- correct line endings from previous commit
[openocd.git] / doc / openocd.texi
1 \input texinfo  @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (openocd)
5 @c %**end of header
6
7 @include version.texi
8
9 @titlepage
10 @title Open On-Chip Debugger (openocd)
11 @subtitle Edition @value{EDITION} for openocd version @value{VERSION}
12 @subtitle @value{UPDATED}
13 @page
14 @vskip 0pt plus 1filll
15 @end titlepage
16
17 @contents
18
19 @node Top, About, , (dir)
20 @top OpenOCD
21
22 This is edition @value{EDITION} of the openocd manual for version
23 @value{VERSION}, @value{UPDATED}
24
25 @menu
26 * About::             About Openocd.
27 * Developers::        
28 * Building::          Building Openocd
29 * Running::           Running Openocd
30 * Configuration::     Openocd Configuration.
31 * Commands::          Openocd Commands
32 * Sample Scripts::    Sample Target Scripts
33 * GDB and Openocd::   Using GDB and Openocd
34 * FAQ::               Frequently Asked Questions
35 * License::           GNU Free Documentation License
36 * Index::             Main index.
37 @end menu
38
39 @node About
40 @unnumbered About
41 @cindex about
42
43 The Open On-Chip Debugger (openocd) aims to provide debugging, in-system programming
44 and boundary-scan testing for embedded target devices. The targets are interfaced
45 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
46 connection types in the future.
47
48 Openocd currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
49 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
50 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
51 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
52
53 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
54 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
55 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
56
57 @node Developers
58 @chapter Developers
59 @cindex developers
60
61 Openocd has been created by Dominic Rath as part of a diploma thesis written at the
62 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
63 Others interested in improving the state of free and open debug and testing technology
64 are welcome to participate.
65
66 Other developers have contributed support for additional targets and flashes as well
67 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors. 
68
69 @node Building
70 @chapter Building
71 @cindex building openocd
72
73 You can download the current SVN version with SVN client of your choice from the
74 following repositories:
75
76  (@uref{svn://svn.berlios.de/openocd/trunk})
77
78 or
79
80  (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
81
82 Using the SVN command line client, you could use the following command to fetch the
83 latest version (make sure there is no (non-svn) directory called "openocd" in the
84 current directory):
85
86 @smallexample
87  svn checkout svn://svn.berlios.de/openocd/trunk
88 @end smallexample
89
90 Building the OpenOCD requires a recent version of the GNU autotools.
91 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
92 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
93 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
94 paths, resulting in obscure dependency errors (This is an observation I've gathered
95 from the logs of one user - correct me if I'm wrong).
96
97 You further need the appropriate driver files, if you want to build support for
98 a FTDI FT2232 based interface:
99 @itemize @bullet
100 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
101 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
102 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
103 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID. 
104 @end itemize
105
106 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
107 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
108
109 In general, the D2XX driver provides superior performance (several times as fast),
110 but has the draw-back of being binary-only - though that isn't as worse, as it isn't
111 a kernel module, only a user space library.
112
113 To build OpenOCD (on both Linux and Cygwin), use the following commands:
114 @smallexample
115  ./bootstrap 
116 @end smallexample
117 Bootstrap generates the configure script, and prepares building on your system.
118 @smallexample
119  ./configure 
120 @end smallexample
121 Configure generates the Makefiles used to build OpenOCD
122 @smallexample
123  make 
124 @end smallexample
125 Make builds the OpenOCD, and places the final executable in ./src/
126
127 The configure script takes several options, specifying which JTAG interfaces
128 should be included:
129
130 @itemize @bullet
131 @item
132 --enable-parport
133 @item
134 --enable-parport_ppdev
135 @item
136 --enable-amtjtagaccel
137 @item
138 --enable-ft2232_ftd2xx
139 @footnote{Using the latest D2XX drivers from FTDI and following their installation
140 instructions, I had to use @option{--enable-ft2232_libftd2xx} for the OpenOCD to
141 build properly}
142 @item
143 --enable-ft2232_libftdi
144 @item
145 --with-ftd2xx=/path/to/d2xx/
146 @end itemize
147
148 If you want to access the parallel port using the PPDEV interface you have to specify
149 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
150 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
151 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
152
153 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
154 absolute path containing no spaces.
155
156 Linux users should copy the various parts of the D2XX package to the appropriate
157 locations, i.e. /usr/include, /usr/lib. 
158
159 @node Running
160 @chapter Running
161 @cindex running openocd
162 @cindex --configfile
163 @cindex --debug_level
164 @cindex --logfile
165 @cindex --search
166 The OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
167 Run with @option{--help} or @option{-h} to view the available command line arguments.
168
169 It reads its configuration by default from the file openocd.cfg located in the current
170 working directory. This may be overwritten with the @option{-f <configfile>} command line
171 switch.
172
173 To enable debug output (when reporting problems or working on OpenOCD itself), use
174 the @option{-d} command line switch. This sets the debug_level to "3", outputting
175 the most information, including debug messages. The default setting is "2", outputting
176 only informational messages, warnings and errors. You can also change this setting
177 from within a telnet or gdb session (@option{debug_level <n>}).
178
179 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
180
181 Search paths for config/script files can be added to openocd by using
182 the @option{-s <search>} switch.
183
184 @node Configuration
185 @chapter Configuration
186 @cindex configuration
187 The Open On-Chip Debugger (OpenOCD) runs as a daemon, and reads it current configuration
188 by default from the file openocd.cfg in the current directory. A different configuration
189 file can be specified with the  @option{-f <conf.file>} given at the openocd command line.
190
191 The configuration file is used to specify on which ports the daemon listens for new
192 connections, the JTAG interface used to connect to the target, the layout of the JTAG
193 chain, the targets that should be debugged, and connected flashes.
194
195 @section Daemon configuration
196
197 @itemize @bullet
198 @item @b{telnet_port} <@var{number}>
199 @cindex telnet_port
200 Port on which to listen for incoming telnet connections 
201 @item @b{gdb_port} <@var{number}>
202 @cindex gdb_port
203 First port on which to listen for incoming GDB connections. The GDB port for the
204 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on. 
205 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
206 @cindex gdb_detach
207 Configures what openocd will do when gdb detaches from the daeman.
208 Default behaviour is <@var{resume}>
209 @item @b{gdb_memory_map} <@var{enable|disable}>
210 @cindex gdb_memory_map
211 Set to <@var{enable}> so that openocd will send the memory configuration to gdb when
212 requested. gdb will then know when to set hardware breakpoints, and program flash
213 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
214 for flash programming to work.
215 Default behaviour is <@var{disable}>
216 @item @b{gdb_flash_program} <@var{enable|disable}>
217 @cindex gdb_flash_program
218 Set to <@var{enable}> so that openocd will program the flash memory when a
219 vFlash packet is received.
220 Default behaviour is <@var{disable}>
221 @item @b{daemon_startup} <@var{mode}> either @samp{attach} or @samp{reset}
222 @cindex daemon_startup
223 Tells the OpenOCD whether it should reset the target when the daemon is launched, or
224 if it should just attach to the target. 
225 @end itemize
226
227 @section JTAG interface configuration
228
229 @itemize @bullet
230 @item @b{interface} <@var{name}>
231 @cindex interface
232 Use the interface driver <@var{name}> to connect to the target. Currently supported
233 interfaces are
234 @itemize @minus
235 @item parport
236 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
237 @end itemize
238 @itemize @minus
239 @item amt_jtagaccel
240 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
241 mode parallel port
242 @end itemize
243 @itemize @minus
244 @item ft2232
245 FTDI FT2232 based devices using either the open-source libftdi or the binary only
246 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
247 platform. The libftdi uses libusb, and should be portable to all systems that provide
248 libusb.
249 @end itemize
250 @itemize @minus
251 @item ep93xx
252 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
253 @end itemize
254 @end itemize
255
256 @itemize @bullet
257 @item @b{jtag_speed} <@var{number}>
258 @cindex jtag_speed
259 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
260 speed. The actual effect of this option depends on the JTAG interface used.
