script was used with an wiggler PP and a LPC-2129 CPU:
1413 @smallexample
1414 #daemon configuration
1415 telnet_port 4444
1416 gdb_port 3333
1417
1418 #interface
1419 interface parport
1420 parport_port 0x378
1421 parport_cable wiggler
1422 jtag_speed 0
1423
1424 #use combined on interfaces or targets that can't set TRST/SRST separately
1425 reset_config trst_and_srst srst_pulls_trst
1426
1427 #jtag scan chain
1428 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1429 jtag_device 4 0x1 0xf 0xe
1430
1431 #target configuration
1432 daemon_startup reset
1433
1434 #target <type> <startup mode>
1435 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1436 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1437 run_and_halt_time 0 30
1438
1439 working_area 0 0x40000000 0x4000 nobackup
1440
1441 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1442 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1443 @end smallexample
1444
1445 @section LPC2148 Script
1446 @cindex LPC2148 Script
1447 The following script was used with an Amontec JTAGkey and a LPC2148 CPU:
1448 @smallexample
1449 #daemon configuration
1450 telnet_port 4444
1451 gdb_port 3333
1452
1453 #interface
1454 interface ft2232
1455 ft2232_device_desc "Amontec JTAGkey A"
1456 ft2232_layout jtagkey
1457 ft2232_vid_pid 0x0403 0xcff8
1458 jtag_speed 3
1459
1460 #use combined on interfaces or targets that can't set TRST/SRST separately
1461 reset_config trst_and_srst srst_pulls_trst
1462
1463 #jtag scan chain
1464 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1465 jtag_device 4 0x1 0xf 0xe
1466
1467 #target configuration
1468 daemon_startup reset
1469
1470 #target <type> <startup mode>
1471 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1472 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1473 run_and_halt_time 0 30
1474
1475 working_area 0 0x40000000 0x8000 nobackup
1476
1477 #flash configuration
1478 flash bank lpc2000 0x0 0x7d000 0 0 0 lpc2000_v1 14765 calc_checksum
1479 @end smallexample
1480
1481 @section LPC2294 Script
1482 @cindex LPC2294 Script
1483 The following script was used with an Amontec JTAGkey and a LPC2294 CPU:
1484 @smallexample
1485 #daemon configuration
1486 telnet_port 4444
1487 gdb_port 3333
1488
1489 #interface
1490 interface ft2232
1491 ft2232_device_desc "Amontec JTAGkey A"
1492 ft2232_layout jtagkey
1493 ft2232_vid_pid 0x0403 0xcff8
1494 jtag_speed 3
1495
1496 #use combined on interfaces or targets that can't set TRST/SRST separately
1497 reset_config trst_and_srst srst_pulls_trst
1498
1499 #jtag scan chain
1500 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1501 jtag_device 4 0x1 0xf 0xe
1502
1503 #target configuration
1504 daemon_startup reset
1505
1506 #target <type> <startup mode>
1507 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1508 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1509 run_and_halt_time 0 30
1510
1511 working_area 0 0x40000000 0x4000 nobackup
1512
1513 #flash configuration
1514 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1515 @end smallexample
1516
1517 @section AT91R40008 Script
1518 @cindex AT91R40008 Script
1519 The following script was used with an Amontec JTAGkey and a AT91R40008 CPU:
1520 @smallexample
1521 #daemon configuration
1522 telnet_port 4444
1523 gdb_port 3333
1524
1525 #interface
1526 interface ft2232
1527 ft2232_device_desc "Amontec JTAGkey A"
1528 ft2232_layout jtagkey
1529 ft2232_vid_pid 0x0403 0xcff8
1530 jtag_speed 0
1531 jtag_nsrst_delay 200
1532 jtag_ntrst_delay 200
1533
1534 #use combined on interfaces or targets that can't set TRST/SRST separately
1535 reset_config srst_only srst_pulls_trst
1536
1537 #jtag scan chain
1538 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1539 jtag_device 4 0x1 0xf 0xe
1540
1541 #target configuration
1542 daemon_startup reset
1543
1544 #target <type> <startup mode>
1545 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1546 target arm7tdmi little run_and_halt 0 arm7tdmi