261
262 @itemize @minus
263 @item wiggler: maximum speed / @var{number}
264 @item ft2232: 6MHz / (@var{number}+1)
265 @item amt jtagaccel: 8 / 2**@var{number}
266 @end itemize
267
268 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
269 especially true for synthesized cores (-S).
270
271 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
272 @cindex reset_config
273 The configuration of the reset signals available on the JTAG interface AND the target.
274 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
275 then OpenOCD can't use it. <@var{signals}> can be @samp{none}, @samp{trst_only},
276 @samp{srst_only} or @samp{trst_and_srst}.
277 [@var{combination}] is an optional value specifying broken reset signal implementations.
278 @samp{srst_pulls_trst} states that the testlogic is reset together with the reset of
279 the system (e.g. Philips LPC2000, "broken" board layout), @samp{trst_pulls_srst} says
280 that the system is reset together with the test logic (only hypothetical, I haven't
281 seen hardware with such a bug, and can be worked around).
282
283 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
284 reset lines to be specified. Possible values are @samp{trst_push_pull} (default)
285 and @samp{trst_open_drain} for the test reset signal, and @samp{srst_open_drain}
286 (default) and @samp{srst_push_pull} for the system reset. These values only affect
287 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator. 
288
289 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
290 @cindex jtag_device
291 Describes the devices that form the JTAG daisy chain, with the first device being
292 the one closest to TDO. The parameters are the length of the instruction register
293 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
294 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
295 The IDCODE instruction will in future be used to query devices for their JTAG
296 identification code. This line is the same for all ARM7 and ARM9 devices.
297 Other devices, like CPLDs, require different parameters. An example configuration
298 line for a Xilinx XC9500 CPLD would look like this:
299 @smallexample
300 jtag_device 8 0x01 0x0e3 0xfe
301 @end smallexample
302 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
303 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
304 The IDCODE instruction is 0xfe.
305
306 @item @b{jtag_nsrst_delay} <@var{ms}>
307 @cindex jtag_nsrst_delay
308 How long (in miliseconds) the OpenOCD should wait after deasserting nSRST before
309 starting new JTAG operations. 
310 @item @b{jtag_ntrst_delay} <@var{ms}>
311 @cindex jtag_ntrst_delay
312 How long (in miliseconds) the OpenOCD should wait after deasserting nTRST before
313 starting new JTAG operations. 
314
315 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
316 or on-chip features) keep a reset line asserted for some time after the external reset
317 got deasserted.
318 @end itemize
319
320 @section parport options
321
322 @itemize @bullet
323 @item @b{parport_port} <@var{number}>
324 @cindex parport_port
325 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
326 the @file{/dev/parport} device
327
328 When using PPDEV to access the parallel port, use the number of the parallel port:
329 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
330 you may encounter a problem.
331 @item @b{parport_cable} <@var{name}>
332 @cindex parport_cable
333 The layout of the parallel port cable used to connect to the target.
334 Currently supported cables are 
335 @itemize @minus
336 @item wiggler
337 @cindex wiggler
338 Original Wiggler layout, also supported by several clones, such
339 as the Olimex ARM-JTAG
340 @item old_amt_wiggler
341 @cindex old_amt_wiggler
342 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
343 version available from the website uses the original Wiggler layout ('@var{wiggler}')
344 @item chameleon
345 @cindex chameleon
346 Describes the connection of the Amontec Chameleon's CPLD when operated in
347 configuration mode. This is only used to program the Chameleon itself, not
348 a connected target.
349 @item dlc5
350 @cindex dlc5
351 Xilinx Parallel cable III.
352 @item triton
353 @cindex triton
354 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
355 This is also the layout used by the HollyGates design
356 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
357 @item flashlink
358 @cindex flashlink
359 ST Parallel cable. 
360 @end itemize
361 @item @b{parport_write_on_exit} <@var{on|off}>
362 @cindex parport_write_on_exit
363 This will configure the parallel driver to write a known value to the parallel
364 interface on exiting openocd
365 @end itemize
366
367 @section amt_jtagaccel options
368 @itemize @bullet
369 @item @b{parport_port} <@var{number}>
370 @cindex parport_port
371 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
372 @file{/dev/parport} device 
373 @end itemize
374 @section ft2232 options
375
376 @itemize @bullet
377 @item @b{ft2232_device_desc} <@var{description}>
378 @cindex ft2232_device_desc
379 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
380 default value is used. This setting is only valid if compiled with FTD2XX support.
381 @item @b{ft2232_layout} <@var{name}>
382 @cindex ft2232_layout
383 The layout of the FT2232 GPIO signals used to control output-enables and reset
384 signals. Valid layouts are
385 @itemize @minus
386 @item usbjtag
387 The "USBJTAG-1" layout described in the original OpenOCD diploma thesis
388 @item jtagkey
389 Amontec JTAGkey and JTAGkey-tiny
390 @item signalyzer
391 Signalyzer
392 @item olimex-jtag
393 Olimex ARM-USB-OCD
394 @item m5960
395 American Microsystems M5960
396 @item evb_lm3s811
397 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
398 SRST signals on external connector
399 @item comstick
400 Hitex STR9 comstick 
401 @item stm32stick
402 Hitex STM32 Performance Stick
403 @item flyswatter
404 Tin Can Tools Flyswatter
405 @item turtelizer2
406 egnite Software turtelizer2
407 @item oocdlink
408 OOCDLink
409 @end itemize
410
411 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
412 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
413 default values are used. This command is not available on Windows. 
414 @item @b{ft2232_latency} <@var{ms}>
415 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
416 ft2232_read() fails to return the expected number of bytes. This can be caused by
417 USB communication delays and has proved hard to reproduce and debug. Setting the
418 FT2232 latency timer to a larger value increases delays for short USB packages but it
419 also reduces the risk of timeouts before receiving the expected number of bytes.
420 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful. 
421 @end itemize
422
423 @section ep93xx options
424 @cindex ep93xx options
425 Currently, there are no options available for the ep93xx interface.
426
427 @page
428 @section Target configuration
429
430 @itemize @bullet
431 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
432 <@var{variant}>
433 @cindex target
434 Defines a target that should be debugged. Currently supported types are:
435 @itemize @minus
436 @item arm7tdmi
437 @item arm720t
438 @item arm9tdmi
439 @item arm920t
440 @item arm922t
441 @item arm926ejs
442 @item arm966e
443 @item cortex_m3
444 @item feroceon 
445 @item xscale 
446 @end itemize
447
448 If you want to use a target board that is not on this list, see Adding a new
449 target board
450
451 Endianess may be @option{little} or @option{big}.
452
453 The reset_mode specifies what should happen to the target when a reset occurs:
454 @itemize @minus
455 @item reset_halt
456 @cindex reset_halt
457 Immediately request a target halt after reset. This allows targets to be debugged
458 from the very first instruction. This is only possible with targets and JTAG
459 interfaces that correctly implement the reset signals.
460 @item reset_init
461 @cindex reset_init
462 Similar to @option{reset_halt}, but executes the script file defined to handle the
463 'reset' event for the target. Like @option{reset_halt} this only works with
464 correct reset implementations.
465 @item reset_run
466 @cindex reset_run
467 Simply let the target run after a reset.
468 @item run_and_halt
469 @cindex run_and_halt
470 Let the target run for some time (default: 1s), and then request halt.
471 @item run_and_init
472 @cindex run_and_init
473 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
474 to run for some time, then halted, and the @option{reset} event script is executed. 
475 @end itemize
476
477 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
478 completely independent (like the LPC2000 series), or where the JTAG interface is
479 unavailable for some time during startup (like the STR7 series), you can't use
480 @option{reset_halt} or @option{reset_init}.
481
482 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
483 @cindex target_script
484 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
485
486 TODO: describe exact semantic of events
487 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
488 @cindex run_and_halt_time
489 The amount of time the debugger should wait after releasing reset before it asserts
490 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
491 reset modes. 
492 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
493 <@var{backup}|@var{nobackup}>
494 @cindex working_area
495 Specifies a working area for the debugger to use. This may be used to speed-up
496 downloads to target memory and flash operations, or to perform otherwise unavailable
497 operations (some coprocessor operations on ARM7/9 systems, for example). The last
498 parameter decides whether the memory should be preserved <@var{backup}>. If possible, use
499 a working_area that doesn't need to be backed up, as that slows down operation. 
500 @end itemize
501
502 @subsection arm7tdmi options
503 @cindex arm7tdmi options
504 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
505 The arm7tdmi target definition requires at least one additional argument, specifying
506 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
507 The optional [@var{variant}] parameter has been removed in recent versions.
508 The correct feature set is determined at runtime. 
509
510 @subsection arm720t options
511 @cindex arm720t options
512 ARM720t options are similar to ARM7TDMI options.
513
514 @subsection arm9tdmi options
515 @cindex arm9tdmi options
516 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
517 @option{arm920t}, @option{arm922t} and @option{arm940t}.
518 This enables the hardware single-stepping support found on these cores.
519
520 @subsection arm920t options
521 @cindex arm920t options
522 ARM920t options are similar to ARM9TDMI options.
523
524 @subsection arm966e options
525 @cindex arm966e options
526 ARM966e options are similar to ARM9TDMI options.
527
528 @subsection xscale options
529 @cindex xscale options
530 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
531 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
532
533 @section Flash configuration
534 @cindex Flash configuration
535
536 @itemize @bullet
537 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
538 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
539 @cindex flash bank
540 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
541 and <@var{bus_width}> bytes using the selected flash <driver>.
542
543 @item @b{flash auto_erase} <@option{on}|@option{off}>
544 @cindex flash auto_erase
545 auto erase flash banks prior to writing. Currently only works when using
546 @option{flash write_image} command. Default is @option{off}.
547 @end itemize
548
549 @subsection lpc2000 options
550 @cindex lpc2000 options
551
552 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
553 <@var{clock}> [@var{calc_checksum}]
554 LPC flashes don't require the chip and bus width to be specified. Additional
555 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
556 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
557 of the target this flash belongs to (first is 0), the frequency at which the core
558 is currently running (in kHz - must be an integral number), and the optional keyword
559 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
560 vector table. 
561
562 @subsection cfi options
563 @cindex cfi options
564
565 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
566 <@var{target#}>
567 CFI flashes require the number of the target they're connected to as an additional
568 argument. The CFI driver makes use of a working area (specified for the target)
569 to significantly speed up operation. 
570
571 @var{chip_width} and @var{bus_width} are specified in bytes.
572
573 @subsection at91sam7 options
574 @cindex at91sam7 options
575
576 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
577 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
578 reading the chip-id and type. 
579
580 @subsection str7 options
581 @cindex str7 options
582
583 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
584 variant can be either STR71x, STR73x or STR75x. 
585
586 @subsection str9 options
587 @cindex str9 options
588
589 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
590 The str9 needs the flash controller to be configured prior to Flash programming, eg.
591 @smallexample
592 str9x flash_config 0 4 2 0 0x80000
593 @end smallexample
594 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively. 
595
596 @subsection str9 options (str9xpec driver)
597
598 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
599 Before using the flash commands the turbo mode will need enabling using str9xpec
600 @option{enable_turbo} <@var{num>.}
601
602 Only use this driver for locking/unlocking the device or configuring the option bytes.
603 Use the standard str9 driver for programming.
604
605 @subsection stellaris (LM3Sxxx) options
606 @cindex stellaris (LM3Sxxx) options
607
608 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
609 stellaris flash plugin only require the @var{target#}. 
610
611 @subsection stm32x options
612 @cindex stm32x options
613
614 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
615 stm32x flash plugin only require the @var{target#}. 
616
617 @node Commands
618 @chapter Commands
619 @cindex commands
620
621 The Open On-Chip Debugger (OpenOCD) allows user interaction through a telnet interface
622 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
623 is available from both the telnet interface and a GDB session. To issue commands to the
624 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
625 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
626 GDB session.
627
628 @section Daemon
629
630 @itemize @bullet
631 @item @b{sleep} <@var{msec}>
632 @cindex sleep
633 Wait for n milliseconds before resuming. Useful in connection with script files
634 (@var{script} command and @var{target_script} configuration). 
635
636 @item @b{shutdown}
637 @cindex shutdown
638 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet). 
639
640 @item @b{debug_level} [@var{n}]
641 @cindex debug_level
642 Display or adjust debug level to n<0-3> 
643
644 @item @b{log_output} <@var{file}>
645 @cindex log_output
646 Redirect logging to <file> (default: stderr) 
647
648 @item @b{script} <@var{file}>
649 @cindex script
650 Execute commands from <file> 
651
652 @end itemize
653
654 @subsection Target state handling
655 @itemize @bullet
656 @item @b{poll} [@option{on}|@option{off}]
657 @cindex poll
658 Poll the target for its current state. If the target is in debug mode, architecture
659 specific information about the current state are printed. An optional parameter
660 allows continuous polling to be enabled and disabled.
661
662 @item @b{halt} [@option{ms}]
663 @cindex halt
664 Send a halt request to the target and waits for it to halt for [@option{ms}].
665 Default [@option{ms}] is 5 seconds if no arg given.
666 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
667 will stop openocd from waiting.
668
669 @item @b{wait_halt} [@option{ms}]
670 @cindex wait_halt
671 Wait for the target to enter debug mode. Optional [@option{ms}] is
672 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
673 arg given.
674
675 @item @b{resume} [@var{address}]
676 @cindex resume
677 Resume the target at its current code position, or at an optional address.
678 Openocd will wait 5 seconds for the target to resume.
679
680 @item @b{step} [@var{address}]
681 @cindex step
682 Single-step the target at its current code position, or at an optional address. 
683
684 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
685 |@option{run_and_init}]
686 @cindex reset
687 Do a hard-reset. The optional parameter specifies what should happen after the reset.
688 This optional parameter overwrites the setting specified in the configuration file,
689 making the new behaviour the default for the @option{reset} command.
690 @itemize @minus
691 @item run
692 @cindex reset run
693 Let the target run.
694 @item halt
695 @cindex reset halt
696 Immediately halt the target (works only with certain configurations).
697 @item init
698 @cindex reset init
699 Immediately halt the target, and execute the reset script (works only with certain
700 configurations)
701 @item run_and_halt
702 @cindex reset run_and_halt
703 Let the target run for a certain amount of time, then request a halt.
704 @item run_and_init
705 @cindex reset run_and_init
706 Let the target run for a certain amount of time, then request a halt. Execute the
707 reset script once the target entered debug mode.
708 @end itemize
709 @end itemize
710
711 @subsection Memory access commands
712 These commands allow accesses of a specific size to the memory system:
713 @itemize @bullet
714 @item @b{mdw} <@var{addr}> [@var{count}]
715 @cindex mdw
716 display memory words 
717 @item @b{mdh} <@var{addr}> [@var{count}]
718 @cindex mdh
719 display memory half-words 
720 @item @b{mdb} <@var{addr}> [@var{count}]
721 @cindex mdb
722 display memory bytes 
723 @item @b{mww} <@var{addr}> <@var{value}>
724 @cindex mww
725 write memory word 
726 @item @b{mwh} <@var{addr}> <@var{value}>
727 @cindex mwh
728 write memory half-word 
729 @item @b{mwb} <@var{addr}> <@var{value}>
730 @cindex mwb
731 write memory byte 
732
733 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
734 @cindex load_image
735 Load image <@var{file}> to target memory at <@var{address}> 
736 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
737 @cindex dump_image
738 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
739 (binary) <@var{file}>.
740 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
741 @cindex verify_image
742 Verify <@var{file}> to target memory starting at <@var{address}>.
743 This will first attempt using a crc checksum, if this fails it will try a binary compare.
744 @item @b{load_binary} <@var{file}> <@var{address}> [DEPRECATED]
745 @cindex load_binary
746 Load binary <@var{file}> to target memory at <@var{address}> 
747 @item @b{dump_binary} <@var{file}> <@var{address}> <@var{size}> [DEPRECATED]
748 @cindex dump_binary
749 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
750 (binary) <@var{file}>.