1547 run_and_halt_time 0 30
1548 @end smallexample
1549
1550 @section AT91SAM7s Script
1551 @cindex AT91SAM7s Script
1552 The following script was used with an Olimex ARM-JTAG-OCD and a AT91SAM7S64 CPU:
1553 @smallexample
1554 #daemon configuration
1555 telnet_port 4444
1556 gdb_port 3333
1557
1558 #interface
1559 interface ft2232
1560 ft2232_device_desc "Olimex OpenOCD JTAG A"
1561 ft2232_layout olimex-jtag
1562 ft2232_vid_pid 0x15BA 0x0003
1563 jtag_speed 0
1564 jtag_nsrst_delay 200
1565 jtag_ntrst_delay 200
1566
1567 #use combined on interfaces or targets that can't set TRST/SRST separately
1568 reset_config srst_only srst_pulls_trst
1569
1570 #jtag scan chain
1571 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1572 jtag_device 4 0x1 0xf 0xe
1573
1574 #target configuration
1575 daemon_startup reset
1576
1577 #target <type> <startup mode>
1578 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1579 target arm7tdmi little run_and_halt 0 arm7tdmi
1580 run_and_halt_time 0 30
1581
1582 # flash-options AT91
1583 working_area 0 0x00200000 0x4000 nobackup
1584 flash bank at91sam7 0 0 0 0 0
1585
1586 # Information:
1587 # erase command (telnet-interface) for complete flash:
1588 # flash erase <num> 0 numlockbits-1 (can be seen from output of flash info 0)
1589 # SAM7S64 with 16 lockbits and bank 0: flash erase 0 0 15
1590 # set/clear NVM-Bits:
1591 # at91sam7 gpnvm <num> <bit> <set|clear>
1592 # disable locking from SAM-BA:
1593 # flash protect 0 0 1 off
1594 @end smallexample
1595
1596 @section XSCALE IXP42x Script
1597 @cindex XSCALE IXP42x Script
1598 The following script was used with an Amontec JTAGkey-Tiny and a xscale ixp42x CPU:
1599 @smallexample
1600 #daemon configuration
1601 telnet_port 4444
1602 gdb_port 3333
1603
1604 #interface
1605 interface ft2232
1606 ft2232_device_desc "Amontec JTAGkey A"
1607 ft2232_layout jtagkey
1608 ft2232_vid_pid 0x0403 0xcff8
1609 jtag_speed 0
1610 jtag_nsrst_delay 200
1611 jtag_ntrst_delay 200
1612
1613 #use combined on interfaces or targets that can't set TRST/SRST separately
1614 reset_config srst_only srst_pulls_trst
1615
1616 #jtag scan chain
1617 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1618 jtag_device 7 0x1 0x7f 0x7e
1619
1620 #target configuration
1621 daemon_startup reset
1622
1623 #target <type> <startup mode>
1624 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1625 target xscale big run_and_halt 0 IXP42x
1626 run_and_halt_time 0 30
1627 @end smallexample
1628
1629 @section Cirrus Logic EP9301 Script
1630 @cindex Cirrus Logic EP9301 Script
1631 The following script was used with FT2232 based JTAG interfaces and a
1632 Cirrus Logic EP9301 processor on an Olimex CS-E9301 board.
1633 @smallexample
1634 #daemon configuration
1635 telnet_port 4444
1636 gdb_port 3333
1637
1638 #interface
1639 interface ft2232
1640
1641 #Olimex ARM-USB-OCD
1642 #ft2232_device_desc "Olimex OpenOCD JTAG"
1643 #ft2232_layout olimex-jtag
1644 #ft2232_vid_pid 0x15ba 0x0003
1645
1646 #Amontec JTAGkey (and JTAGkey-Tiny)
1647 #Serial is only necessary if more than one JTAGkey is connected
1648 ft2232_device_desc "Amontec JTAGkey A"
1649 #ft2232_serial AMTJKV31
1650 #ft2232_serial T1P3S2W8
1651 ft2232_layout jtagkey
1652 ft2232_vid_pid 0x0403 0xcff8
1653
1654 #wiggler/parallel port interface
1655 #interface parport
1656 #parport_port 0x378
1657 #parport_cable wiggler
1658 #jtag_speed 0
1659 jtag_speed 1
1660 reset_config trst_and_srst
1661
1662 #jtag scan chain
1663 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1664 jtag_device 4 0x1 0xf 0xe
1665
1666 jtag_nsrst_delay 100
1667 jtag_ntrst_delay 100
1668
1669 #target configuration
1670 daemon_startup attach
1671
1672 #target <type> <endianess> <reset mode>
1673 target arm920t little reset_halt 0
1674 working_area 0 0x80014000 0x1000 backup
1675
1676 #flash configuration
1677 #flash bank <driver> <base> <size> <chip_width> <bus_width> [driver_options ...]