751 @end itemize
752
753 @subsection Flash commands
754 @cindex Flash commands
755 @itemize @bullet
756 @item @b{flash banks}
757 @cindex flash banks
758 List configured flash banks 
759 @item @b{flash info} <@var{num}>
760 @cindex flash info
761 Print info about flash bank <@option{num}> 
762 @item @b{flash probe} <@var{num}>
763 @cindex flash probe
764 Identify the flash, or validate the parameters of the configured flash. Operation
765 depends on the flash type. 
766 @item @b{flash erase_check} <@var{num}>
767 @cindex flash erase_check
768 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
769 updates the erase state information displayed by @option{flash info}. That means you have
770 to issue an @option{erase_check} command after erasing or programming the device to get
771 updated information. 
772 @item @b{flash protect_check} <@var{num}>
773 @cindex flash protect_check
774 Check protection state of sectors in flash bank <num>. 
775
776 @item @b{flash erase} <@var{num}> <@var{first}> <@var{last}> [DEPRECATED]
777 @cindex flash erase
778 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
779 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
780 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
781 the CFI driver). This command was replaced by the new command
782 @option{flash erase_sector} using the same syntax. 
783 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
784 @cindex flash erase_sector
785 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
786 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
787 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
788 the CFI driver).
789 @item @b{flash erase_address} <@var{address}> <@var{length}>
790 @cindex flash erase_address
791 Erase sectors starting at <@var{address}> for <@var{length}> number of bytes
792 @item @b{flash write} <@var{num}> <@var{file}> <@var{offset}> [DEPRECATED]
793 @cindex flash write
794 Write the binary <@var{file}> to flash bank <@var{num}>, starting at <@var{offset}>
795 bytes from the beginning of the bank. This command was replaced by the new command
796 @option{flash write_binary} using the same syntax. 
797 @item @b{flash write_binary} <@var{num}> <@var{file}> <@var{offset}>
798 @cindex flash write_binary
799 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
800 <@option{offset}> bytes from the beginning of the bank. 
801 @item @b{flash write_image} <@var{file}> [@var{offset}] [@var{type}]
802 @cindex flash write_image
803 Write the image <@var{file}> to the current target's flash bank(s). A relocation
804 [@var{offset}] can be specified and the file [@var{type}] can be specified
805 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
806 (ELF file) or @option{s19} (Motorola s19). 
807 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
808 @cindex flash protect
809 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
810 <@var{last}> of @option{flash bank} <@var{num}>. 
811 @item @b{flash auto_erase} <@var{on}|@var{off}>
812 @cindex flash auto_erase
813 Enable (@option{on}) to erase flash banks prior to writing using the flash @option{write_image} command
814 only. Default is (@option{off}), flash banks have to be erased using @option{flash erase} command. 
815 @end itemize
816
817 @page
818 @section Target Specific Commands
819 @cindex Target Specific Commands
820
821 @subsection AT91SAM7 specific commands
822 @cindex AT91SAM7 specific commands
823 The flash configuration is deduced from the chip identification register. The flash
824 controller handles erases automatically on a page (128/265 byte) basis so erase is
825 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
826 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
827 that can be erased separatly.Only an EraseAll command is supported by the controller
828 for each flash plane and this is called with
829 @itemize @bullet
830 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
831 bulk erase flash planes first_plane to last_plane. 
832 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
833 @cindex at91sam7 gpnvm
834 set or clear a gpnvm bit for the processor 
835 @end itemize
836
837 @subsection STR9 specific commands
838 @cindex STR9 specific commands
839 These are flash specific commands when using the str9xpec driver.
840 @itemize @bullet
841 @item @b{str9xpec enable_turbo} <@var{num}>
842 @cindex str9xpec enable_turbo
843 enable turbo mode, simply this will remove the str9 from the chain and talk
844 directly to the embedded flash controller. 
845 @item @b{str9xpec disable_turbo} <@var{num}>
846 @cindex str9xpec disable_turbo
847 restore the str9 into jtag chain. 
848 @item @b{str9xpec lock} <@var{num}>
849 @cindex str9xpec lock
850 lock str9 device. The str9 will only respond to an unlock command that will
851 erase the device. 
852 @item @b{str9xpec unlock} <@var{num}>
853 @cindex str9xpec unlock
854 unlock str9 device. 
855 @item @b{str9xpec options_read} <@var{num}>
856 @cindex str9xpec options_read
857 read str9 option bytes. 
858 @item @b{str9xpec options_write} <@var{num}>
859 @cindex str9xpec options_write
860 write str9 option bytes. 
861 @end itemize
862
863 @subsection STR9 configuration
864 @cindex STR9 configuration
865 @itemize @bullet
866 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
867 <@var{BBADR}> <@var{NBBADR}>
868 @cindex str9x flash_config
869 Configure str9 flash controller.
870 @smallexample
871 eg. str9x flash_config 0 4 2 0 0x80000
872 This will setup
873 BBSR - Boot Bank Size register
874 NBBSR - Non Boot Bank Size register
875 BBADR - Boot Bank Start Address register
876 NBBADR - Boot Bank Start Address register
877 @end smallexample
878 @end itemize
879
880 @subsection STR9 option byte configuration
881 @cindex STR9 option byte configuration
882 @itemize @bullet
883 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
884 @cindex str9xpec options_cmap
885 configure str9 boot bank. 
886 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
887 @cindex str9xpec options_lvdthd
888 configure str9 lvd threshold. 
889 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
890 @cindex str9xpec options_lvdsel
891 configure str9 lvd source. 
892 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
893 @cindex str9xpec options_lvdwarn
894 configure str9 lvd reset warning source. 
895 @end itemize
896
897 @subsection STM32x specific commands
898 @cindex STM32x specific commands
899  
900 These are flash specific commands when using the stm32x driver.
901 @itemize @bullet
902 @item @b{stm32x lock} <@var{num}>
903 @cindex stm32x lock
904 lock stm32 device. 
905 @item @b{stm32x unlock} <@var{num}>
906 @cindex stm32x unlock
907 unlock stm32 device. 
908 @item @b{stm32x options_read} <@var{num}>
909 @cindex stm32x options_read
910 read stm32 option bytes. 
911 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
912 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
913 @cindex stm32x options_write
914 write stm32 option bytes. 
915 @item @b{stm32x mass_erase} <@var{num}>
916 @cindex stm32x mass_erase
917 mass erase flash memory. 
918 @end itemize
919
920 @page
921 @section Architecture Specific Commands
922 @cindex Architecture Specific Commands
923
924 @subsection ARMV4/5 specific commands
925 @cindex ARMV4/5 specific commands
926
927 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
928 or Intel XScale (XScale isn't supported yet).
929 @itemize @bullet
930 @item @b{armv4_5 reg}
931 @cindex armv4_5 reg
932 Display a list of all banked core registers, fetching the current value from every
933 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
934 register value. 
935 @item @b{armv4_5 core_mode} [@option{arm}|@option{thumb}]
936 @cindex armv4_5 core_mode
937 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
938 The target is resumed in the currently set @option{core_mode}. 
939 @end itemize
940
941 @subsection ARM7/9 specific commands
942 @cindex ARM7/9 specific commands
943
944 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
945 ARM920t or ARM926EJ-S.
946 @itemize @bullet
947 @item @b{arm7_9 sw_bkpts} <@option{enable}|@option{disable}>
948 @cindex arm7_9 sw_bkpts
949 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
950 one of the watchpoint registers to implement software breakpoints. Disabling
951 SW Bkpts frees that register again. 
952 @item @b{arm7_9 force_hw_bkpts} <@option{enable}|@option{disable}>
953 @cindex arm7_9 force_hw_bkpts
954 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
955 breakpoints are turned into hardware breakpoints.
956 @item @b{arm7_9 dbgrq} <@option{enable}|@option{disable}>
957 @cindex arm7_9 dbgrq
958 Enable use of the DBGRQ bit to force entry into debug mode. This should be
959 safe for all but ARM7TDMI--S cores (like Philips LPC). 