1678 flash bank cfi 0x60000000 0x1000000 2 2 0
1679 @end smallexample
1680
1681 @section Hilscher netX 100 / 500 Script
1682 @cindex Hilscher netX 100 / 500 Script
1683 The following script was used with an Amontec JTAGkey and a Hilscher
1684 netX 500 CPU:
1685 @smallexample
1686 #daemon configuration
1687 telnet_port 4444
1688 gdb_port 3333
1689
1690 #interface
1691 interface ft2232
1692 ft2232_device_desc "Amontec JTAGkey A"
1693 ft2232_layout jtagkey
1694 ft2232_vid_pid 0x0403 0xcff8
1695 jtag_speed 5
1696
1697 #use combined on interfaces or targets that can't set TRST/SRST separately
1698 reset_config trst_and_srst
1699
1700 #jtag scan chain
1701 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1702 jtag_device 4 0x1 0xf 0xe
1703
1704 jtag_nsrst_delay 100
1705 jtag_ntrst_delay 100
1706
1707 #target configuration
1708 daemon_startup reset
1709
1710 #target <type> <endianness> <startup mode> <chainpos> <variant>
1711 target arm926ejs little run_and_halt 0 arm926ejs
1712 run_and_halt_time 0 500
1713 @end smallexample
1714
1715 @section Marvell/Intel PXA270 Script
1716 @cindex Marvell/Intel PXA270 Script
1717 @smallexample
1718 # config for Intel PXA270
1719 # not, as of 2007-06-22, openocd only works with the
1720 # libftd2xx library from ftdi. libftdi does not work.
1721
1722 telnet_port 3333
1723 gdb_port 4444
1724
1725 interface ft2232
1726 ft2232_layout olimex-jtag
1727 ft2232_vid_pid 0x15BA 0x0003
1728 ft2232_device_desc "Olimex OpenOCD JTAG"
1729 jtag_speed 0
1730 # set jtag_nsrst_delay to the delay introduced by your reset circuit
1731 # the rest of the needed delays are built into the openocd program
1732 jtag_nsrst_delay 260
1733 # set the jtag_ntrst_delay to the delay introduced by a reset circuit
1734 # the rest of the needed delays are built into the openocd program
1735 jtag_ntrst_delay 0
1736
1737 #use combined on interfaces or targets that can't set TRST/SRST separately
1738 reset_config trst_and_srst separate
1739
1740 #jtag scan chain
1741 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1742 jtag_device 7 0x1 0x7f 0x7e
1743
1744 #target configuration
1745 daemon_startup reset
1746
1747 target xscale little reset_halt 0 pxa27x
1748
1749 # maps to PXA internal RAM. If you are using a PXA255
1750 # you must initialize SDRAM or leave this option off
1751 working_area 0 0x5c000000 0x10000 nobackup
1752
1753 run_and_halt_time 0 30
1754
1755 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1756 # works for P30 flash
1757 flash bank cfi 0x00000000 0x1000000 2 4 0
1758 @end smallexample
1759
1760 @node GDB and Openocd
1761 @chapter GDB and Openocd
1762 @cindex GDB and Openocd
1763 Openocd complies with the remote gdbserver protocol, and as such can be used
1764 to debug remote targets.
1765
1766 @section Connecting to gdb
1767 @cindex Connecting to gdb
1768 A connection is typically started as follows:
1769 @smallexample
1770 target remote localhost:3333
1771 @end smallexample
1772 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1773
1774 To see a list of available openocd commands type @option{monitor help} on the
1775 gdb commandline.
1776
1777 Openocd supports the gdb @option{qSupported} packet, this enables information
1778 to be sent by the gdb server (openocd) to gdb. Typical information includes
1779 packet size and device memory map.
1780
1781 Previous versions of openocd required the following gdb options to increase
1782 the packet size and speed up gdb communication.
1783 @smallexample
1784 set remote memory-write-packet-size 1024
1785 set remote memory-write-packet-size fixed
1786 set remote memory-read-packet-size 1024
1787 set remote memory-read-packet-size fixed
1788 @end smallexample
1789 This is now handled in the @option{qSupported} PacketSize.
1790
1791 @section Programming using gdb
1792 @cindex Programming using gdb
1793
1794 By default the target memory map is not sent to gdb, this can be enabled by
1795 the following openocd config option:
1796 @smallexample
1797 gdb_memory_map enable
1798 @end smallexample
1799 For this to function correctly a valid flash config must also be configured
1800 in openocd. For speed also configure a valid working area.
1801
1802 Informing gdb of the memory map of the target will enable gdb to protect any
1803 flash area of the target and use hardware breakpoints by default. This means
1804 that the openocd option @option{arm7_9 force_hw_bkpts} is not required when
1805 using a memory map.