960 @item @b{arm7_9 fast_writes} <@option{enable}|@option{disable}>
961 @cindex arm7_9 fast_writes [DEPRECATED]
962 See @option{arm7_9 fast_memory_access} instead. 
963 @item @b{arm7_9 fast_memory_access} <@option{enable}|@option{disable}>
964 @cindex arm7_9 fast_memory_access
965 Allow the OpenOCD to read and write memory without checking completion of
966 the operation. This provides a huge speed increase, especially with USB JTAG
967 cables (FT2232), but might be unsafe if used with targets running at a very low
968 speed, like the 32kHz startup clock of an AT91RM9200. 
969 @item @b{arm7_9 dcc_downloads} <@option{enable}|@option{disable}>
970 @cindex arm7_9 dcc_downloads
971 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
972 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
973 unsafe, especially with targets running at a very low speed. This command was introduced
974 with OpenOCD rev. 60. 
975 @end itemize
976
977 @subsection ARM920T specific commands
978 @cindex ARM920T specific commands
979
980 @itemize @bullet
981 @item @b{arm920t cache_info}
982 @cindex arm920t cache_info
983 Print information about the caches found. This allows you to see if your target
984 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache). 
985 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
986 @cindex arm920t md<bhw>_phys
987 Display memory at physical address addr. 
988 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
989 @cindex arm920t mw<bhw>_phys
990 Write memory at physical address addr. 
991 @item @b{arm920t read_cache} <@var{filename}>
992 @cindex arm920t read_cache
993 Dump the content of ICache and DCache to a file. 
994 @item @b{arm920t read_mmu} <@var{filename}>
995 @cindex arm920t read_mmu
996 Dump the content of the ITLB and DTLB to a file. 
997 @item @b{arm920t virt2phys} <@var{VA}>
998 @cindex arm920t virt2phys
999 Translate a virtual address to a physical address. 
1000 @end itemize
1001
1002 @page
1003 @section Debug commands
1004 @cindex Debug commands
1005 The following commands give direct access to the core, and are most likely
1006 only useful while debugging the OpenOCD.
1007 @itemize @bullet
1008 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1009 @cindex arm7_9 write_xpsr
1010 Immediately write either the current program status register (CPSR) or the saved
1011 program status register (SPSR), without changing the register cache (as displayed
1012 by the @option{reg} and @option{armv4_5 reg} commands). 
1013 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1014 <@var{0=cpsr},@var{1=spsr}>
1015 @cindex arm7_9 write_xpsr_im8
1016 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1017 operation (similar to @option{write_xpsr}). 
1018 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1019 @cindex arm7_9 write_core_reg
1020 Write a core register, without changing the register cache (as displayed by the
1021 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1022 encoding of the [M4:M0] bits of the PSR. 
1023 @end itemize
1024
1025 @page
1026 @section JTAG commands
1027 @cindex JTAG commands
1028 @itemize @bullet
1029 @item @b{scan_chain}
1030 @cindex scan_chain
1031 Print current scan chain configuration. 
1032 @item @b{jtag_reset}
1033 @cindex jtag_reset
1034 Toggle reset lines <@var{trst}> <@var{srst}>. 
1035 @item @b{endstate} <@var{tap_state}>
1036 @cindex endstate
1037 Finish JTAG operations in <@var{tap_state}>. 
1038 @item @b{runtest} <@var{num_cycles}>
1039 @cindex runtest
1040 Move to Run-Test/Idle, and execute <@var{num_cycles}> 
1041 @item @b{statemove} [@var{tap_state}]
1042 @cindex statemove
1043 Move to current endstate or [@var{tap_state}] 
1044 @item @b{irscan}
1045 @cindex irscan
1046 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ... 
1047 @item @b{drscan}
1048 @cindex drscan
1049 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ... 
1050 @item @b{verify_ircapture}
1051 @cindex verify_ircapture
1052 Verify value captured during Capture-IR <@option{enable}|@option{disable}> 
1053 @item @b{var}
1054 @cindex var
1055 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ... 
1056 @item @b{field}
1057 @cindex field
1058 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}] 
1059 @end itemize
1060
1061 @node Sample Scripts
1062 @chapter Sample Scripts
1063 @cindex scripts
1064
1065 This page will collect some script examples for different CPUs.
1066
1067 The configuration script can be divided in the following section:
1068 @itemize @bullet
1069 @item daemon configuration
1070 @item interface
1071 @item jtag scan chain
1072 @item target configuration
1073 @item flash configuration 
1074 @end itemize
1075
1076 Detailed information about each section can be found at OpenOCD configuration 
1077
1078 @section OMAP5912 Flash Debug
1079 @cindex OMAP5912 Flash Debug
1080 The following two scripts were used with a wiggler PP and and a TI OMAP5912
1081 dual core processor - (@uref{http://www.ti.com}), on a OMAP5912 OSK board
1082 - (@uref{http://www.spectrumdigital.com}).
1083 @subsection Openocd config
1084 @smallexample
1085 #daemon configuration
1086 telnet_port 4444
1087 gdb_port 3333
1088
1089 #interface
1090 interface parport
1091 parport_port 0x378
1092 parport_cable wiggler
1093 jtag_speed 0
1094
1095 #use combined on interfaces or targets that can't set TRST/SRST separately
1096 reset_config trst_and_srst
1097
1098 #jtag scan chain
1099 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1100 jtag_device 38 0x0 0x0 0x0
1101 jtag_device 4  0x1 0x0 0xe
1102 jtag_device 8  0x0 0x0 0x0
1103
1104 #target configuration
1105 daemon_startup reset
1106
1107 #target <type> <endianness> <reset mode> <chainpos> <variant>
1108 target arm926ejs little run_and_init 1 arm926ejs
1109 target_script 0 reset omap5912_osk.init
1110 run_and_halt_time 0 30
1111
1112 # omap5912 lcd frame buffer as working area
1113 working_area 0 0x20000000 0x3e800 nobackup
1114
1115 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1116 flash bank cfi 0x00000000 0x1000000 2 2 0
1117 @end smallexample
1118
1119 @subsection Openocd init
1120 @smallexample
1121 #
1122 # halt target
1123 #
1124 poll
1125 sleep 1
1126 halt
1127 wait_halt
1128 #
1129 # disable wdt
1130 #
1131 mww 0xfffec808 0x000000f5
1132 mww 0xfffec808 0x000000a0
1133
1134 mww 0xfffeb048 0x0000aaaa
1135 sleep 500
1136 mww 0xfffeb048 0x00005555
1137 sleep 500
1138 #
1139 # detect flash
1140 #
1141 flash probe 0
1142
1143 @end smallexample
1144
1145 @section STR71x Script
1146 @cindex STR71x Script
1147 The following script was used with an Amontec JTAGkey and a STR710 / STR711 cpu:
1148 @smallexample
1149 #daemon configuration
1150 telnet_port 4444
1151 gdb_port 3333
1152  
1153 #interface
1154 interface ft2232
1155 ft2232_device_desc "Amontec JTAGkey A"
1156 ft2232_layout jtagkey
1157 ft2232_vid_pid 0x0403 0xcff8
1158 jtag_speed 0
1159  
1160 #use combined on interfaces or targets that can't set TRST/SRST separately
1161 reset_config trst_and_srst srst_pulls_trst
1162  
1163 #jtag scan chain
1164 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1165 jtag_device 4 0x1 0xf 0xe
1166  
1167 #target configuration
1168 daemon_startup reset
1169  
1170 #target <type> <startup mode>
1171 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1172 target arm7tdmi little run_and_halt 0 arm7tdmi
1173 run_and_halt_time 0 30
1174
1175 working_area 0 0x2000C000 0x4000 nobackup
1176  
1177 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1178 flash bank str7x 0x40000000 0x00040000 0 0 0 STR71x
1179 @end smallexample
1180
1181 @section STR750 Script
1182 @cindex STR750 Script
1183 The following script was used with an Amontec JTAGkey and a STR750 cpu:
1184 @smallexample
1185 #daemon configuration
1186 telnet_port 4444
1187 gdb_port 3333
1188  
1189 #interface
1190 interface ft2232
1191 ft2232_device_desc "Amontec JTAGkey A"
1192 ft2232_layout jtagkey
1193 ft2232_vid_pid 0x0403 0xcff8
1194 jtag_speed 19
1195  
1196 #use combined on interfaces or targets that can't set TRST/SRST separately
1197 #reset_config trst_and_srst srst_pulls_trst
1198 reset_config trst_and_srst srst_pulls_trst
1199
1200 #jtag scan chain
1201 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1202 jtag_device 4 0x1 0xf 0xe
1203
1204 #jtag nTRST and nSRST delay
1205 jtag_nsrst_delay 500
1206 jtag_ntrst_delay 500
1207  
1208 #target configuration
1209 daemon_startup reset
1210  
1211 #target <type> <startup mode>
1212 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1213 target arm7tdmi little run_and_halt 0 arm7tdmi
1214 run_and_halt_time 0 30
1215  
1216 working_area 0 0x40000000 0x4000 nobackup
1217  
1218 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1219 flash bank str7x 0x20000000 0x000040000 0 0 0 STR75x
1220 @end smallexample
1221
1222 @section STR912 Script
1223 @cindex STR912 Script
1224 The following script was used with an Amontec JTAGkey and a STR912 cpu:
1225 @smallexample
1226 #daemon configuration
1227 telnet_port 4444
1228 gdb_port 3333
1229  
1230 #interface
1231 interface ft2232
1232 ft2232_device_desc "Amontec JTAGkey A"
1233 ft2232_layout jtagkey
1234 jtag_speed 1
1235  
1236 #use combined on interfaces or targets that can't set TRST/SRST separately
1237 reset_config trst_and_srst
1238  
1239 #jtag scan chain
1240 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1241 jtag_device 8 0x1 0x1 0xfe
1242 jtag_device 4 0x1 0xf 0xe
1243 jtag_device 5 0x1 0x1 0x1e
1244  
1245 #target configuration
1246 daemon_startup reset
1247  
1248 #target <type> <startup mode>
1249 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1250 target arm966e little reset_halt 1 arm966e
1251 run_and_halt_time 0 30
1252  
1253 working_area 0 0x50000000 16384 nobackup
1254  
1255 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1256 flash bank str9x 0x00000000 0x00080000 0 0 0
1257 @end smallexample
1258
1259 @section STR912 comstick
1260 @cindex STR912 comstick Script
1261 The following script was used with a Hitex STR9 Comstick:
1262 @smallexample
1263 #daemon configuration
1264 telnet_port 4444
1265 gdb_port 3333
1266  
1267 #interface
1268 interface ft2232
1269 ft2232_device_desc "STR9-comStick A"
1270 ft2232_layout comstick
1271 jtag_speed 1
1272
1273 jtag_nsrst_delay 100
1274 jtag_ntrst_delay 100
1275
1276 #use combined on interfaces or targets that can't set TRST/SRST separately
1277 reset_config trst_and_srst
1278  
1279 #jtag scan chain
1280 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1281 jtag_device 8 0x1 0x1 0xfe
1282 jtag_device 4 0x1 0xf 0xe
1283 jtag_device 5 0x1 0x1 0x1e
1284  
1285 #target configuration
1286 daemon_startup reset
1287  
1288 #target <type> <startup mode>
1289 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1290 target arm966e little reset_halt 1 arm966e
1291 run_and_halt_time 0 30
1292  
1293 working_area 0 0x50000000 16384 nobackup
1294  
1295 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1296 flash bank str9x 0x00000000 0x00080000 0 0 0
1297 @end smallexample
1298
1299 @section STM32x Script
1300 @cindex STM32x Script
1301 The following script was used with an Amontec JTAGkey and a STM32x cpu:
1302 @smallexample
1303 #daemon configuration
1304 telnet_port 4444
1305 gdb_port 3333
1306  
1307 #interface
1308 interface ft2232
1309 ft2232_device_desc "Amontec JTAGkey A"
1310 ft2232_layout jtagkey
1311 jtag_speed 10
1312
1313 jtag_nsrst_delay 100
1314 jtag_ntrst_delay 100
1315
1316 #use combined on interfaces or targets that can't set TRST/SRST separately
1317 reset_config trst_and_srst
1318  
1319 #jtag scan chain
1320 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1321 jtag_device 4 0x1 0xf 0xe
1322 jtag_device 5 0x1 0x1 0x1e
1323  
1324 #target configuration
1325 daemon_startup reset
1326  
1327 #target <type> <startup mode>
1328 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1329 target cortex_m3 little run_and_halt 0
1330 run_and_halt_time 0 30
1331  
1332 working_area 0 0x20000000 16384 nobackup
1333  
1334 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1335 flash bank stm32x 0x08000000 0x00020000 0 0 0
1336 @end smallexample
1337
1338 @section STM32x Performance Stick
1339 @cindex STM32x Performance Stick Script
1340 The following script was used with the Hitex STM32 Performance Stick
1341 @smallexample
1342 #daemon configuration
1343 telnet_port 4444
1344 gdb_port 3333
1345  
1346 #interface
1347 interface ft2232
1348 ft2232_device_desc "STM32-PerformanceStick A"
1349 ft2232_layout stm32stick
1350 jtag_speed 10
1351
1352 jtag_nsrst_delay 100
1353 jtag_ntrst_delay 100
1354
1355 #use combined on interfaces or targets that can't set TRST/SRST separately
1356 reset_config trst_and_srst
1357  
1358 #jtag scan chain
1359 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1360 jtag_device 4 0x1 0xf 0xe
1361 jtag_device 5 0x1 0x1 0x1e
1362 jtag_device 4 0x1 0xf 0xe
1363  
1364 #target configuration
1365 daemon_startup reset
1366  
1367 #target <type> <startup mode>
1368 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1369 target cortex_m3 little run_and_halt 0
1370 run_and_halt_time 0 30
1371  
1372 working_area 0 0x20000000 16384 nobackup
1373  
1374 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1375 flash bank stm32x 0x08000000 0x00020000 0 0 0
1376 @end smallexample
1377
1378 @section LPC2129 Script
1379 @cindex LPC2129 Script
1380 The following script was used with an wiggler PP and a LPC-2129 cpu:
1381 @smallexample
1382 #daemon configuration
1383 telnet_port 4444
1384 gdb_port 3333
1385  
1386 #interface
1387 interface parport
1388 parport_port 0x378
1389 parport_cable wiggler
1390 jtag_speed 0
1391  
1392 #use combined on interfaces or targets that can't set TRST/SRST separately
1393 reset_config trst_and_srst srst_pulls_trst
1394  
1395 #jtag scan chain
1396 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1397 jtag_device 4 0x1 0xf 0xe
1398  
1399 #target configuration
1400 daemon_startup reset
1401  
1402 #target <type> <startup mode>
1403 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1404 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1405 run_and_halt_time 0 30
1406  
1407 working_area 0 0x40000000 0x4000 nobackup
1408  
1409 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1410 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1411 @end smallexample
1412
1413 @section  LPC2148 Script
1414 @cindex  LPC2148 Script
1415 The following script was used with an Amontec JTAGkey and a LPC2148 cpu:
1416 @smallexample
1417 #daemon configuration
1418 telnet_port 4444
1419 gdb_port 3333
1420  
1421 #interface
1422 interface ft2232
1423 ft2232_device_desc "Amontec JTAGkey A"
1424 ft2232_layout jtagkey
1425 ft2232_vid_pid 0x0403 0xcff8
1426 jtag_speed 3
1427  
1428 #use combined on interfaces or targets that can't set TRST/SRST separately
1429 reset_config trst_and_srst srst_pulls_trst
1430  
1431 #jtag scan chain
1432 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1433 jtag_device 4 0x1 0xf 0xe
1434  
1435 #target configuration
1436 daemon_startup reset
1437  
1438 #target <type> <startup mode>