1806
1807 To view the configured memory map in gdb, use the gdb command @option{info mem}
1808 All other unasigned addresses within gdb are treated as RAM.
1809
1810 If @option{gdb_flash_program enable} is also used, gdb will be able to
1811 program any flash memory using the vFlash interface.
1812
1813 gdb will look at the target memory map when a load command is given, if any
1814 areas to be programmed lie within the target flash area the vFlash packets
1815 will be used.
1816
1817 Incase the target needs configuring before gdb programming, a script can be executed.
1818 @smallexample
1819 target_script 0 gdb_program_config config.script
1820 @end smallexample
1821
1822 To verify any flash programming the gdb command @option{compare-sections}
1823 can be used.
1824
1825 @node FAQ
1826 @chapter FAQ
1827 @cindex faq
1828 @enumerate
1829 @item OpenOCD complains about a missing cygwin1.dll.
1830
1831 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1832 claims to come with all the necessary dlls. When using Cygwin, try launching
1833 the OpenOCD from the Cygwin shell.
1834
1835 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1836 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1837 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1838
1839 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1840 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1841 software breakpoints consume one of the two available hardware breakpoints,
1842 and are therefore disabled by default. If your code is running from RAM, you
1843 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1844 your code resides in Flash, you can't use software breakpoints, but you can force
1845 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1846
1847 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1848 and works sometimes fine.
1849
1850 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1851 clock at the time you're programming the flash. If you've specified the crystal's
1852 frequency, make sure the PLL is disabled, if you've specified the full core speed
1853 (e.g. 60MHz), make sure the PLL is enabled.
1854
1855 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1856 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1857 out while waiting for end of scan, rtck was disabled".
1858
1859 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1860 settings in your PC BIOS (ECP, EPP, and different versions of those).
1861
1862 @item When debugging with the OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1863 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1864 memory read caused data abort".
1865
1866 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1867 beyond the last valid frame. It might be possible to prevent this by setting up
1868 a proper "initial" stack frame, if you happen to know what exactly has to
1869 be done, feel free to add this here.
1870
1871 @item I get the following message in the OpenOCD console (or log file):
1872 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1873
1874 This warning doesn't indicate any serious problem, as long as you don't want to
1875 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1876 trst_and_srst srst_pulls_trst} to tell the OpenOCD that either your board,
1877 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1878 independently. With this setup, it's not possible to halt the core right out of
1879 reset, everything else should work fine.
1880
1881 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1882 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1883 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1884 quit with an error message. Is there a stability issue with OpenOCD?
1885
1886 No, this is not a stability issue concerning OpenOCD. Most users have solved
1887 this issue by simply using a self-powered USB hub, which they connect their
1888 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1889 supply stable enough for the Amontec JTAGkey to be operated.
1890
1891 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1892 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1893 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1894 What does that mean and what might be the reason for this?
1895
1896 First of all, the reason might be the USB power supply. Try using a self-powered
1897 hub instead of a direct connection to your computer. Secondly, the error code 4
1898 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1899 chip ran into some sort of error - this points us to a USB problem.
1900
1901 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1902 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1903 What does that mean and what might be the reason for this?
1904
1905 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1906 has closed the connection to OpenOCD. This might be a GDB issue.
1907
1908 @item In the configuration file in the section where flash device configurations
1909 are described, there is a parameter for specifying the clock frequency for
1910 LPC2000 internal flash devices (e.g.
1911 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1912 which must be specified in kilohertz. However, I do have a quartz crystal of a
1913 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1914 Is it possible to specify real numbers for the clock frequency?
1915
1916 No. The clock frequency specified here must be given as an integral number.
1917 However, this clock frequency is used by the In-Application-Programming (IAP)
1918 routines of the LPC2000 family only, which seems to be very tolerant concerning
1919 the given clock frequency, so a slight difference between the specified clock
1920 frequency and the actual clock frequency will not cause any trouble.
1921
1922 @item Do I have to keep a specific order for the commands in the configuration file?
1923
1924 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1925 listed for the JTAG scan chain must be given in the right order (jtag_device),
1926 with the device closest to the TDO-Pin being listed first. In general,
1927 whenever objects of the same type exist which require an index number, then
1928 these objects must be given in the right order (jtag_devices, targets and flash
1929 banks - a target references a jtag_device and a flash bank references a target).
1930
1931 @item Sometimes my debugging session terminates with an error. When I look into the
1932 log file, I can see these error messages: Error: arm7_9_common.c:561
1933 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1934
1935 TODO.
1936
1937 @end enumerate
1938
1939 @include fdl.texi
1940
1941 @node Index
1942 @unnumbered Index
1943
1944 @printindex cp
1945
1946 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)