1439 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1440 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1441 run_and_halt_time 0 30
1442  
1443 working_area 0 0x40000000 0x8000 nobackup
1444  
1445 #flash configuration
1446 flash bank lpc2000 0x0 0x7d000 0 0 0 lpc2000_v1 14765 calc_checksum
1447 @end smallexample
1448
1449 @section  LPC2294 Script
1450 @cindex  LPC2294 Script
1451 The following script was used with an Amontec JTAGkey and a LPC2294 cpu:
1452 @smallexample
1453 #daemon configuration
1454 telnet_port 4444
1455 gdb_port 3333
1456  
1457 #interface
1458 interface ft2232
1459 ft2232_device_desc "Amontec JTAGkey A"
1460 ft2232_layout jtagkey
1461 ft2232_vid_pid 0x0403 0xcff8
1462 jtag_speed 3
1463  
1464 #use combined on interfaces or targets that can't set TRST/SRST separately
1465 reset_config trst_and_srst srst_pulls_trst
1466  
1467 #jtag scan chain
1468 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1469 jtag_device 4 0x1 0xf 0xe
1470  
1471 #target configuration
1472 daemon_startup reset
1473  
1474 #target <type> <startup mode>
1475 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1476 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1477 run_and_halt_time 0 30
1478  
1479 working_area 0 0x40000000 0x4000 nobackup
1480  
1481 #flash configuration
1482 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1483 @end smallexample
1484
1485 @section AT91R40008 Script
1486 @cindex AT91R40008 Script
1487 The following script was used with an Amontec JTAGkey and a AT91R40008 cpu:
1488 @smallexample
1489 #daemon configuration
1490 telnet_port 4444
1491 gdb_port 3333
1492  
1493 #interface
1494 interface ft2232
1495 ft2232_device_desc "Amontec JTAGkey A"
1496 ft2232_layout jtagkey
1497 ft2232_vid_pid 0x0403 0xcff8
1498 jtag_speed 0
1499 jtag_nsrst_delay 200
1500 jtag_ntrst_delay 200
1501  
1502 #use combined on interfaces or targets that can't set TRST/SRST separately
1503 reset_config srst_only srst_pulls_trst
1504  
1505 #jtag scan chain
1506 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1507 jtag_device 4 0x1 0xf 0xe
1508  
1509 #target configuration
1510 daemon_startup reset
1511  
1512 #target <type> <startup mode>
1513 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1514 target arm7tdmi little run_and_halt 0 arm7tdmi
1515 run_and_halt_time 0 30
1516 @end smallexample
1517
1518 @section AT91SAM7s Script
1519 @cindex AT91SAM7s Script
1520 The following script was used with an Olimex ARM-JTAG-OCD and a AT91SAM7S64 cpu:
1521 @smallexample
1522 #daemon configuration
1523 telnet_port 4444
1524 gdb_port 3333
1525  
1526 #interface
1527 interface ft2232
1528 ft2232_device_desc "Olimex OpenOCD JTAG A"
1529 ft2232_layout olimex-jtag
1530 ft2232_vid_pid 0x15BA 0x0003
1531 jtag_speed 0
1532 jtag_nsrst_delay 200
1533 jtag_ntrst_delay 200
1534  
1535 #use combined on interfaces or targets that can't set TRST/SRST separately
1536 reset_config srst_only srst_pulls_trst
1537  
1538 #jtag scan chain
1539 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1540 jtag_device 4 0x1 0xf 0xe
1541  
1542 #target configuration
1543 daemon_startup reset
1544  
1545 #target <type> <startup mode>
1546 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1547 target arm7tdmi little run_and_halt 0 arm7tdmi
1548 run_and_halt_time 0 30
1549  
1550 # flash-options AT91
1551 working_area 0 0x00200000 0x4000 nobackup
1552 flash bank at91sam7 0 0 0 0 0
1553  
1554 # Information: 
1555 # erase command (telnet-interface) for complete flash:
1556 # flash erase <num> 0 numlockbits-1 (can be seen from output of flash info 0)
1557 # SAM7S64 with 16 lockbits and bank 0: flash erase 0 0 15
1558 # set/clear NVM-Bits:
1559 # at91sam7 gpnvm <num> <bit> <set|clear>
1560 # disable locking from SAM-BA:
1561 # flash protect 0 0 1 off
1562 @end smallexample
1563
1564 @section XSCALE IXP42x Script
1565 @cindex XSCALE IXP42x Script
1566 The following script was used with an Amontec JTAGkey-Tiny and a xscale ixp42x cpu:
1567 @smallexample
1568 #daemon configuration
1569 telnet_port 4444
1570 gdb_port 3333
1571
1572 #interface
1573 interface ft2232
1574 ft2232_device_desc "Amontec JTAGkey A"
1575 ft2232_layout jtagkey
1576 ft2232_vid_pid 0x0403 0xcff8
1577 jtag_speed 0
1578 jtag_nsrst_delay 200
1579 jtag_ntrst_delay 200
1580  
1581 #use combined on interfaces or targets that can't set TRST/SRST separately
1582 reset_config srst_only srst_pulls_trst
1583  
1584 #jtag scan chain
1585 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1586 jtag_device 7 0x1 0x7f 0x7e
1587  
1588 #target configuration
1589 daemon_startup reset
1590  
1591 #target <type> <startup mode>
1592 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1593 target xscale big run_and_halt 0 IXP42x
1594 run_and_halt_time 0 30
1595 @end smallexample
1596
1597 @section Cirrus Logic EP9301 Script
1598 @cindex Cirrus Logic EP9301 Script
1599 The following script was used with FT2232 based JTAG interfaces and a
1600 Cirrus Logic EP9301 processor on an Olimex CS-E9301 board.
1601 @smallexample
1602 #daemon configuration
1603 telnet_port 4444
1604 gdb_port 3333
1605  
1606 #interface
1607 interface ft2232
1608
1609 #Olimex ARM-USB-OCD
1610 #ft2232_device_desc "Olimex OpenOCD JTAG"
1611 #ft2232_layout olimex-jtag
1612 #ft2232_vid_pid 0x15ba 0x0003
1613  
1614 #Amontec JTAGkey (and JTAGkey-Tiny)
1615 #Serial is only necessary if more than one JTAGkey is connected
1616 ft2232_device_desc "Amontec JTAGkey A"
1617 #ft2232_serial AMTJKV31
1618 #ft2232_serial T1P3S2W8
1619 ft2232_layout jtagkey
1620 ft2232_vid_pid 0x0403 0xcff8
1621  
1622 #wiggler/parallel port interface
1623 #interface parport
1624 #parport_port 0x378
1625 #parport_cable wiggler
1626 #jtag_speed 0
1627 jtag_speed 1
1628 reset_config trst_and_srst
1629  
1630 #jtag scan chain
1631 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1632 jtag_device 4 0x1 0xf 0xe
1633  
1634 jtag_nsrst_delay 100
1635 jtag_ntrst_delay 100
1636  
1637 #target configuration
1638 daemon_startup attach
1639  
1640 #target <type> <endianess> <reset mode>
1641 target arm920t little reset_halt 0
1642 working_area 0 0x80014000 0x1000 backup
1643  
1644 #flash configuration
1645 #flash bank <driver> <base> <size> <chip_width> <bus_width> [driver_options ...]
1646 flash bank cfi 0x60000000 0x1000000 2 2 0
1647 @end smallexample
1648
1649 @section Hilscher netX 100 / 500 Script
1650 @cindex Hilscher netX 100 / 500 Script
1651 The following script was used with an Amontec JTAGkey and a Hilscher
1652 netX 500 cpu:
1653 @smallexample
1654 #daemon configuration
1655 telnet_port 4444
1656 gdb_port 3333
1657
1658 #interface
1659 interface ft2232
1660 ft2232_device_desc "Amontec JTAGkey A"
1661 ft2232_layout jtagkey
1662 ft2232_vid_pid 0x0403 0xcff8
1663 jtag_speed 5
1664
1665 #use combined on interfaces or targets that can't set TRST/SRST separately
1666 reset_config trst_and_srst
1667
1668 #jtag scan chain
1669 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1670 jtag_device 4 0x1 0xf 0xe
1671
1672 jtag_nsrst_delay 100
1673 jtag_ntrst_delay 100
1674
1675 #target configuration
1676 daemon_startup reset
1677
1678 #target <type> <endianness> <startup mode> <chainpos> <variant>
1679 target arm926ejs little run_and_halt 0 arm926ejs
1680 run_and_halt_time 0 500
1681 @end smallexample
1682
1683 @section Marvell/Intel PXA270 Script
1684 @cindex Marvell/Intel PXA270 Script
1685 @smallexample
1686 # config for Intel PXA270
1687 # not, as of 2007-06-22, openocd only works with the
1688 # libftd2xx library from ftdi.  libftdi does not work.
1689
1690 telnet_port     3333
1691 gdb_port        4444
1692
1693 interface ft2232
1694 ft2232_layout olimex-jtag
1695 ft2232_vid_pid 0x15BA 0x0003
1696 ft2232_device_desc "Olimex OpenOCD JTAG"
1697 jtag_speed 0
1698 # set jtag_nsrst_delay to the delay introduced by your reset circuit
1699 # the rest of the needed delays are built into the openocd program
1700 jtag_nsrst_delay 260
1701 # set the jtag_ntrst_delay to the delay introduced by a reset circuit
1702 # the rest of the needed delays are built into the openocd program
1703 jtag_ntrst_delay 0
1704
1705 #use combined on interfaces or targets that can't set TRST/SRST separately
1706 reset_config trst_and_srst separate
1707
1708 #jtag scan chain
1709 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1710 jtag_device 7 0x1 0x7f 0x7e
1711
1712 #target configuration
1713 daemon_startup reset
1714
1715 target xscale little reset_halt 0 pxa27x
1716
1717 # maps to PXA internal RAM.  If you are using a PXA255
1718 # you must initialize SDRAM or leave this option off
1719 working_area 0 0x5c000000 0x10000 nobackup
1720
1721 run_and_halt_time 0 30
1722
1723 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1724 # works for P30 flash
1725 flash bank cfi 0x00000000 0x1000000 2 4 0
1726 @end smallexample
1727
1728 @node GDB and Openocd
1729 @chapter GDB and Openocd
1730 @cindex GDB and Openocd
1731 Openocd complies with the remote gdbserver protocol, and as such can be used
1732 to debug remote targets.
1733
1734 @section Connecting to gdb
1735 @cindex Connecting to gdb
1736 A connection is typically started as follows:
1737 @smallexample
1738 target remote localhost:3333
1739 @end smallexample
1740 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1741
1742 To see a list of available openocd commands type @option{monitor help} on the
1743 gdb commandline.
1744
1745 Openocd supports the gdb @option{qSupported} packet, this enables information
1746 to be sent by the gdb server (openocd) to gdb. Typical information includes
1747 packet size and device memory map.
1748
1749 Previous versions of openocd required the following gdb options to increase
1750 the packet size and speed up gdb communication.
1751 @smallexample
1752 set remote memory-write-packet-size 1024
1753 set remote memory-write-packet-size fixed
1754 set remote memory-read-packet-size 1024
1755 set remote memory-read-packet-size fixed
1756 @end smallexample
1757 This is now handled in the @option{qSupported} PacketSize.
1758
1759 @section Programming using gdb
1760 @cindex Programming using gdb
1761
1762 By default the target memory map is not sent to gdb, this can be enabled by
1763 the following openocd config option:
1764 @smallexample
1765 gdb_memory_map enable
1766 @end smallexample
1767 For this to function correctly a valid flash config must also be configured
1768 in openocd. For speed also configure a valid working area.
1769
1770 Informing gdb of the memory map of the target will enable gdb to protect any
1771 flash area of the target and use hardware breakpoints by default. This means
1772 that the openocd option @option{arm7_9 force_hw_bkpts} is not required when
1773 using a memory map.
1774
1775 To view the configured memory map in gdb, use the gdb command @option{info mem}
1776 All other unasigned addresses within gdb are treated as ram.
1777
1778 If @option{gdb_flash_program enable} is also used, gdb will be able to
1779 program any flash memory using the vFlash interface.
1780
1781 gdb will look at the target memory map when a load command is given, if any
1782 areas to be programmed lie within the target flash area the vFlash packets
1783 will be used.
1784
1785 Incase the target needs configuring before gdb programming, a script can be executed.
1786 @smallexample
1787 target_script 0 gdb_program_config config.script
1788 @end smallexample
1789
1790 To verify any flash programming the gdb command @option{compare-sections}
1791 can be used.
1792
1793 @node FAQ
1794 @chapter FAQ
1795 @cindex faq
1796 @enumerate
1797 @item OpenOCD complains about a missing cygwin1.dll
1798
1799 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1800 claims to come with all the necessary dlls. When using Cygwin, try launching
1801 the OpenOCD from the Cygwin shell.
1802
1803 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1804 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1805 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1806
1807 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1808 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1809 software breakpoints consume one of the two available hardware breakpoints,
1810 and are therefor disabled by default. If your code is running from RAM, you
1811 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1812 your code resides in Flash, you can't use software breakpoints, but you can force
1813 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1814
1815 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1816 and works sometimes fine.
1817
1818 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1819 clock at the time you're programming the flash. If you've specified the crystal's
1820 frequency, make sure the PLL is disabled, if you've specified the full core speed
1821 (e.g. 60MHz), make sure the PLL is enabled.
1822
1823 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1824 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1825 out while waiting for end of scan, rtck was disabled".
1826
1827 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1828 settings in your PC Bios (ECP, EPP, and different versions of those).
1829
1830 @item When debugging with the OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1831 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1832 memory read caused data abort". 
1833
1834 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1835 beyond the last valid frame. It might be possible to prevent this by setting up
1836 a proper "initial" stack frame, if you happen to know what exactly has to
1837 be done, feel free to add this here.
1838
1839 @item I get the following message in the OpenOCD console (or log file):
1840 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1841
1842 This warning doesn't indicate any serious problem, as long as you don't want to
1843 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1844 trst_and_srst srst_pulls_trst} to tell the OpenOCD that either your board,
1845 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1846 independently. With this setup, it's not possible to halt the core right out of
1847 reset, everything else should work fine.
1848
1849 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1850 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1851 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1852 quit with an error message. Is there a stability issue with OpenOCD?
1853
1854 No, this is not a stability issue concering OpenOCD. Most users have solved
1855 this issue by simply using a self-powered USB Hub, which they connect their
1856 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1857 supply stable enough for the Amontec JTAGkey to be operated.
1858
1859 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1860 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1861 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1862 What does that mean and what might be the reason for this?
1863
1864 First of all, the reason might be the USB power supply. Try using a self-powered
1865 hub instead of a direct connection to your computer. Secondly, the error code 4
1866 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1867 Chip ran into some sort of error - this points us to a USB problem.
1868
1869 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1870 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1871 What does that mean and what might be the reason for this?
1872
1873 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1874 has closed the connection to OpenOCD. This might be a GDB issue.
1875
1876 @item In the configuration file in the section where flash device configurations
1877 are described, there is a parameter for specifying the clock frequency for
1878 LPC2000 internal flash devices (e.g.
1879 @option{flash bank lpc2000 0x0 0x40000 0 0 lpc2000_v1 0 14746 calc_checksum}),
1880 which must be sepcified in kilohertz. However, I do have a quartz crystal of a
1881 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1882 Is it possible to specify real numbers for the clock frequency?
1883
1884 No. The clock frequency specified here must be given as an integral number.
1885 However, this clock frequency is used by the In-Application-Programming (IAP)
1886 routines of the LPC2000 family only, which seems to be very tolerant concerning
1887 the given clock frequency, so a slight difference between the specified clock
1888 frequency and the actual clock frequency will not cause any trouble.
1889
1890 @item Do I have to keep a specific order for the commands in the configuration file?
1891
1892 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1893 listed for the JTAG scan chain must be given in the right order (jtag_device),
1894 with the device closest to the TDO-Pin being listed first. In general,
1895 whenever objects of the same type exist which require an index number, then
1896 these objects must be given in the right order (jtag_devices, targets and flash
1897 banks - a target references a jtag_device and a flash bank references a target).
1898
1899 @item Sometimes my debugging session terminates with an error. When I look into the
1900 log file, I can see these error messages: Error: arm7_9_common.c:561
1901 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1902                                                         
1903 @end enumerate
1904
1905 @include fdl.texi
1906
1907 @node Index
1908 @unnumbered Index
1909
1910 @printindex cp
1911
1912 @bye